
Introduction to the Great Migrations Technology

Mark E. Juras, Partner
Great Migrations LLC

November 2008

Executive Summary ..2
Overview..2
What is gmBasic?..2
Why gmBasic? ..2
Why should I read this document?..2

Introduction ...3
Document Purpose..3
Intended Audience ..3

The ScanTool Sample Application..3
Desired Migration Target(s) ..4
Toolset Overview ..4
A PiecePort Migration ...4

The Problem with PiecePorts ..4
A SmartPort Migration...5

Steps to SmartPorting the ScanTool Sample..5
The problem with SmartPorts..5

A CleanPort Migration...6
The Problem with SmartPorts Revisited ...6
Choice of .NET Language...6
Migrating to .NET Components ..7

Steps To Migrate A Third-Party COM Component To A .NET Component..7
The FMStocks Sample (ASP to ASP.NET) ..8

Tool-Assisted ASP Migration...8
Analysis..9
Migration ..9

Other Translation Topics...9
Error Handling to Exception Handling ...9
Control Arrays to Arrays of Controls ...10
Late Binding...10
Weak to Strong Typing..10

Special Features ...11
Source Code Analytics ..11
Build Order Report ..11
Translation Control Scripts ..11
Dealing with "Bad Code" ...11

Appendix A: Great Migrations Methodology ...13
Tool-Assisted...13
Iterative..13
Test-Driven..14
No-Code Freeze..14
Measurable..14
Repeatable and Documented..14
Balanced Application of Automated and Manual Development ..14

Appendix B: Navigating the Sample Files...15

Great Migrations LLC Introduction to Great Migrations Technology Page 2 of 15

Last update November 2008

Executive Summary
Overview
For almost past two decades, Microsoft Visual Basic (VB6) and Microsoft Active Server Pages (ASP) have been
useful and popular tools in software development. However, their long term viability ended when Microsoft
released the .NET platform and started aggressively promoting it as the dominant programming paradigm for
Windows. VB6 and ASP Classic are now being replaced by Microsoft .NET and they are rapidly losing community
support. Because the .NET platform is so different from VB6/ASP, many organizations are finding the upgrade to
be extremely difficult. Great Migrations has developed a methodology that can help in making this transition.
Central to our methodology is gmBasic -- a powerful computer language translation technology. This document
provides an introduction to the gmBasic technology.

What is gmBasic?
gmBasic is a computer language translator designed for large and complex VB6/ASP to .NET migrations. Its
purpose is to help organizations fully leverage their legacy code as they adopt Microsoft .NET.

Why gmBasic?
gmBasic is based on a sophisticated and robust approach to software translation. It uses proven principles of
compiler design to provide accurate, clean, and correct translations. It has several unique capabilities:

Multi-Project gmBasic is designed to migrate large, interdependent codebases, not only single projects.
This means fewer Interops, which means cleaner translations, and less rework.

Choice of Language One of the most sacred principles of .NET is that developers should have language choice;
we also believe in this, so gmBasic currently offers translations to both C# and VB.NET.

Flexibility gmBasic translations are controlled through configuration files. This facility is ideal for the
radical restructuring needed when migrating from VB6/COM to the .NET Platform.

Performance gmBasic is fast -- orders of magnitude faster than the VB Upgrade Wizard. This speed
makes experimenting with different restructuring configurations a pleasure.

Special Features gmBasic has a powerful reporting subsystem that provides source code analytics, and a
job control language for directing translations.

Maturity gmBasic is being developed by Great Migrations and Promula Development Corporation
(PDC). PDC has almost thirty years of software translation experience and an impressive
history of delivering migration projects.

Why should I read this document?
This document illustrates the capabilities of gmBasic in the context of three introductory examples. If you have
significant VB6 or ASP assets and you are interested in upgrading them to .NET in a timely and cost effective
manner, then you may find this an informative document and our approach helpful in addressing this problem -- at
lower cost, less risk, and without having to sacrifice architectural quality or control.

Great Migrations LLC Introduction to Great Migrations Technology Page 3 of 15

Last update November 2008

Introduction
Document Purpose
The purpose of this document is to introduce the fundamentals of the Great Migrations methodology and
demonstrate some of the capabilities of the gmBasic technology. This is done in the context of a two small but non-
trivial examples. The document also presents some of the special features of gmBasic such as:

 Combined VB6/ASP to .NET migrations
 Replacing third-party COM components with .NET assemblies rather than using COM Interop assemblies
 Supporting choice of language (VB.NET or C#)
 Dealing with VB6-to-C# incompatibilities (e.g., error handling, control arrays)
 Creating source code analytics reports

There are two sample applications:

 ScanTool – a simple desktop application that illustrates solutions to a number of translation problems such as
multi-project translations, translation of COM events, API replacements, GoTo style error handling, etc.

 FMStocks – a three-tier web application with a data access layer and business object layer written in VB6 and
a web user interface written in classic ASP.

Intended Audience
Individuals planning an upgrade from VB6/ASP to .NET should read this document. Although this document tries to
stay at a high level, a basic knowledge of VB6/ASP/COM is assumed. More experienced readers are invited to dig
into the sample source codes and other supporting files which are hyperlinked throughout the text. An appendix
provides guidance to readers who wish to inspect the sample source code and translations in detail.

The ScanTool Sample Application
The first sample application is called
ScanTool. It is a desktop application
that scans and analyzes source code
directory trees and generates useful
reports from the analysis of the code
files. For example, one report
shows the structure and size of VB
projects in the directory tree.
Another report shows information
about COM components referenced
by the code. The program has an
object-oriented design, with a
different report class handling each
type of report.

The ScanTool source is comprised of 2242
lines of code and is organized into two VB6
projects: an EXE (ScantoolUI) that provides a
user interface and a DLL (ScanToolLib) that
does file scanning, file parsing, and reporting.
The DLL communicates its status to the EXE
through COM Events. ScanTool uses several
external COM libraries: MSXML, Scripting,
Common Dialog, and TypeLibInfo, and it also
calls Win32 APIs, like ShellExecuteForExplore.

VBPFILE MODTYPE File Count Line Count

ScanToolLib.vbp Class 8 1366

Module 1 154

9 1520

ScanToolUI.vbp Form 1 523

Module 1 199

2 722

Grand Total 11 2242

Great Migrations LLC Introduction to Great Migrations Technology Page 4 of 15

Last update November 2008

Desired Migration Target(s)
For the purpose demonstrating the flexibility of
our approach, we will perform four different
migrations:

1. VB.NET with Interoped COM components
2. C# with Interoped COM components
3. VB.NET with Managed components
4. C# with Managed components

Migration
Toolset

Language
Config

Interface
Config

VB6
COM

VB.Net
Managed

VB.Net
Interop

C#
Interop

C#
Managed

Toolset Overview
The gmBasic toolset includes the following components:

System Tools The true workhorse of the toolset that performs the actual translation. Currently,
the system tools are command line executables.

Language Files A set of XML files that describe how the objects of the VB language map to .NET
and describe standards for naming and other settings in the resulting .NET
projects.

Interface Description Files
and RefactorLibrary Files

A set of XML files that describe how external objects (COM Types) map to .NET
Types.

A PiecePort Migration
The most direct approach to migration is called a PiecePort. A PiecePort converts one VB project at a time and
uses Interop to integrate with external COM components. A PiecePort migration gives you a functionally
equivalent, architecturally similar .NET code. The structure of the system remains the same unless it must change
because of incompatibilities.

The Problem with PiecePorts
In the PiecePort of ScanTool, the ScanToolUI.exe Interops ScanToolLib.dll even though a managed
ScanToolLib.dll is planned. This gives rise to a very unsavory complication of COM Interop we call API-Crossing.

Sidebar:
API-

Crossing

COM interfaces have COM types as member parameters and return types. If you Interop COM
components, your .NET clients will also have to use the COM types. Your application will end up
straddling the fence between COM and .NET and this will require more Interop code which runs
counter to the premise of adopting .NET in the first place.

Consider for example a COM
component that returns a COM
Scripting.File object as part of its
interface. Suppose your coding
standards call for .NET's
System.IO instead of COM
Scripting. Interoping the COM
component forces you to use
Scripting.File in your .NET client
because the COM component only
speaks Scripting. The .NET client
must contend with two File IO
libraries.

Great Migrations LLC Introduction to Great Migrations Technology Page 5 of 15

Last update November 2008

In the real world, migrating large codebases with many interdependent projects is the norm, and API-Crossing can
create a lot of additional work and risk. One solution to this problem is called a SmartPort which is the topic of the
next section.

A SmartPort Migration
In a SmartPort, related components are migrated as a logical unit so that your components are migrated and
accessed as managed code rather than being Interoped. This means cleaner translations and less rework.
gmBasic was specifically designed to do SmartPorts. SmartPort migrations are called "smart" because gmBasic is
smart about how it deals with multiple, interdependent projects.

Steps to SmartPorting the ScanTool Sample

1) Verify that the
VB codebase
builds.

This ensures that all the files and dependencies are in place, the VB code is syntactically
correct, and its references are in sync with your workstation.

2) Verify that
Interface
Description files
are present.

Interface description files tell gmBasic how to map COM Types to .NET Types. ScanTool uses
several external COM libraries and we need interface descriptions for these before we can
translate any VB code that uses them. Great Migrations has already created Interface
description files for many of the most popular COM components.

Migration Studio automates the process of creating interface descriptions for your codebase.

3) Translate the
library project.

Translations are simple command-line operations. For example, to translate ScanToolLib.vbp,
enter the following command:

gmBasic ScanToolLib.vbp

This creates a code bundle file called ScanToolLib_csh.bnd that contains all the translation
results. Bundling the results into one file helps to keep things organized and manageable
during large migrations.

4) Deploy the
library code
bundle.

The translation bundle for the library contains translations for all source files in the library. It
also contains an interface description file for the DLL. The interface description will be used in
translating the client project, ScanToolUI.VBP

Deploying a code bundle is a simple command-line operation. To deploy the ScanTool code
bundles enter the following command:

deploy ScanToolLib_csh.bnd deploy replace verbose

5) Translate and
deploy the user
interface project.

gmBasic ScanToolUI.vbp
deploy ScanToolUI_csh.bnd deploy replace verbose

6) Open the ScanToolLib project in the Visual Studio IDE and compile or build using MSBuild.

7) Open the ScanToolUI project in the Visual Studio IDE and compile or build using MSBuild.

At this point, you will have a functionally equivalent C# version of the ScanTool application.

The problem with SmartPorts
SmartPorts are comprehensive, bottom-up migrations and they are the cleanest, fastest way to take an application
portfolio to .NET:

 You gather up your VB codebase,
 You translate it to .NET from the bottom-up (i.e. dependencies first),
 You build the .NET code,
 You test the .NET applications,

Great Migrations LLC Introduction to Great Migrations Technology Page 6 of 15

Last update November 2008

 You deploy the .NET application to production, and then
 You celebrate.

This sounds feasible in theory, but you will probably run into the following problem with your project timeline: testing
your new .NET codebase will tie up your test team for a long time. Also during this lengthy testing effort, making
functional changes to the .NET code may be discouraged because they will complicate regression testing. If you
decide to continue maintaining and deploying the VB codebase, while you are manually fixing and testing the .NET
version, you will have to contend with merging those changes into the .NET code, doing them at least twice. This
approach can quickly become very expensive or very disruptive to ongoing maintenance, both of which are most
unsavory to the users of the system.

Seems like quite a quandary: you can't PiecePort the projects separately because that gives you Interop
translations you do not want; you can't SmartPort the projects together because you cannot regression the entire
system in a timely manner. What you need is a clean, incremental approach to migration – an approach that
avoids the rework of a PiecePort, and also avoids the all-or-nothing proposition of a SmartPort. The answer to this
is what we call a CleanPort, which is the topic of the next section.

A CleanPort Migration
In a CleanPort, the entire codebase is migrated as a unit, but some legacy components are accessed through
wrappers until they can be migrated and tested in .NET. The wrappers, also known as .NET External Wrapper
Components, or NEWCs, are .NET components generated by gmBasic. NEWCs provide a cleaner, more final
interface than the wrappers generated by Visual Studio tools. In essence, a NEWC is the migrated interface of a
COM component. Because the NEWC is a very thin wrapper around the original COM component, it requires less
testing than the migrated implementation would. When the legacy COM component is translated to .NET, it
replaces the NEWC, but it does this without changing the interface exposed to clients so there is much less impact.

The CleanPort approach is a variation on the SmartPort: In a SmartPort, gmBasic assumes the COM component
will be replaced by a managed component, whereas in a CleanPort, gmBasic assumes the COM component will be
replaced by a NEWC. In both cases, clients are translated to use clean, managed references, not Interop. The
CleanPort approach allows an organization to migrate their code incrementally with minimal rework. This may have
benefits from a schedule flexibility and risk management perspective. Beware however, that introducing NEWCs
adds complexity to your build and deployment processes because they represent additional components that must
be built and deployed. In general we encourage people to go the SmartPort route if they can commit to invest in
tuning the translation process in advance.

The Problem with SmartPorts Revisited
Recall that the problem with SmartPorts is that doing the bottom-up migration of an entire codebase may demand a
lot of testing before you can begin deploying your .NET application because the foundation of the system is
changing as well as the client applications. However, we still find that this is an efficient approach and more time
spent tuning means less work and risk in the long run.

Side Bar:
Translation

Tuning

Translation Tuning is the iterative process of making translations with gmBasic, testing/inspecting
the results, and refining the gmBasic configuration so that, in the next iteration, gmBasic produces
code that is defect free and compliant with target architecture standards.

Because gmBasic translations are fast, robust, and repeatable, functional changes to the source code can continue
in parallel with the tuning process. Once the translation configuration is tuned to a client's requirements, the entire
codebase can be quickly translated, built, and deployed with minimal re-testing.

Choice of .NET Language
One of the principles of .NET is that developers should have their choice of language; we also believe in this, so
gmBasic currently offers translation to both C# and VB.NET. The target .NET language, or dialect as we call it,
may be specified as a switch on the gmBasic command line.

gmBasic ScanToolLib.vbp csh – produces a C# translation (default)
gmBasic ScanToolLib.vbp vbn – produces a VB.NET translation

Great Migrations LLC Introduction to Great Migrations Technology Page 7 of 15

Last update November 2008

The gmBasic configuration files control many of the dialect differences. For example, the settings and structure of
project files are controlled by template files. Also mappings for language and interface constructs for the different
dialects can be controlled by dialect-specific entries in the language and interface description files.

Key Point:

gmBasic does
NOT use the
VB.NET code from
the VB Upgrade
Wizard.

The VB Upgrade Wizard (VBUW) does a pretty good job of PiecePorting simple VB6 codes
to VB.NET, but it has a number of limitations and flaws. These have been discussed
elsewhere. Despite its weaknesses, we frequently hear about people trying to translate
VBUW output to C# as a means of upgrading VB6 to C#. This approach suffers the same
limitations and flaws as the VBUW and we do not consider it a productive option.

Note: gmBasic does not run the VB Upgrade Wizard to produce VB.NET then translate the
VB.NET to C#. gmBasic does a global, semantic VB6-to-.NET translation and then writes
its output in either C# or VB.NET syntax.

Migrating to .NET Components
When you have the VB source code of a component, SmartPorting allows you to bypass Interoping it. In this case,
gmBasic controls the translation of the component, so it controls every detail of its .NET interface, and therefore it is
able to generate a managed interface description file for the component. Using this managed interface description
file, gmBasic then produces client translations that access the managed component.

Things are very different with COM components for which you do not have source code. In this situation, the .NET
interface is a runtime callable wrapper (RWC) contained in an Interop assembly file. RWCs work, but they present
some challenges. These challenges have been discussed elsewhere and they will not be covered here.
Furthermore, it is commonly accepted that if there is a managed replacement available for a COM component, you
will almost always want to use it rather than Interoping to the COM component. This presents its own set of
challenges because most .NET components have very different designs from the COM components they replace.
Restructuring client code requires knowledge of the client application architecture as well as a mastery of the
source and target API's syntax and semantics. However, with careful research one can map the coding patterns
for one API to those for another. If you document this mapping in gmBasic interface description format, gmBasic
can then use it to automatically restructure your client code to use the new API.

Steps To Migrate A Third-Party COM Component To A .NET Component
For the purposes of this demo, we will show that gmBasic can translate two popular COM APIs to their managed
replacements:

o Windows Scripting Host to System.IO
o MSXML to System.XML

As already discussed, the output generated by gmBasic is to a great degree controlled by what we call interface
description files. These are XML files that can specify rules for mapping one COM API to another. By default,
these files direct the translator to generate Interop code, but they can be easily modified to direct the translator to
use completely different classes, properties, and methods. A full discussion of how this is done is beyond the
scope of this document, but the basics are described below.

1) Prepare a
RefactorLibrary.

A RefactorLibrary is an XML file that specifies in detail how the classes, enums, properties,
methods, and events of a source API map to a target API(s).

The amount of effort needed to implement a RefactorLibrary on the differences between the
source and target APIs' syntax and semantics. If the two APIs are one-to-one, creating the
interface description will be fairly mechanical and simple. If the two APIs have very have
different semantics (e.g. different object models, different design patterns, different exception
profiles) then the work is more complex. In necessary deep migration operations may by
implementing in a standard Win32 DLL and assigned to the RefactorLibrary.

Creating a managed interface description for a COM component requires knowledge of the
gmBasic interface description language as well as a mastery of the source and target API's
syntax and semantics. The GM staff has already authored many of these for the most popular
COM to .NET replacements, including Scripting and MSXML, which are used in the ScanTool
demo.

Great Migrations LLC Introduction to Great Migrations Technology Page 8 of 15

Last update November 2008

2) Deploy the
RefactorLibrary

Deploying a RefactorLibrary means putting the RefactorLibrary file into a migration project
folder.

3) Retranslate,
deploy, and
build.

At this point you have a functionally equivalent SmartPort of ScanTool that has been
restructured to use System.Xml and System.IO instead of MSXML and Scripting, respectively.

The FMStocks Sample (ASP to ASP.NET)
The migration concepts introduced in the context of the ScanTool demo also apply to ASP-to-ASP.NET
translations. For the most part these concepts are all handled the same way for ASP as they are for VB6. In fact,
gmBasic compiles VB6 and ASP to the same internal, intermediate format before analyzing and restructuring it to
the target architecture. However, in addition to a programming language change, in this case VB Script to C# or
VB.Net, ASP brings several new kinds of migration problems:

 Subtle changes in the semantics of core ASP classes (Request, Response)
 Scoping matters relating to nested and stacked ASP include files
 Very weak typing and other difference between VB Script and Visual Basic,
 Different rules for structuring markup and various styles of script tags
 Different format and semantics of ASP directives
 Looser coupling to COM, and
 Architectural decisions regarding where and how to use the many powerful new features of ASP.NET

The FMStocks sample illustrates how gmBasic handles many of these matters for you. FMStocks also provides
another example of VB to .NET migration because there is a set of VB6 COM objects behind the pages.

FMStocks, the Fitch and Mather Stocks 2000
sample, was created by Vertigo software and
distributed through MSDN to demonstrate some of
the best practices for building scaleable web
applications using ASP and COM+. FMStocks
was also featured in the Patterns and Practices
guide as an example of how to upgrade VB6 to
.NET. It consists of the following:

• Six VBPs (2500 LOC)
– 2 Data Access
– 4 Business Objects

• 33 ASP pages (2300 LOC)
– 5 include files

(nested and stacked)
– 28 script pages

• Poster Child DNA Web App
– Portfolio Management
– Research/Buy/Sell Stocks
– On-line Store
– Forms-based Login

Tool-Assisted ASP Migration
ASP.NET offers a very different programming model based on server-side controls, separation of HTML from
business logic in code-behind files, and many other new web application framework classes. From the
programmer's perspective, ASP.NET application logic will typically look and behave very different from ASP classic.
Despite these differences, migration tools can still facilitate your adoption of .NET so you can begin taking
advantage of the benefits of building everything with new developer tools and running everything on the new
platform. Migrating an ASP application to ASP.Net also provides you with C# or VB.NET code that is inherently
more robust than the VBScript being replaced. This output from the tool can be run more or less as it was in ASP
classic, or it can be restructured further, by hand or by customizing gmBasic, to fit new architectural patterns such
as server-controls or web-services.

Web Pages (ASP/VBS)

Business Objects

Data Access Objects
(ADODB)

Stored Procs
SQL Server

Great Migrations LLC Introduction to Great Migrations Technology Page 9 of 15

Last update November 2008

gmBasic currently does the following tasks:

Analysis

 Reporting the include order of the system. This is used in planning the order of migration and making
design decisions regarding creation of web controls.

 Reporting the definitions of subroutines and variables across the entire codebase. This is used in
estimating the size and complexity to the logic in the ASP pages.

 Determine the dependencies between items across the codebase and on external COM components. This
is also used in estimating the complexity of the ASP pages and in identifying needs and opportunities to
eliminate COM Interop.

Migration

 Restructure ASP to ASPX/ASCX and CodeBehind

o Page Directives
o Consolidate Script code into a single script block or a code-behind file per page
o Translate Render Functions to Response. Write
o Standardize HTML
o Convert #Includes to Web User Controls
o Implement page directives and logic to connect pages and includes
o Create a Web Application Project File

 Translate VBScript to C# or VB.NET

o Strong Typing everywhere
o Integrate with translations of VB6 components
o Deal with different semantics of ASP intrinsic collections (Response, Request)
o COM replacements

There are many examples of how we do these tasks in the sample translations.

Other Translation Topics
Error Handling to Exception Handling
VB6 and C# have radically different error handling models, and one of the most difficult aspects of upgrading VB6
code to C# is restructuring VB6's On Error GoTo coding patterns to C#'s try-catch-finally coding patterns. Migrating
to .NET APIs with different exception profiles than the original components compounds the problem. Fortunately,
dealing with perplexing migration problems is precisely what gmBasic is designed to do.

In general, gmBasic follows the principle of simpler is better: removing VB error handling structures that do not add
anything to what is now done by the .NET exception system while still leaving the logic that did clean up or did
something significant with the error.

For example, in VB a programmer may catch an error just to call re-raise it and add the location of the error. This is
not necessary in .NET because the exception object maintains an internal stack trace for you. When gmBasic sees
an error handling do nothing more than a re-raise, it removes it completely. However, if there was logic in the error
handler that did cleanup, that logic will be moved to a finally clause. Of course, gmBasic also knows to restructure
variable declarations to account for changes in local scope that result from inserting a try block.

Perhaps the most notorious VB6 statement is On Error Resume Next; this tells VB6 to trap and ignore all errors
without raising them. This statement has no clean analog in C#, and naïve approaches like just put a "try-catch
around every statement" quickly become a mess with anything other than a simple sequential series of statements.
gmBasic has algorithms specifically for detecting and converting On Error Resume Next to try-catch. An example
is shown below.

Great Migrations LLC Introduction to Great Migrations Technology Page 10 of 15

Last update November 2008

VB6 Using On Error Resume Next C# Restructured to use try-catch
On Error Resume Next

Dim tliApp As TLI.TLIApplication
Set tliApp = New TLI.TLIApplication
Dim tlinfo As TLI.TypeLibInfo
Set tlinfo = tliApp.TypeLibInfoFromFile(fil.Path)

If Err = TLI.tliErrCantLoadLibrary Then

Err.Clear
libname = "-"
libguid = "-"

Else

On Error GoTo ErrorHandler
libname = tlinfo.name
libguid = tlinfo.Guid

End If

try
{

GmBasic_Application.ClearErrorObject();
tliApp = new TLI.TLIApplication();
tlinfo = tliApp.TypeLibInfoFromFile(fil.Path);

}
catch
{

VBNET.Information.Err().Number =
(int)TLI.TliErrors.tliErrCantLoadLibrary;

}
if (VBNET.Information.Err().Number ==

(int)TLI.TliErrors.tliErrCantLoadLibrary)
{

VBNET.Information.Err().Clear();
libname = "-";
libguid = "-";

}
else
{

// OnErrorGoto(ErrorHandler);
libname = tlinfo.Name;
libguid = tlinfo.GUID;

}

This translation occurs in ScanToolLib.clsCOMReporter.cs

VB.NET is much more backward compatible with VB6, and gmBasic's VB.NET translations take advantage of this.
For example, VB.NET supports the notorious On Error Resume Next, so gmBasic's treatment of error handling for
VB.NET translations is much more direct.

Control Arrays to Arrays of Controls
In VB6 you can layout a form with multiple instances of a same-named control. This is referred to as a control array
and it is a very popular VB language feature. The .NET framework has generalized the concept of control arrays
with a new event model. You will also find ControlArray classes in the .NET framework that provide backward
compatibility, and the VB Upgrade Wizard uses these ControlArray classes. However, gmBasic translates control
arrays into (strongly typed) Generic Collections as we believe this provides more flexible and maintainable code.
See the translation of the radio buttons on ScanToolUI.frmScanTool.cs for an example of this.

Late Binding
VB6 supported late binding implicitly, but in .NET late bound calls require a CallByName. gmBasic is able to
correctly author CallByName statements.

VB6
Dim filHandler As Object

filHandler.processFile(fil, rpt)

VB.NET
Dim filHandler As Object

CallByName(filHandler, "processFile",
CallType.Method, New Object() {fil, rpt})

C#
object filHandler = null;

VBNET.Interaction.CallByName(filHandler,"processFile",
VBNET.CallType.Method,new object[]{fil,rpt});

Weak to Strong Typing
VB6 has an extremely flexible type system; it can pretty much convert any type into any other type implicitly. In
addition, it offers a Variant type that are frequently used and sometimes abused. Incorrectly typed variables are
also common. On the other hand, the .NET languages are designed for very explicit typing and they are much
stricter in terms of which conversions are allowed. Dealing with the change from weak to strong typing can make
manually migrating VB code a nightmare. Once again, this is a problem that gmBasic is specifically designed to
solve and it can almost always determine the type of a variable by how it is used, and it uses this information to
author the correct declaration and type casts automatically.

Great Migrations LLC Introduction to Great Migrations Technology Page 11 of 15

Last update November 2008

Other Features
Source Code Analytics
One of the more daunting tasks in a migration is mapping legacy APIs to .NET APIs. For example, both ADODB
and ADO.NET have hundreds of members. Knowing how you use a legacy API will let you narrow your focus to
the API members that you actually use. This is much more efficient than trying to map the entire API.

gmBasic's Symbol Reports help you understand how you actually use APIs as well as helping to reveal the detailed
structure of your programs. Symbol Reports show you, in extreme detail, the types and methods you are defining
and using in your codebase. This facility goes well beyond simply looking at explicit Reference and Object
statements in the VBP files. Symbol reports show which specific members are used, where they are used, and
how they are used. In addition, Symbol reports show you how many times a symbol is actually referenced.

Each record in a symbol report includes the following fields:

Record Type Indicates if the record describes a definition of, or referenced to, a symbol
(DEF or REF)

Member Name The name of the symbol being described

Member Class The class of the type being described

Member Library The library of the type being described

Member Type The Type of the symbol (Class, Enum, Property, Sub, Function, Event)

Loc Line If Record Type=DEF, the number of references to the symbol
If Record Type=REF, the line number in the source where this reference occurred

Loc Member If Record Type=DEF, the name of the member defined
If Record Type=REF, the name of the subprogram where this reference occurred

Loc Text If Record Type=DEF, details about the definition of the symbol
If Record Type=REF, the text of the source line where this reference occurred

Loc Path If Record Type=DEF, path to the file that contains the definition of the symbol
If Record Type=REF, path to the file that contains this reference of the symbol

Loc Name If Record Type=DEF, name of the type that contains the definition of the symbol
If Record Type=REF, name to the type that contains this reference of the symbol

Loc Type If Record Type=DEF, type of the file that contains the definition
If Record Type=REF, type of the file contains this reference of the symbol

These reports are useful for analyzing your codebase and planning a migration.

Build Order Report
In order to do a SmartPort or a CleanPort, it is necessary to translate the system in build order – this means
translating lower level components before their clients. Determining build order can be a challenge for some
organizations, so gmBasic provides a facility for determining the build order of an arbitrary collection of VBPs.

Translation Control Scripts
In addition to the simple command-line translations shown so far, gmBasic offers a rich job control language
that can be used to provide special handling for your translations. The job control commands can be specified at a
global level or at the translation job level.

Dealing with "Bad Code"
VB6 and ASP are extremely forgiving development platforms and coding errors can go undetected. In addition, the
extremely weak typing of VBScript used in ASP means there is a shortage of information in the code itself. The
bottom line is "bad code happens", so few VB6/ASP projects translate perfectly the first time through. Fortunately,
gmBasic was designed to help you deal with this in a systematic and automated way. When we identify problems
in the source code, we can use our "corrective" job control commands to provide additional information to gmBasic
so it can produce clean translations. Some of the corrective commands include:

Replace In rare cases, a block of VB6 code that is a bit "too creative" or archaic needs to be changed in

Great Migrations LLC Introduction to Great Migrations Technology Page 12 of 15

Last update November 2008

(Pre-Edit) order to facilitate a clean translation. The Pre-Edit facility is design to support making changes to
the source code as it is translated. Pre-edits can search and replace code, delete statements, or
comment things out. A Pre-Edit does not change the existing VB code; rather it changes the VB6
code in memory after it is read from disk. This approach simplifies VB source control, it is
automated and repeatable, and it also ensures that there is a record of the change.

FixType VBScript has no intrinsic typing and VB6 has an extremely flexible type system; they both can pretty
much convert any type into any other type implicitly. In addition, it offers a Variant type that
programmers frequently use and sometimes abuse. Incorrectly typed variables are fairly common.
On the other hand, the .NET languages require the programmer to be explicit in request typing
conversions and it is much stricter in terms of which conversions are allowed.

gmBasic can almost always determine the correct type of a variable by how it is used and author
the correct declaration and type casts automatically. In the rare case where it cannot determine the
correct type, we can select a specific type or specify ByRef/ByVal using the fixtype command.

Reauthor If you want to "completely rewrite" a specific function you can use the Reauthor command. This
command causes gmBasic to insert your handcrafted code when it authors the specified function.

<Reauthor subprogram="PromisScan.GetFileVersionInformation" ><![CDATA[
public static VersionReturnValue GetFileVersionInformation(string pstrFileName,

FILEINFO tFileInfo)
{

try
{

System.Diagnostics.FileVersionInfo fvi =
System.Diagnostics.FileVersionInfo.GetVersionInfo(pstrFileName);

tFileInfo.CompanyName = fvi.CompanyName;
tFileInfo.FileDescription = fvi.FileDescription;
tFileInfo.FileVersion = fvi.FileVersion;
tFileInfo.InternalName = fvi.InternalName;
tFileInfo.LegalCopyright = fvi.LegalCopyright;
tFileInfo.OriginalFileName = fvi.OriginalFilename;
tFileInfo.ProductName = fvi.ProductName;
tFileInfo.ProductVersion = fvi.ProductVersion;

return VersionReturnValue.eOK;
}
catch
{

return VersionReturnValue.eNoVersion;
}

}
]]></Reauthor>

Using Reauthor ensures that the fix occurs every time the translation is done.

Replace
(Post-Edit)

Before authoring the final .NET code, you have the opportunity to apply search and replace type
edits. This facility has several benefits:

 A simple way to document and resolve open translation issues.
 A way to solve one-off problems
 A temporary workaround to handle issues until a permanent solution can be incorporated

into the formal tool configuration or the system tools.

Great Migrations LLC Introduction to Great Migrations Technology Page 13 of 15

Last update November 2008

Appendix A: Great Migrations Methodology
The ultimate objective of this migration project is to produce a correct and maintainable version of the codebase on
the .NET platform -- within a certain timeframe and a reasonable budget and subject to the migration team’s code
quality requirements. Figure A1 shows that in our methodology, the process of producing a clean, correct, and
standards conformant code is a highly iterative one with four major cycles:

Figure A1: Migration by Translation Tuning
Translation, to resolve
any rewrite issues
(encountered when
translating the original
source code)

Build Testing, to resolve
any build issues
(encountered when
building the translated
code into executable
assemblies)

Functional Testing, to
resolve any runtime issues
(encountered when testing
the executable
assemblies)

Re-architecting, to ensure
conformance to the target
solution architecture
design (encountered when
rewriting the translated
code to use a custom
.NET architecture)

Tool-Assisted
To facilitate this approach we leverage gmBasic, our proprietary software re-engineering technology. gmBasic is a
proven toolset which facilitates a systematic, repeatable and improvable transformation of VB6 code to one of the
.NET languages (either VB.NET or C#.NET). gmBasic also supports the re-structuring of VB6/COM applications to
the .NET Framework and it provides extremely detailed information about the entire codebase that can guide the
implementation of improved and/or additional functionality. gmBasic also translates ASP classic code to ASP.NET
code. gmBasic is extremely fast: in just a few minutes, it can rewrite hundreds of thousands of lines of VB6/ASP
code to thousands of lines of correct .NET code (C#.NET, VB.NET or ASP.NET) -- a result which could take an
expert .NET developer years to achieve. Furthermore, these automated transformations can be systematically
improved and customized based on the feedback and requirements of the migration team – this includes
automating, either fully or partially, the resolution of both functional and architectural issues.

Iterative
In our methodology, the migration of an application to the .NET platform is done via a sequence of tuning cycles –
leading to a final Fit & Finish task to finish the code to production. Each tuning cycle produces code of increasing
quality by resolving any issues encountered during the cycle – leading up to a "Cut-Over" point where the only
issues left are those that were identified as being easier (i.e., more economical) to do by hand. The end result is a
highly efficient conversion process that balances manual work with automated re-engineering.

As we move through the tuning cycles of the migration diagram in Figure A1, we are producing code of increasing
quality for the target platform. The three levels of code quality that we expect to achieve in this process are shown
in Table A1.

Great Migrations LLC Introduction to Great Migrations Technology Page 14 of 15

Last update November 2008

Table A1: Code Quality Index

Level 1:
Translation
Complete

All statements/constructs of the source code translate into target code statements/constructs with no
rewrite errors and the resulting code meets generally accepted standards of well-formed syntax on
the target platform. The resulting target projects are well formed and load cleanly in the Visual Studio
.NET platform for further development on that platform.

Level 2:
Build

Complete

All statements/constructs of the target code compile with no compiler errors. In addition, specialized
project elements (e.g., Forms) are accessible through their specialized editors provided by the target
development environment.

Level 3:
Verification

&
Upgrade
Complete

The target application yields correct results on the target platform. The functionality of the target
application matches that of the source application. The application is ready for deployment and
further upgrade on the .NET platform.

The functionality of the target application has been enhanced with new features and upgrades of
existing features. The application is ready for production use on the .NET platform.

Test-Driven
The approach is iterative and test-driven and the level of effort required to do a migration depends on the number of
issues found and resolved during each cycle of the tuning process. Most of our work is in customization (“tool
calibration”) subject to the migration team's re-architecting requirements and acceptance criteria. Most of the the
migration team effort will be in specifying a target architecture and in validating the .NET codebase by manual
and/or automated code review and functional testing.

No-Code Freeze
We assume a working source codebase, but we do not require a legacy code-freeze until the migration team is
satisfied with the conversion process and ready to do a final translation. Up to that point, the legacy application is
allowed to be maintained and enhanced for ongoing maintenance. We take the updated versions of the VB6/COM
codebase into the translation refinement process as they become available – typically on the same release cycle as
the legacy application.

Measurable
The use of semi-automated translation, build, and code-review procedures along with test-driven refinement of the
rewrite process facilitates an ongoing collection of metrics relating to code quality and work effort. Migration
progress is scalable, incremental, and easy to track.

Repeatable and Documented
Driven by a detailed XML-based configuration, gmBasic is a tool that can be calibrated to produce a variety of .NET
outputs. Furthermore, the configuration files and translation scripts provide a precisely documented record of the
rewrite rules and other information that make the system transformation repeatable.

Balanced Application of Automated and Manual Development
The up-front investment in the rewrite process ensures a predictable, efficient, and effective transition from the old
to the new platform; however, we certainly do not expect the toolset to do everything. The migration process
illustrated in Figure 2 includes tasks performed automatically by tool and tasks performed by the migration team – a
group of skilled software engineers from GM and migration team working in tandem to run the tools, analyze the
results, identify issues, resolve issues, run tests, verify results, and deploy the final .NET code to production on the
target platform. As a migration partner, our goal is to help the migration team strike an optimal balance between
project scope, automated rewrite and manual development. Our approach frees up funds to focus on non-
automatable tasks such as design, development process improvement, quality assurance, and training.

Great Migrations LLC Introduction to Great Migrations Technology Page 15 of 15

Last update November 2008

Appendix B: Navigating the Sample Files
The GM Technology Sample files are organized into to a subdirectory with the following folder structure:

PROMIS>
└───demo

├───FMStocks
│ ├───FMSlib
│ │ ├───FMSStore_Bus_std_csh
│ │ ├───FMSStore_Bus_std_vbn
│ │ ├───FMSStore_Bus_VB6
│ │ ├───FMSStore_DB_std_csh
│ │ ├───FMSStore_DB_std_vbn
│ │ ├───FMSStore_DB_VB6
│ │ ├───FMSStore_Events_std_csh
│ │ ├───FMSStore_Events_std_vbn
│ │ ├───FMSStore_Events_VB6
│ │ ├───FMSTest_std_csh
│ │ ├───FMSTest_std_vbn
│ │ ├───FMSTest_VB6
│ │ ├───FMStocks_Bus_std_csh
│ │ ├───FMStocks_Bus_std_vbn
│ │ ├───FMStocks_Bus_VB6
│ │ ├───FMStocks_DB_std_csh
│ │ ├───FMStocks_DB_std_vbn
│ │ ├───FMStocks_DB_VB6
│ │ ├───FMStocks_Ext_std_csh
│ │ ├───FMStocks_Ext_std_vbn
│ │ └───FMStocks_Ext_VB6
│ └───FMSweb
│ ├───ASP
│ ├───CSH
│ └───VBN
│
└───ScanTool

├───ScanToolLib_managed_csh
├───ScanToolLib_managed_vbn
├───ScanToolLib_std_csh
├───ScanToolLib_std_vbn
├───ScanToolLib_VB6
├───ScanToolUI_managed_csh
├───ScanToolUI_managed_vbn
├───ScanToolUI_std_csh
├───ScanToolUI_std_vbn
└───ScanToolUI_VB6

demo\FMStocks contains the translations for the
FMStocks Sample

 FMSLib contains the data access and business logic
components used by the FMStocks web site. There
are folders for each VBP.

o VB6 – original VB6 codes
o std_csh – C# translations / Interop
o std_vbn – VB.NET translations / Interop

 FMSWeb is the ASP sample. There is a folder for
each version of the web site.
o ASP – original ASP/VBScript files
o CSH - C# translations

o VBN – VB.NET translations

demo\ScanTool contains the translations for the
ScanTool sample.

o std_csh – C# translations / Interop
o std_vbn – VB.NET translations / Interop
o managed_csh – C# translations / managed
o managed_vbn – VB.Net translations / managed

	Executive Summary
	Overview
	What is gmBasic?
	Why gmBasic?
	Why should I read this document?

	Introduction
	Document Purpose
	Intended Audience

	The ScanTool Sample Application
	Desired Migration Target(s)
	Toolset Overview
	A PiecePort Migration
	The Problem with PiecePorts

	A SmartPort Migration
	Steps to SmartPorting the ScanTool Sample
	The problem with SmartPorts

	A CleanPort Migration
	The Problem with SmartPorts Revisited
	Choice of .NET Language
	Migrating to .NET Components
	Steps To Migrate A Third-Party COM Component To A .NET Component

	The FMStocks Sample (ASP to ASP.NET)
	Tool-Assisted ASP Migration
	Analysis
	Migration

	Other Translation Topics
	Error Handling to Exception Handling
	Control Arrays to Arrays of Controls
	Late Binding
	Weak to Strong Typing

	Other Features
	Source Code Analytics
	Build Order Report
	Translation Control Scripts
	Dealing with "Bad Code"

	Appendix A: Great Migrations Methodology
	Tool-Assisted
	Iterative
	Test-Driven
	No-Code Freeze
	Measurable
	Repeatable and Documented
	Balanced Application of Automated and Manual Development

	Appendix B: Navigating the Sample Files

