
gmStudio Workshop

Mark Juras

Great Migrations LLC

mark@greatmigrations.com

12/14/2018 Copyright Great Migrations LLC 1

Workshop Agenda

• Objectives, Expectations, and Context

• Methodology Concepts

• Technology Concepts

• Demonstrations and Labs

• Onsite Smart Start

12/14/2018 Copyright Great Migrations LLC 2

Objectives and Expectations

• Objectives

– Successfully upgrade VB6/ASP systems to .NET

– Understand how Great Migrations can help you

• Expectations

– VB6/ASP systems = ?

– Successfully = ?

– Upgrade = ?

– .NET = ?

• Additional Reading
– greatmigrations.com/pubs/gmStudioPricing.pdf

– greatmigrations.com/resources/myth-busters.aspx

12/14/2018 Copyright Great Migrations LLC 3

Planning

12/14/2018 Copyright Great Migrations LLC 4

Three Factors

• As-Is: what do you have?

• To-Be: what do you want?

• How: how will you get there?
• Priorities
• People
• Process
• Productivity
• Proof

???

Estimation

12/14/2018 Copyright Great Migrations LLC 5

Accuracy requires details

details

details

details

details….…

Estimation

• What is the Source/Target Architecture? Do you have a target architecture in mind?
– Inter-related VBPs?

– Shared Code Files?

– Code to be removed?

– Specific new components to incorporate?

• What is the Maintenance Process? (SDLC, schedule, team structure/size/capabilities)

• What is your Source/Target Platform? OS upgrade? Multiple-OS?

• What is the desired migration team? (testers, developers, internal/external partners)

• What is your expected process for project status tracking and management?

• What is your specific acceptance criteria for deliverables?

• Do you plan to change functionality during the migration?

• Are you interested in having GM develop automated unit tests?

• What is your Development Process (unit testing? Other tools?)

• What is your SCM Process? (Version control, tools, standards)

• What is your Deployment Process?

• What is your Test Process? (team, environment, data, automation)

12/14/2018 Copyright Great Migrations LLC 6

Methodology: Concept

12/14/2018 Copyright Great Migrations LLC 7

Shiny

New

DB

Assess

Design

Prepare

Automated

ETL
Test Cut-Over

Conversion

Tuning

Legacy

DB

The Tool-Assisted Data Conversion

12/14/2018 Copyright Great Migrations LLC 8

Methodology: Concept

Assess

Design

Prepare

Semantic

Translation
Test Cut-Over

VB6/

ASP/

COM

.NET

Translation

Tuning

The Tool-Assisted Rewrite

Agile Iterative Scalable Repeatable Measureable Improvable

12/14/2018 Copyright Great Migrations LLC 9

Methodology: Phases

.NET ApplicationPhase 2: Custom Upgrade

.NET BaselinePhase 1: Standard Upgrade

Re-engineer

gmStudiogmStudio

Integrate Solution to .NET

Resolve Runtime Issues

Build

Visual StudioVisual Studio

Test

Translate

gmStudiogmStudio

Resolve Translation Issues

Resolve Build Issues

Build

Visual StudioVisual Studio

Review

.NET Framework

.NET Externals

.NET Code

.NET Framework

.NET Stubs

.NET Code

VB6/ASP Application

VB6 Infrastructure

COM Externals

VB6 Code

VB6/ASP Application

VB6 Infrastructure

COM Externals

VB6 Code

Incremental Upgrade: Step 1

COM Binary A

COM Binary B

COM Binary C

Code

gmStudio

.NET Project 1

Code

COM Stub A

COM Stub B

COM Stub C

Source Project 1

Single, Standalone Translation

12/14/2018 Copyright Great Migrations LLC 10

gmStudio

.NET Project 1

Code

COM Stub Code A

COM Stub Code B

COM Stub Code C

COM Binary A

COM Binary B

COM Binary C

Code

Source Project 1

In-House Component

Code

Source Project 2

In-House Component

Code

.NET Project

COM Binary C COM Stub Code C

Incremental Upgrade: Step 2

Multiple, Standalone Translations

gmStudio

Code

Source Project 1

Code

Source Project 2

COM COM

Code

.NET Project 1

Code

.NET Project 2

Stub Code

.NET Project 4

Stub Code

.NET Project 3

COM
.NET

Incremental Upgrade: Step 3

Multiple, Integrated Translations

12/14/2018 Copyright Great Migrations LLC 12

gmStudio

Code

Source Project 1

COM COM

Code

.NET Project 1

Upgrade

.NET

Upgrade

.NET

Code

Source Project 2

COM

Code

.NET Project 2

.NET

Incremental Upgrade: Step 4

Multiple, Integrated Upgraded Translations

12/14/2018 Copyright Great Migrations LLC 13

Methodology: Side-by-Side Testing

12/14/2018 Copyright Great Migrations LLC 14

New PlatformLegacy Platform

.NET Framework

.NET Code

COM Framework

VB6/ASP Code

Visual Studio
6.0

Visual Studio
.NET

COM Framework

VB6/ASP System

.NET Framework

.NET System

Test
Results

Test
Results

Tool-Assisted
Rewrite

gmStudio

Side-By-Side
Testing

Side-By-Side
Testing

Match?

Resolve
Defects

Methodology: Milestones

• 0: Source Complete, Ready to Translate

• 1: Translate Complete, Ready to Assess

• 2: Build Complete, Ready for Reengineering

• 3: Reengineering Complete, Ready for Testing

• 4: Verification Complete, Ready for Cut-Over

12/14/2018 Copyright Great Migrations LLC 15

12/14/2018 Copyright Great Migrations LLC 16

Methodology: Project Plan

12/14/2018 Great Migrations LLC 17

Proposed Phases

Custom Upgrade Cycle

1. Analyze requirements in the application

2. Select effective and economical strategy

3. Design solution feature

4. Develop Migration Unit Test (MUT)

5. Implement and Verify solution in MUT

6. Integrate solution feature with the

application upgrade

7. Integrate feature results with new

application

8. Select scope of work for next cycle

Repeat until all required upgrade features

are integrated into the new application

Methodology: Balance

The Great Migrations Methodology balances

automated translation and other techniques

to create s custom upgrade solution that

delivers high quality results with less risk and less effort.

Convert or Rewrite?

12/14/2018 Copyright Great Migrations LLC 18

Methodology: Parts

• Inputs
– VB6 Code – VBPs and source code files

– COM Components (3PCs)

– .NET Coding Standards, Design Standards, SCM Standards

– Replacement Components (.NET Framework, 3PCs, In-House Components IHCs)

• Tools
– Attitude! Check your preconceptions about the limits of automated reengineering.

– Brain! Must Be Detail-Oriented! Vague objectives cannot be met.

– gmStudio.exe / gmBasic.exe / gmDeploy.exe

– .NET tools, MSBuild.exe / VBC.exe / CSC.EXE / ASPNET_Compiler.exe / VS2010

– VB6, Programmer's Editor, File Comparison Tool

– Excel (for analysis of reports), SQL Server

• Steps
– Preparation: gather/refine inputs

– Translation: run translations

– Verification: code review, build tests, functional tests, technical tests

• Outputs
– Repeatable high-performance VB6/ASP/COM to .NET upgrade solution

– .NET codes of increasing quality

12/14/2018 Copyright Great Migrations LLC 19

12/14/2018 Copyright Great Migrations LLC 20

• Overview

– gmStudio

– gmBasic

• Demonstrations

– Preparation

– Translation

– Deployment

– Verification

– Refinement

Technology: Agenda

12/14/2018 Copyright Great Migrations LLC 21

Technology: gmBasic Overview

What is gmBasic?

A highly configurable, robust

VB6/ASP/COM compiler

that produces source codes

instead of binaries.

How does it work?

– Compiler: Builds a comprehensive semantic
model of the codebase implementation.

– Analyzer: evaluates and restructures the model
to fit the desired architecture patterns.

– Author: processes the optimized model to
generate clean, correct code that meets
custom standards and conventions.

VB6 to .NET, ASP to .NET, IDL to XML, XML to .NET, Scripting, Reporting…

12/14/2018 Copyright Great Migrations LLC 22

Technology: gmStudio Overview

• Upgrade Development Environment

– Project Setup – Code and COM Assessment

– Process Orchestration

– Solution Development and Experimentation

– Search, Analysis, and Reporting

• “Integrated” Tools

– Transformation: gmBasic.exe

– Deployment: gmDeploy.exe

– Code Editing: e.g. Notepad++

– File/Folder Comparison: e.g. BeyondCompare

– Other: VB6, VisualStudio, MSBuild, Excel, Custom

12/14/2018 Copyright Great Migrations LLC 23

Technology: gmBasic Internals

Semantic Model

• Symbol Trees

– External Components

– Language Elements

– Source Structures

• P-Code Tables

– Operations

– Expressions

– Source Mappings

12/14/2018 Copyright Great Migrations LLC 27

Demo: FileExplorer

• VB6 to .Net (externals stubbed)

• VB6 to .Net (externals upgraded)

• Look at Code, Build, Report, Run

Migration

Toolset

System

Config

Project

Config

VB6

COM

.NET

Stubs

.NET

Managed

• Standalone EXE

– ListView

– TreeView

– ImageList

– StatusBar

– ToolBar

– RichTextBox

– Scripting

Technology: Upgrade Solution Files

• gmStudio Project Files

– Project Settings

– Project Tasks: VBPs, ASP Pages, Special Scripts

• Translation Script Templates

• COM Interface Description Files (IDFs)

• Project Metalanguage Files

– Startup File

– System Language Description

– Source Language Description

– Language Translation Rules

– Code Authoring Rules and Templates

• User Batch Command Script Templates

• Other files: custom scripts, unit tests

12/14/2018 Copyright Great Migrations LLC 28

Technology: Upgrade Workspace

12/14/2018 Copyright Great Migrations LLC 29

Technology: Generated Files

• Metadata, Artifacts, Logs

– Actual Translation Scripts

– Content Bundles (.BND)

– Information Files (.VBI)

– Interface Description Files (.XML)

– Translation Logs

– Deployment Logs

– Build Logs

– Reports (.TAB, .TXT)

• .NET Code and Binaries

– Generated .NET Application Codes (Deploy Folder)

– Generated Stub Classes (instead of interop)

– Generated Stub Assemblies (instead of interop)

– Interop Assemblies (rarely used)

12/14/2018 Copyright Great Migrations LLC 30

12/14/2018 Copyright Great Migrations LLC 31

Analytics-References Report

Technology: COM Upgrade, Analysis

• What really matters:

– How you actually use

COM/VB6 APIs

AND

– How you intend to

replace them on the

new platform.

• All API replacements are

NOT created equal!

12/14/2018 Copyright Great Migrations LLC 32

Technology: COM Upgrade, Implementation

Declarative Rules

– Assembly References

– Namespaces

– Classes, Structs

– Enumerations

– Enum Entries

– Members, Properties

– Control Initialization (Designer)

– Event Handlers

• Dynamic Rules

– gmSL Scripts

– Migration DLLs

Baseline COM IDF

+

Hand

Customization

=

Custom IDF

giving

Automated

COM Replacement

12/14/2018 Copyright Great Migrations LLC 33

GM.Scrrun.dll.xml

Technology: COM Replacement, Sample

Managed Interface Descriptions

• Template Generated from COM

• Map source API to target API

GM.MsComCtLib.dll.xml

Migration

Toolset

System

Config

Project

Config

VB6

COM

.NET

Stubs

.NET

Managed

12/14/2018 Copyright Great Migrations LLC 34

Demo: ScanTool

• Two VBPs: UI.exe and LIB.dll

• Lib talks back to UI via events

• 4 External COM APIs

• Win32 APIs

• Many VB Intrinsics

• Object Polymorphism

• Error Handling

• Over 2000 LOC

ScanToolUI

ScanToolLib

COM
Scripting

COM
MSXML

COM
Typelib

Info

COM
Common

Dialog

• VB6 to .Net (externals stubbed)

– Local Stubs

• VB6 to .Net (externals upgraded)

– COM replacements

– Custom Runtime

• Look at Code, Build, Report, Run

Technology: Reporting

• Run

– Report menu (open after run)

– Report Panel (batch runs)

• Types

– Code Scans

– Project Reports

– Model-based

– Utilities

• Formats

– Tab-delimted

– Unformatteed

• Locations

– Workspace\log

– Workspace\report

12/14/2018 Copyright Great Migrations LLC 35

Title Output File

Code Scan Reports

Source Structure [MigName]-SrcStruct.tab

Source References [MigName]-SrcRef.tab

Source Members [MigName]-SrcMember.tab

Source GUI Scan [MigName]-SrcGUI.tab

Source Code Scan [MigName]-SrcScan.tab

Iceberg [MigName]-Iceberg.tab

Project Reports

Project Summary [MigName]-MigStat.txt

Metrics Summary [MigName]-Metrics.htm

Migration Set [MigName]-MigSet.tab

Code Bundles [MigName]-Bundle.tab

.NET Build Logs [MigName]-BldLog.tab

Translation Logs [MigName]-TranLog.tab

All Logs [MigName]-AllLog.txt

Interface File Headers [MigName]-LibHeaders.tab

Interface File ProgIds [MigName]-LibProgIds.tab

Semantic Model Reports

Semantic References [MigName]-AnaRef.tab

Semantic Definitions [MigName]-AnaDef.tab

Semantic Symbols [MigName]-AnaSym.tab

Semantic Audit [MigName]-Audit.txt

Utility Reports

Migration Project List gmProjects.tab

Multi-Unit Script tran.[MigName]_MultiJob.xml

Target Code Scan [MigName]-BndScan.tab

Target Code Changes [MigName]-BndChanges.txt

Technology: Searching

12/14/2018 Copyright Great Migrations LLC 36

Search, Drill Down, Report

Technology: SQL Analysis

• Bulk Insert to SQL

• Various Procs and Queries

• Load into Excel

12/14/2018 Copyright Great Migrations LLC 37

Title Output File

Code Scan Reports

Source Structure [MigName]-SrcStruct.tab

Source References [MigName]-SrcRef.tab

Source Members [MigName]-SrcMember.tab

Source GUI Scan [MigName]-SrcGUI.tab

Source Code Scan [MigName]-SrcScan.tab

Project Reports

Project Summary [MigName]-MigStat.txt

Semantic Model Reports

Semantic References [MigName]-AnaRef.tab

Semantic Definitions [MigName]-AnaDef.tab

Technology: More Reengineering

Basic Transformations

• Replace COM/Win32 APIs with .NET replacements

• Reauthor, Remove, or Stubout a member, class, file or entire component

• Control target file names, folder names, etc.

• Control target Visual Studio project files (resx, assemblyinfo, *proj)

• Control formatting – blank lines, comments, indenting, boilerplate code

• Specify settings that control internal translator operation

Advanced Transformations

• Generate a complete skeleton of all application and external components

• Consolidate of Shared files into a new or existing host assembly

• Convert of COM classes to WCF web services

• Convert shared module state to thread-isolated state

• Break build cycles: convert circular references to interface references

• Define rules to map ASP/VB6 language elements to .NET coding patterns

• Shared Files Consolidation

• Custom

12/14/2018 Copyright Great Migrations LLC 38

Technology: Select Command

• Select Identifier Attributes

• Select Value Attributes

• Select Enumerated Attributes

• Select Search String Attributes

• Select Location String Attributes

• Select ComputeConditional String Attribute

• Select Author Flag Attributes

• Select Compiler Flag Attributes

• Select Analyser Flag Attributes

• Select Process Flag Attributes

12/14/2018 Copyright Great Migrations LLC 39

Technology: Registry Command

• Dependency: Specify a possibly omitted include file dependency

• EditFile: Supply a set of Fix statements for a specified file

• FixType: Fix the type of a source component

• FixStatus: Specify an ASP page status

• Guid: Define the value of a GUID

• IdfStatus: Specify the Interface Description File status of an external

• Include: Specify the path to an include file

• LibName: Specify a library name or file name

• OverLoadArgument: Specify types for arguments to be overloaded

• ProgId: Resolve a ProgId

• RefactorFile: Supply a set of Refactor statements for a specified file

• SharedFile: Specifies that a file is shared by multiple VBPs

• UsesInterfaces: Specifies that a project file uses certain interfaces

12/14/2018 Copyright Great Migrations LLC 40

Technology: Fix/Replace

• When to use
– Correcting source VB6 coding errors

– Correcting rare exceptions

– Work arounds

• Types of Fixes
– Source Code Fix (Compile/Fix/Replace)

– Target Code Fix (Author/Fix/Replace@lang=“csh”)

– Target Project Fix (Author/Fix/Replace@lang=“csproj”)

– Whole File (Author/Fix/ReplaceFile)

– Target Stub Class (Author/Fix@FileFilter=“[lib.dll]”/Replace)

– Any File Fix (Fix@FileFilter=“path”/Replace)

– Regex Fix (bundle) (Author/Fix/Replace@status=“regex”)

12/14/2018 Copyright Great Migrations LLC 41

Technology: Refactor Command

CallByName Changes symbol-related code events that yield CallByName late

binding calls into direct boxed calls.

Extend Extends the content of a class by adding new components.

FixType Changes the binary type of a component or group of components

Implements Specifies that a VB6 class implements another class or interface.

MigClass Introduces a new class that contains related refactoring information

used for complex migration operations, especially as related to

designer code.

Migrate Specifies migration of a specific symbol introduced via an external

library description.

Reauthor Replaces the content of a subprogram with a completely rewritten

block of code

Remove Prevents a component from being authored

Rename Changes the authored name of components

Replace Replaces either the members of an external class or the patterns of

opcodes via replacement declarations.

12/14/2018 Copyright Great Migrations LLC 42

BEFORE
public static string GetComputerName()

{

string GetComputerName = "";

// Set or retrieve the name of the computer.

string strBuffer = "";

int lngLen = 0;

strBuffer = VBNET.Strings.Space(255 + 1);

lngLen = VBNET.Strings.Len(strBuffer);

if (Convert.ToBoolean(GetComputerNameAPI(
strBuffer,out lngLen)))

{

GetComputerName =

VBNET.Strings.Left(strBuffer,lngLen);

}

else

{

GetComputerName = "";

}

return GetComputerName;

}

Translation Script – Refactor/Reauthor

AFTER

public static string GetComputerName()

{

// UPGRADE_INFO: hand-coded

return System.Environment.MachineName;

}

Technology : Refactor/Reauthor

12/14/2018 Copyright Great Migrations LLC 43

12/14/2018 Copyright Great Migrations LLC 44

Sidebar: API Crossing

Be wary of Top-Down Migrations

• COM interfaces have COM types as

member parameters and return types.

• If you interop COM components, your

.NET clients will end up straddling the

fence between COM and .NET and

this will require more interop code

which runs counter to the premise of

adopting .NET in first place.

PiecePort

Interoped

COM

Component

COM

Scripting

.NET

System.IO

.NET

Application

Scripting.File

System.IO.FileInfo

COM

Scripting

12/14/2018 Copyright Great Migrations LLC 45

.NET

Component

.NET

System.IO

.NET

Application

System.IO.FileInfo

.NET

System.IO

Sidebar: API Crossing

Generated Interface Description

Bottom-Up, SmartPort Migrations

• gmBasic remembers what it has translated and knows

which components are going to .NET

• gmBasic knows how interfaces are changing to use new

types

• gmBasic uses this information to generate clean, native

code in client applications.

