

PROMULA
®

Application Development System

User's Manual and Reference

Copyright 1985-2023 Great Migrations LLC

ALL RIGHTS RESERVED

Table Of Contents

2 2

Table Of Contents

3 3

COPYRIGHT NOTICE

for

PROMULA Application Development System

Version 9.38 Released May, 2007

Published by:

Great Migrations LLC

7453 Katesbridge Ct

Dublin, Ohio 43017

(614) 761-9816

This User's manual for the PROMULA Application Development System is the property of Great Migrations LLC. It

embodies proprietary, confidential, and trade secret information. The User's manual and the files of the PROMULA

Application Development System machine-readable distribution media are protected by trade secret and copyright laws.

The use of the PROMULA Application Development System is restricted as stipulated in the Great Migrations LLC

License Agreement which came with the PROMULA Application Development System product and which you completed

and returned to the Great Migrations LLC. The content of the machine-readable distribution media and the User's manual

may not be copied, reproduced, disclosed, transferred, or reduced to any electronic, machine-readable, or other form except

as specified in the License Agreement with the express written approval of Great Migrations LLC.

The unauthorized copying of any of these materials is a violation of copyright and/or trade secret law.

DISCLAIMER OF WARRANTIES AND LIMITATIONS OF LIABILITIES

THIS USER'S MANUAL IS PROVIDED ON AN "AS IS" BASIS. EXCEPT FOR THE WARRANTY DESCRIBED IN

THE GREAT MIGRATIONS LLC LICENSE AGREEMENT, THERE ARE NO WARRANTIES EXPRESSED OR

IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE, AND ALL SUCH WARRANTIES ARE EXPRESSLY AND SPECIFICALLY

DISCLAIMED.

IN NO EVENT SHALL GREAT MIGRATIONS LLC BE RESPONSIBLE FOR ANY INDIRECT OR

CONSEQUENTIAL DAMAGES OR LOST PROFITS, EVEN IF GREAT MIGRATIONS LLC HAS BEEN ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.

Some states do not allow the limitation or exclusion of liability for incidental or consequential damages, so the above

limitation or exclusion may not apply to you.

TRADEMARK

PROMULA is a registered trademark of Great Migrations LLC.

DEFINITION OF PURCHASE

The definition of your particular purchase is specified in the Great Migrations LLC License Agreement which came with

the PROMULA Application Development System product and which you completed and returned to the Great Migrations

LLC. If you have any questions about your rights or obligations as a PROMULA Application Development System user or

believe that you have not received the complete PROMULA Application Development System package that you purchased,

please contact:

Great Migrations LLC

7453 Katesbridge Ct

Dublin, Ohio 43017

(614) 761-9816

Table Of Contents

 i

1. INTRODUCTION ... 1

1.1 ORGANIZATION OF THE MANUAL ... 1
1.2 WHAT IS PROMULA? ... 1
1.3 PROMULA LANGUAGE HIGHLIGHTS .. 2

1.3.1 Total Programming Environment ... 2
1.3.1 Structured Notation .. 2
1.3.2 Language Tutorial .. 3
1.3.3 Language Course ... 3
1.3.4 Tutorial Writer ... 3
1.3.5 Menu Manager ... 3
1.3.6 Data Editor ... 3
1.3.7 Report Generator ... 3
1.3.8 Graphics ... 3
1.3.9 Command Mode ... 3
1.3.10 Compilation Mode .. 4
1.3.11 Conversational Mode ... 4
1.3.12 Multidimensional Data Structures .. 4
1.3.13 Array or Matrix Equations ... 4
1.3.14 Equation Solver .. 4
1.3.15 Variable Management System .. 4
1.3.16 Program Management System .. 4
1.3.17 Dynamic Simulation ... 5
1.3.18 Windows ... 5
1.3.19 Mathematical and Statistical Functions ... 5
1.3.20 Command-Line Recall .. 5
1.3.21 Multi-platform Performance .. 5

2. PROMULA BASICS ... 6

2.1. THE PROMULA APPLICATION DEVELOPMENT SYSTEM... 6
2.1.1. Starting PROMULA... 7
2.1.2. The PROMULA Main Menu .. 8
2.1.3. Running Interactive Programs in Batch .. 14
2.1.4. PROMULA Keyboard Conventions ... 18
2.1.5. Line Editing ... 19
2.1.6. Printer Control .. 20

2.2. PROMULA APPLICATION PROGRAMMING ... 20
2.2.1. Data Definition .. 21
2.2.2. Program Control ... 28
2.2.3. Data Manipulation .. 31
2.2.4. Report Generation ... 37
2.2.5. Interface Design .. 41
2.2.6. Application Programming Summary ... 45

3. PROMULA LANGUAGE REFERENCE ... 46

3.1 THE PROMULA NOUNS .. 46
3.1.1 Equation ... 47
3.1.2 Expression -- Arithmetic ... 49
3.1.3 Expression -- Boolean .. 50
3.1.4 Expression -- Character ... 51
3.1.5 Expression -- Functional .. 53
3.1.6 Expression -- Logical ... 63
3.1.7 Expression -- Numeric .. 63
3.1.8 Expression -- Relational ... 64
3.1.9 File ... 65
3.1.10 Function ... 71

Table Of Contents

 ii

3.1.11 Menu ... 72
3.1.12 Numeric Precision .. 74
3.1.13 Parameter ... 74
3.1.14 Procedure ... 75
3.1.15 Program ... 75
3.1.16 Relation .. 75
3.1.17 Segment .. 76
3.1.18 Set ... 76
3.1.19 Statement .. 80
3.1.20 System ... 81
3.1.21 Table ... 81
3.1.22 Time Parameters .. 82
3.1.23 Variable .. 82
3.1.24 Window -- Basic ... 86
3.1.25 Window -- Advanced... 89

3.2 STATEMENT FORMAT ... 92
3.3 COMMAS AND BLANKS ... 92
3.4 LINE LENGTH ... 92
3.5 LINE CONTINUATION .. 93
3.6 FORMAT OF PROMULA STATEMENT DESCRIPTIONS ... 93
3.7 THE PROMULA STATEMENTS .. 94

3.7.1 ASK CONTINUE .. 94
3.7.2 ASK...ELSE ... 94
3.7.3 AUDIT file .. 99
3.7.4 AUDIT SET... 100
3.7.5 AUDIT VARIABLE ... 100
3.7.6 BREAK procedure .. 101
3.7.7 BROWSE COMMENT .. 102
3.7.8 BROWSE DIALOG ... 102
3.7.9 BROWSE FILE ... 103
3.7.10 BROWSE function .. 104
3.7.11 BROWSE menu ... 105
3.7.12 BROWSE SET ... 106
3.7.13 BROWSE set ... 107
3.7.14 BROWSE TABLE .. 107
3.7.15 BROWSE TEXT .. 110
3.7.16 BROWSE TOPIC .. 111
3.7.17 BROWSE VARIABLE ... 111
3.7.18 BROWSE variable .. 112
3.7.19 CLEAR file .. 119
3.7.20 CLEAR variable ... 120
3.7.21 CLEAR WINDOW .. 123
3.7.22 [COMPUTE] Equation .. 123
3.7.23 COPY .. 124
3.7.24 DEFINE DIALOG .. 132
3.7.25 DEFINE FILE .. 136
3.7.26 DEFINE FUNCTION ... 138
3.7.27 DEFINE LOOKUP ... 142
3.7.28 DEFINE MENU ... 143
3.7.29 DEFINE PARAMETER .. 151
3.7.30 DEFINE PROCEDURE ... 154
3.7.31 DEFINE PROGRAM .. 159
3.7.32 DEFINE RELATION .. 160
3.7.33 DEFINE SEGMENT ... 163
3.7.34 DEFINE SET .. 164
3.7.35 DEFINE SYSTEM ... 168

Table Of Contents

 iii

3.7.36 DEFINE TABLE ... 170
3.7.37 DEFINE VARIABLE ... 173
3.7.38 DEFINE WINDOW .. 177
3.7.39 DO CORRELATE ... 180
3.7.40 DO DESCRIBE ... 182
3.7.41 DO DIRECTORY .. 185
3.7.42 DO file .. 186
3.7.43 DO IF .. 188
3.7.44 DO IF END .. 189
3.7.45 DO IF ERROR .. 191
3.7.46 DO IF ESCAPE .. 192
3.7.47 DO IF HELP .. 193
3.7.48 DO IF KEYPRESS .. 195
3.7.49 DO IF NULL .. 196
3.7.50 DO INVERT .. 197
3.7.51 DO LSOLVE ... 199
.7.52 [DO] procedure .. 201
3.7.53 DO REGRESS ... 202
3.7.54 DO set ... 205
3.7.55 DO UNTIL .. 207
3.7.56 DO WHILE ... 208
3.7.57 EDIT menu ... 209
3.7.58 EDIT TABLE .. 209
3.7.59 EDIT variable ... 211
3.7.60 END .. 216
3.7.61 END PROGRAM .. 217
3.7.62 END SEGMENT ... 218
3.7.63 LEVEL .. 219
3.7.64 OPEN file ... 220
3.7.65 OPEN SEGMENT ... 222
3.7.66 OPEN WINDOW .. 223
3.7.67 PLOT .. 224
3.7.68 RATE .. 230
3.7.69 READ DISK .. 231
3.7.70 READ file .. 232
3.7.71 READ function .. 234
3.7.72 READ menu .. 235
3.7.73 READ SEGMENT ... 236
3.7.74 READ set .. 236
3.7.75 READ VALUE segment .. 239
3.7.76 READ variable ... 240
3.7.77 READ (variables) ... 243
3.7.78 RUN .. 245
3.7.79 RUN COMMAND ... 245
3.7.80 RUN COMPILER ... 247
3.7.81 RUN DOS ... 248
3.7.82 RUN EDITOR ... 248
3.7.83 RUN PROGRAM .. 249
3.7.84 RUN SOURCE .. 250
3.7.85 SELECT ENTRY ... 250
3.7.86 SELECT FIELD .. 252
3.7.87 SELECT file .. 253
3.7.88 SELECT indirect ... 256
3.7.89 SELECT menu .. 258
3.7.90 SELECT option ... 259
3.7.91 SELECT PULLDOWN.. 266

Table Of Contents

 iv

3.7.92 SELECT RELATION .. 268
3.7.93 SELECT set... 270
3.7.94 SELECT SET .. 271
3.7.95 SELECT set IF .. 273
3.7.96 SELECT VARIABLE ... 274
3.7.97 SORT .. 276
3.7.98 STOP .. 279
3.7.99 STOP PROMULA ... 280
3.7.100 TIME ... 280
3.7.101 WRITE COMMENT .. 281
3.7.102 WRITE DISK .. 281
3.7.103 WRITE file .. 282
3.7.104 WRITE function .. 284
3.7.105 WRITE menu ... 285
3.7.106 WRITE set ... 286
3.7.107 WRITE TABLE ... 287
3.7.108 WRITE text ... 289
3.7.109 WRITE TEXT .. 291
3.7.110 WRITE VALUE segment ... 292
3.7.111 WRITE variable .. 293

4. PROGRAM AND DATA MANAGEMENT ... 297

4.1 DATABASE MANAGEMENT IN PROMULA ... 297
4.1.1 Program 1 – Create a 'New' Database ... 298
4.1.2 Program 2 – Access an 'Old' Database .. 299
4.1.3 More About Database Management ... 310

4.2 PROGRAM MANAGEMENT IN PROMULA .. 312
4.2.1 A Segmented Program with a Database ... 313
4.2.2 Multi-Segment Programs in Separate Disk Files ... 316

5. CONFIGURING PROMULA .. 320

5.1 USING THE GRAPHICS CONFIGURATION PROGRAM... 320
5.1.1 Selecting Graphics Configurations .. 320
5.1.2 Managing Custom Graphics Configurations .. 322
5.1.3 Testing PROMULA Graphics ... 327

Promula Application Development System User's Manual

1

1. INTRODUCTION

1.1 Organization of the Manual

This manual is divided into five chapters:

CHAPTER 1 introduces you to the PROMULA system's features, capabilities, and requirements and tells you how

to install and run PROMULA on your personal computer.

CHAPTER 2 is an introduction to the PROMULA programming environment and covers some of the language

fundamentals in the context of a simple example.

CHAPTER 3 is the reference chapter for the PROMULA language.

It describes, in alphabetical order, the nouns and verbs of the language. The nouns are the building

blocks, the information elements, of the language. The verbs are the commands of the language;

they tell PROMULA to perform various operations on the nouns.

CHAPTER 4 contains details and examples of database management and program management in PROMULA.

CHAPTER 5 describes the use of the PROMULA configuration program that may be used to set up the physical

configuration of PROMULA's graphics modes.

1.2 What is PROMULA?

PROMULA (processor of multiple language applications) is an application development tool for large-scale analytical

applications. It is a general-purpose, high-level programming language with built-in data management, modeling, report

generation, graphics, and screen management (menus and windows) capabilities. It is the ideal development tool for those

who have outgrown the spreadsheets but do not want to develop applications in a third generation programming language

(such as FORTRAN, PASCAL, BASIC, or C).

Though its intellectual history goes back to the late ‘60's on mainframes, PROMULA was originally developed on PCs in

the early 80's as a high-level generalization of FORTRAN designed to take explicit advantage of the FORTRAN data

structure (multidimensional arrays of primarily numeric, homogeneous data). It is a portable C program and offers the same

character-based functionality on a number of platforms: PC DOS and DOS Extended, 386/486 UNIX, RS/6000 AIX,

VAX/VMS, and Apple Macintosh.

As an application development tool, PROMULA supports the following functions:

- Data management (organize and selectively manipulate data)

- Data analysis (establish relationships in the data using an extensive library of mathematical and statistical

functions)

- Modeling (simulate a problem and possible solutions to it)

- "What if" analysis (compare alternative decisions about the problem)

- Report generation (display results in report form)

- Graphics (display results in plotted form)

Promula Application Development System User's Manual

2

- Menu management (prepare pick, pop-up and data menus for application prototyping, program control, data

entry, data editing, and data display in a character-based user interface)

- Window management (create applications with attractive user interfaces using windows)

- Equation solving (solve systems of simultaneous equations)

PROMULA's high-level, problem-oriented programming language is particularly suited for applications – as opposed to

systems – programmers. It is a highly productive, and elegant, notation for developing analytical, decision-support, or

simulation applications in all kinds of disciplines: business, engineering, or the sciences. PROMULA programs are easier to

write, use, verify, maintain, and document than programs written in spreadsheets or third-generation languages.

In PROMULA, a "database" is a collection of variables. The source of the information in the database may be raw user

input; or it may be calculated by PROMULA itself; or it may be produced by an independent applications program written

in a traditional programming language (such as FORTRAN) and processed by one of the PROMULA compilers or

translators (such as the PROMULA FORTRAN Compiler or the FORTRAN to C Translator).

Used in tandem with the PROMULA FORTRAN Compiler, PROMULA is also an attractive tool for upgrading the user

interfaces of existing FORTRAN applications. PROMULA can deal directly with the information content of programs

written in FORTRAN, without having to re-engineer or re-write such programs. Typically, FORTRAN programs are

computational engines, efficient in "crunching" numeric data but lacking in the area of "user friendliness." With

PROMULA, you can add a friendly user interface shell "on top" of a FORTRAN program, without having to change the

FORTRAN program code by hand. This is done by an automatic restructuring process, done by the PROMULA

FORTRAN Compiler, which involves the separation of a database from the computations of the program and the

management of that database by PROMULA. In this context, a PROMULA database is a collection of FORTRAN

variables — usually in the form of multidimensional arrays — which are manipulated by the FORTRAN computations on

the one hand but can also be used independently by PROMULA for other operations (data input, data edit, report

generation, graphics, etc.).

PROMULA is a transition bridge from third- to fourth-generation approaches in applications development. Because of its

powerful programming capabilities, it is a superior alternative to using spreadsheets or pure database managers in large

scale applications development.

1.3 PROMULA Language Highlights

1.3.1 Total Programming Environment

You can develop complete turnkey applications with PROMULA. The system is designed to capitalize on existing

applications written in a variety of languages and to minimize programming time in developing new applications.

PROMULA is largely self-contained with its own screen editor, language compiler, and operating system interface.

1.3.1 Structured Notation

PROMULA is a structured language especially useful for developing applications quickly. Its elegant notation, structured

concepts and built-in functions will help minimize the time required to develop serious, mainframe-size applications on

your desktop computer.

For you, the problem solver, this means that PROMULA is easier to learn, easier to use and apply in problem solving, and,

thus, faster in producing results. In problem solving, the choice of the right notation is almost half the solution.

Promula Application Development System User's Manual

3

PROMULA programs are easy to write and maintain because PROMULA's English-like notation and logical constructs

make them almost self-documented.

1.3.2 Language Tutorial

This reference aid is an on-line, menu-driven tutorial that allows you to obtain information about PROMULA while you are

programming or using an application.

1.3.3 Language Course

This learning aid is a series of PROMULA source codes designed to demonstrate the PROMULA language constructs

(nouns) and the PROMULA commands (verbs).

1.3.4 Tutorial Writer

A tutorial writer lets you create your own menu-driven, application-specific tutorials by simply typing them in. It converts

whole books or reports into on-line, menu-driven tutorials and/or context-specific on-line help for your applications.

1.3.5 Menu Manager

PROMULA's menu manager prepares pick and data menus for "user friendly" applications. Menu preparation is as easy as

writing the menus on the screen.

1.3.6 Data Editor

A full-screen data editor facilitates data entry and update. Using techniques similar to those found in spreadsheet programs,

PROMULA lets you browse through the "pages" of multidimensional arrays to change their values.

1.3.7 Report Generator

The WRITE commands of the language let you display information in a variety of report formats.

1.3.8 Graphics

PROMULA supports business graphics (point plots, x-y plots, bar plots, etc.) for both monochrome and color display

monitors as well as a variety of printers and plotters. It is even possible to capture plotted displays on disk. High resolution

color graphics are available for EGA and VGA monitors.

1.3.9 Command Mode

In command or direct mode, PROMULA accepts a statement, converts it to executable instructions which are executed by

the computer, then proceeds to the next statement.

You can interrupt a program dialogue, perform local operations in command mode, and return to the same place you left the

program. Not only is this a very useful debugging feature, but it also adds flexibility to your applications and greatly

increases the accessibility of the data and results. You can use PROMULA to generate reports and graphics or do

calculations with the data of your application without having to alter and recompile the program code.

Promula Application Development System User's Manual

4

1.3.10 Compilation Mode
In indirect, or compilation mode, PROMULA compiles a group of statements as a procedure or a program that can be run

later. A procedure can be run by other procedures, including itself.

1.3.11 Conversational Mode

You can interact with a PROMULA program either in command mode or by responding to conversational prompts and

menus. Conversational prompts and menus help you make it easy for others to use your program.

1.3.12 Multidimensional Data Structures

Unlike the two-dimensional view of spreadsheets, PROMULA supports multidimensional data structures. Data arrays in

PROMULA can have up to ten dimensions, making it easy to define and manipulate highly structured information. Many

PROMULA statements have the capability to manipulate multidimensional variables implicitly, leading to great economies

of notation.

The information of a PROMULA program is structured into variables and sets. Variables are multidimensional structures of

information constructed from and subscripted by sets. Variables store the information and sets define the structure of

variables. PROMULA variables can be as large as your disk space allows.

1.3.13 Array or Matrix Equations

PROMULA equations are written in standard algebraic notation. The equation operands may be scalars, vectors or

multidimensional arrays. Implicit and dummy subscripting allows a condensed notation for array equations. This feature is

comparable to a similar capability of the APL language.

1.3.14 Equation Solver

PROMULA's equation solver gives you solutions to systems of simultaneous equations, both linear and nonlinear.

1.3.15 Variable Management System

In PROMULA, a program is information, not just a computational box. In addition to computations, each PROMULA

program has a database. The database contains the input and output variables of the program as well as other supporting

information. You can use the program database independently of the program code, and even interrupt a running program

to work with its database.

In addition to sequential access text files and direct access binary files, PROMULA supports a unique variable management

system. This is a multidimensional array management system that is ideal for managing the information usually stored in

program variables.

PROMULA is different from other DBMS systems, which have limited command languages. PROMULA is a powerful,

fully-featured applications programming language, and it offers you full flexibility in analyzing and using the information

in your databases.

1.3.16 Program Management System

PROMULA has a program manager to help you handle large, mainframe-size programs.

Promula Application Development System User's Manual

5

The source code of a PROMULA application can be broken into separate parts, compiled independently, and then united

and used as a smoothly integrated system. This capability is most useful for the implementation of applications with

extensive memory requirements.

If your variables are too large or there are too many for your work space, you can store them on disk. PROMULA's variable

manager lets you bring only what you need into your work space.

1.3.17 Dynamic Simulation

PROMULA has several features which facilitate the implementation of dynamic simulation applications. You can develop

system dynamics models — models of systems whose variables interact with each other continuously as they evolve over

time.

1.3.18 Windows

PROMULA's powerful windowing commands allow you to modify the appearance of the screen to create professional-

looking and user-friendly applications. Custom-designed help screens, popup menus, and flexible color control will

improve the appearance and usability of your programs.

1.3.19 Mathematical and Statistical Functions

PROMULA supports a library of mathematical and statistical functions as well as a number of array (matrix) operations,

such as summation, product, minimum/maximum, sorting, etc.

1.3.20 Command-Line Recall

A buffer stores all commands entered at the keyboard so that they may easily be recalled for modification and reentry. This

feature greatly enhances the utility of PROMULA's Command Mode and its Text and Data Editors.

1.3.21 Multi-platform Performance

PROMULA runs on most of the major computer platforms including IBM/MSDOS, VAX/VMS, Apple Macintosh,

IBM/AIX, SUN/UNIX, IBM/TSO, and platforms supporting the X Window System. Your PROMULA applications can be

used, without modification, wherever PROMULA runs.

Promula Application Development System User's Manual

6

2. PROMULA BASICS
This chapter is intended to introduce computer users with little programming experience and no familiarity with

PROMULA to the basics of the PROMULA language and the PROMULA Application Development System. The first part

of the chapter illustrates how to use the PROMULA application development shell to create and use applications; the

second part of the chapter covers the fundamentals of the PROMULA language in the context of a simple example.

2.1. The PROMULA Application Development System

The following sections describe how to create and manage executable applications using PROMULA. For example,

suppose you wish to create a simple application that will let you enter monthly sales and cost figures then compute and

report the monthly profits and the average monthly profit. We have written such a program for you, it is called DEMO.PRM

and it is on the PROMULA distribution disk. The dialog produced by running this program is displayed below:

 Please enter the monthly sales figures.
 ? 13200 12100 14800 16200 15200 17200 18060 18960 19900 20900
 ? 21950 23050
 Please enter the monthly cost figures.
 ? 9200 8600 10400 11300 10700 12100 12700 13350 14000 14700
 ? 15440 16210

 Monthly Profit and Loss Figures ($)

 Sales Costs Profit

 January 13,200 9,200 4,000
 February 12,100 8,600 3,500
 March 14,800 10,400 4,400
 April 16,200 11,300 4,900
 May 15,200 10,700 4,500
 June 17,200 12,100 5,100
 July 18,060 12,700 5,360
 August 18,960 13,350 5,610
 September 19,900 14,000 5,900
 October 20,900 14,700 6,200
 November 21,950 15,440 6,510
 December 23,050 16,210 6,840

 Average monthly Profit ($) 5,235.00

Figure 2-1: Dialog produced by DEMO.XEQ

 The source code for DEMO.PRM is displayed below.

 OPEN SEGMENT "DEMO.XEQ" STATUS=NEW
 DEFINE PROGRAM "A Demo Program"

 DEFINE SET
 month(12) "Months of the Year"
 acnt(3) "Profit and Loss Ledger Accounts"
 END SET

 DEFINE VARIABLE
 mp(month,acnt) "Monthly Profit and Loss Figures ($)" TYPE=REAL(10,0)

Promula Application Development System User's Manual

7

 amp "Average Monthly Profit ($)" TYPE=REAL(10,2)
 mn(month) "Month Names" TYPE=STRING(12)
 acn(acnt) "Profit and Loss Account Names" TYPE=STRING(12)
 END VARIABLE

 DEFINE RELATION
 ROW(month,mn)
 COLUMN(acnt,acn)
 KEY(acnt,acn)
 END RELATION

 READ mn
 January
 February
 March
 April
 May
 June
 July
 August
 September
 October
 November
 December

 READ acn:6
 Sales Costs Profit

 DEFINE PROCEDURE profits
 SELECT acnt(Sales)
 WRITE"Please enter the monthly sales figures."
 READ mp(acnt,month)
 SELECT acnt(Costs)
 WRITE"Please enter the monthly cost figures."
 READ mp(acnt,month)
 SELECT acnt*
 mp(m,3) = mp(m,1) - mp(m,2)
 amp = SUM(m)(mp(m,3)/12)
 WRITE mp
 WRITE amp
 END PROCEDURE profits

END PROGRAM, DO profits

Figure 2-2: Source Code of DEMO.PRM

This code defines a complete, interactive application that can help its user enter monthly sales and costs figures and

compute and report the monthly profits and the average monthly profit.

2.1.1. Starting PROMULA
Typically you will start PROMULA from the DOS prompt by entering the word "PROMULA". You may include any

PROMULA statement after the word "PROMULA" on the command line. Several examples of this are shown below:

PROMULA SELECT FOREGROUND=GREEN COMMA=OFF GRAPHICS=HIGH

Promula Application Development System User's Manual

8

This will load PROMULA, set the foreground color to green, turn the comma option for numeric displays off, and

select the HIGH graphics mode. PROMULA will start in command mode, not with the PROMULA Main Menu.

PROMULA RUN COMPILER "myprog.prm" LIST=DISK "myprog.lst" PAUSE=ON

This will load PROMULA and compile the statements in the file myprog.prm. The statements in myprog.prm and any

output they generate will be saved on disk in the file myprog.lst. After compiling the file, PROMULA will be in

command mode.

PROMULA RUN PROGRAM "myprog.xeq"

This will load PROMULA and start the PROMULA application contained in the file myprog.xeq.

2.1.2. The PROMULA Main Menu

If you start PROMULA with no command line statement, PROMULA will load into memory and display its Main Menu.

The PROMULA Main Menu is designed to give you direct access to a variety of program development functions.

 PROMULA V3.00 (09/01/91) IBM PC Version

 Main Menu

 Key Function

 F1 Exit PROMULA

 F2 Restart PROMULA

 F3 Run the PROMULA Tutorial

 F4 Edit a source file

 F5 Compile a source program

 F6 Run a program from the console

 F7 Resume an interrupted program

 F8 Run a program from a disk file

 F9 Run a menu of applications

 F10 Use the PROMULA Language

 Press desired key or move bounce bar and press [ENTER]

 Copyright 1988-91 PROMULA Development Corporation, ALL RIGHTS RESERVED

 Application Management System

To begin the desired function, simply press the corresponding function key. On the IBM Personal Computer the function

keys are the ten shaded keys at the left (or at the top) of the keyboard. Alternatively, you may press the numeric keys on

your keyboard or highlight the desired option and press the Enter key.

2.1.2.1. F1 -- Exit PROMULA

Selecting Main Menu option 1 gets you out of PROMULA and returns control to the operating system. All PROMULA

files which are open at this time are automatically closed. Any PROMULA information contained within the memory of the

computer which has not been saved on a disk file, is lost. In addition to closing its open files, PROMULA clears the screen

before ending.

Promula Application Development System User's Manual

9

2.1.2.2. F2 -- Restart PROMULA

Selecting Main Menu option 2 restarts PROMULA. Before the restart, PROMULA closes all application files, clears all

application information from the memory of the computer, and clears the screen.

This is a convenient feature to use when you wish to move from one PROMULA application to another without having to

go back to the operating system.

2.1.2.3. F3 -- Run the PROMULA Tutorial

The PROMULA Tutorial is the reference chapter of this User's Manual in on-line, menu-driven form. The program that

controls the tutorial is called PROMULA.TUT.

You can use the Tutorial in various ways:

1. Browse through the entire Tutorial once to obtain an overview of PROMULA.

2. Select a particular topic in the Tutorial when you have a particular question.

To get to the Tutorial while executing a program, press the Esc key to suspend the program and display the Main Menu;

then select Main Menu option 3 to browse the Tutorial and the topic of interest. When you wish to leave the tutorial, press

the End key; this returns you to the Main Menu. You may then return to the interrupted program by selecting Main Menu

option 7.

2.1.2.4. F4 -- Edit a Source File

This clears the screen and initiates the PROMULA Text Editor, which is a fast, full-screen text editor that may be used

from the Main Menu, from command mode, and from inside your applications via the RUN EDITOR statement.

On-line help for the editor is in the dialog file EDITOR.TUT and is accessible by pressing Alt-H.

For example, to edit the demo file DEMO.PRM shown in Figure 2-2, simply press Alt-E and enter the file name DEMO.PRM.

2.1.2.5. F5 -- Compile a Source Program

PROMULA accepts statements in either of two modes: direct and indirect. Main Menu option 5 is used to put PROMULA

into indirect mode. In indirect, or compilation mode, PROMULA converts the statements of an entire "source" file to an

"executable" form, which may be saved on disk for later execution.

Use Main Menu option 5 when you wish to compile a file containing the PROMULA source code. If the results of the

compilation are saved in a segment file, it can be executed either interactively (i.e., directly from the console), using Main

Menu option 6, or in batch mode from a text input file using Main Menu option 8 .

"Compiling a program" means converting it from source instructions to executable instructions. Source instructions are

the statements of a program as you write them for PROMULA to understand and compile, i.e., convert to executable

instructions. Executable instructions in turn are instructions that PROMULA converts to machine instructions which the

computer can execute at run time.

To compile the demo program DEMO.PRM, select Main Menu option 5 and respond to the system prompts, as shown in the

dialog below:

 Enter the filename of the program to be compiled
 ? DEMO.PRM
 Where do you want the compilation listing? N)one, C)onsole, P)rinter, or D)isk
 ? P

Promula Application Development System User's Manual

10

 Do you want the compiler to pause on errors? Y)es or N)o
 ? Y

The dialog above tells PROMULA to compile the source program stored in file DEMO.PRM, to list the results of the

compilation on the printer, and to pause if any errors are detected.

In the dialog above, the questions are issued by PROMULA while the responses (following the ? prompt) are entered by the

user.

The first question asks for the name of the file containing the source code to be compiled. Any filename which is valid for

the operating system is a valid entry for this question. The default extension for source file names is .PRM.

The second question asks where PROMULA should send the compilation listing. The listing may be viewed on the screen,

sent to the printer, saved in a file on disk, or turned off. Viewing the listing on the screen or printer may slow the

compilation down but may make it easier to understand compilation errors. If the listing is sent to the printer, then the

printer needs to be turned on and ready to go before the response to this question is entered. PROMULA does not check to

ensure that this is true and will compile the program without sending it to the printer if you fail to turn the printer on. If the

listing is to be saved on a disk file, you must specify the name of the disk file in response to the next question, as shown in

the second example below. If you want the code to compile as fast as possible, and do not need to view the listing as the

program is compiled enter N for the N)one option.

The third question asks whether or not PROMULA should pause when a compilation error is encountered:

1. If you respond Y for "yes" to the question, then each time an error is encountered, PROMULA will display the

appropriate error message and will pause with the following message:

Press any key to continue

 At this point, if you press the Esc key, the compilation will end and you will return to the Main Menu. If you press any

other key, the compilation will continue.

2. If you respond N for "no" to the question, then an error message will be displayed for each error, but PROMULA will

continue compiling. Note that the result of any compilation which was continued despite an error will probably not be

well formed.

A similar dialog occurs if you wish to save the compilation output on a disk file:

Enter the filename of the program to be compiled
 ? DEMO.PRM
Where do you want the compilation listing? N)one, C)onsole, P)rinter, or D)isk
 ? D
Enter a filename for the compilation listing
 ? DEMO.LST
Do you want the compiler to pause on errors? Y)es or N)o
 ? Y

The objectives of this example are to compile the source program DEMO.PRM and to save the compilation listing on a disk

file named DEMO.LST for later viewing or printing.

In the compilation example shown above, three files are involved:

1. The program source file, DEMO.PRM

2. The compilation listing saved on file DEMO.LST

Promula Application Development System User's Manual

11

3. The executable file resulting from the compilation was saved on file DEMO.XEQ, as specified in the OPEN SEGMENT

statement of the source file. It is this file that you may execute interactively, using Main Menu option 6, or execute in

batch mode, using Main Menu option 8.

2.1.2.6. F6 -- Run a Program from the Console

An executable program may be run in one of two ways: interactively or in batch. Interactive execution proceeds as follows:

the program issues prompts via menus, ASK statements, and other interactive commands on the console and expects a

response from the user before it continues execution. In batch mode, on the other hand, program execution proceeds

without pausing for user input from the keyboard. In this mode, all of your responses are expected to have been saved in a

disk file, called the "batch input file".

Main Menu option 6 is used to execute a compiled PROMULA program interactively, i.e., directly from the console and

the keyboard. Selecting Main Menu option 6 results in a dialog such as the one shown below:

 Enter the filename of the program to be executed
 ? DEMO.XEQ

DEMO.XEQ is the name of the executable program that was produced by compiling the DEMO.PRM source program using

Main Menu option 5. The default extension for executable file names is .XEQ. Execution of DEMO.XEQ results in the

following dialogue:

 Please enter the monthly sales figures.
 ? 13200 12100 14800 16200 15200 17200 18060 18960 19900 20900
 ? 21950 23050
 Please enter the monthly cost figures.
 ? 9200 8600 10400 11300 10700 12100 12700 13350 14000 14700
 ? 15440 16210

 Monthly Profit and Loss Figures ($)

 Sales Costs Profit

 January 13,200 9,200 4,000
 February 12,100 8,600 3,500
 March 14,800 10,400 4,400
 April 16,200 11,300 4,900
 May 15,200 10,700 4,500
 June 17,200 12,100 5,100
 July 18,060 12,700 5,360
 August 18,960 13,350 5,610
 September 19,900 14,000 5,900
 October 20,900 14,700 6,200
 November 21,950 15,440 6,510
 December 23,050 16,210 6,840

 Average monthly Profit ($) 5,235.00

Figure 2-3: Dialog produced by DEMO.XEQ

While running an application in interactive mode, you may suspend program execution by pressing the Esc key at a

program pause. To resume execution at the point where you exited, select option 7 from the Main Menu.

Promula Application Development System User's Manual

12

2.1.2.7. F7 -- Resume an Interrupted Program

You can interrupt an executing program by pressing the Esc key in response to any program prompt. This gets you out of

the program and returns you to the Main Menu. At this point, you have direct access to the program information and

procedures. From the Main Menu you can perform a number of useful operations, like using the editor or using PROMULA

in direct mode (by selecting Main Menu option 10) to perform diagnostic or debugging operations. In direct mode, you may

audit the contents of the program selectively or make other adjustments before resuming execution. This is a very useful

feature for developing and testing programs.

To return to the precise point of execution where you exited the program select option 7 off the Main Menu.

2.1.2.8. F8 -- Run a Program from a Disk File

An executable program may be run in one of two ways: interactively or in batch mode. Interactive execution proceeds as

follows: the program issues prompts, pauses after each prompt, and expects a response from you before continuing

execution. The program issues its prompts on the console and you enter your responses with the keyboard or mouse, one at

a time. In batch mode, on the other hand, program execution proceeds without pause for user input from the keyboard. In

this mode, all of your responses are expected to have been saved "in batch" on a text file, called the batch input file. For

more information about preparing batch input files, see the section entitled Running Interactive Programs in Batch.

It is often inconvenient to execute a program directly from the console. It might be that the program is executed very often

with minor or no data changes. Alternatively, the program might execute very slowly, or an exact record of each execution

might be desired. Whatever the reason, batch execution provides the capability to execute a program in a non-interactive,

file-driven mode. During batch execution, your program reads from a batch input file. The batch input file is a standard text

file produced by any text editor. It contains the responses to the various program prompts in the precise order and form that

they would be entered directly on the keyboard.

Main Menu option 8 is used to execute a compiled PROMULA program in batch mode, i.e., via commands in a "batch

input file" on disk. In contrast, Main Menu option 6 is used to execute a compiled PROMULA program interactively, i.e.,

directly from the console. Selecting Main Menu option 8 results in the sample dialog shown below:

 Enter the filename of the batch input file
 ? DEMO.INP
 Where do you want the batch output listing? C)onsole, P)rinter, D)isk
 ? D
 Enter a filename for the batch output listing
 ? DEMO.OUT
 Enter the filename of the program to be executed
 ? DEMO.XEQ

DEMO.INP is a file containing the responses required by the program DEMO.XEQ and its contents are shown below:

13200 12100 14800 16200 15200 17200 18060 18960 19900 20900 21950 23050
9200 8600 10400 11300 10700 12100 12700 13350 14000 14700 15440 16210

DEMO.OUT is the disk file where the output is saved. This file is shown in Figure 2-4 and can be printed later or browsed

using a text editor. The "batch" output shown here is the same as the output produced by running DEMO.XEQ interactively

and spooling the run directly to the file DEMO.OUT.

 Please enter the monthly sales figures.
 ? 13200 12100 14800 16200 15200 17200 18060 18960 19900 20900
 ? 21950 23050
 Please enter the monthly cost figures.
 ? 9200 8600 10400 11300 10700 12100 12700 13350 14000 14700
 ? 15440 16210

 Monthly Profit and Loss Figures ($)

Promula Application Development System User's Manual

13

 Sales Costs Profit

 January 13,200 9,200 4,000
 February 12,100 8,600 3,500
 March 14,800 10,400 4,400
 April 16,200 11,300 4,900
 May 15,200 10,700 4,500
 June 17,200 12,100 5,100
 July 18,060 12,700 5,360
 August 18,960 13,350 5,610
 September 19,900 14,000 5,900
 October 20,900 14,700 6,200
 November 21,950 15,440 6,510
 December 23,050 16,210 6,840

 Average monthly Profit ($) 5,235.00

Figure 2-4: Contents of File DEMO.OUT

2.1.2.9. F9 -- Run a Menu of Applications

Main Menu option 9 is used to start the application PROMULA.XEQ. A default PROMULA.XEQ program is distributed

with PROMULA. This application displays a menu from which you may access either the PROMULA course or any of the

sample programs provided with your PROMULA package. The sample programs and the course can help you learn to write

and use your own PROMULA programs.

PROMULA.XEQ is a standard PROMULA executable (its source code is contained in the file PRMDEMO.PRM) and it

may be replaced by a program you create that supports a menu of your own applications. To do this, create a PROMULA

executable called PROMULA.XEQ. Note that the name of the executable file launched by selecting Main Menu option 9

is hardwired in the system and must be PROMULA.XEQ.

2.1.2.10. F10 -- Use the PROMULA Language

Selecting Main Menu option 10 (numeric key 0) puts PROMULA into direct or Command Mode. In this mode,

PROMULA accepts a single statement of source instructions, converts it to executable instructions which are executed by

the computer, and proceeds to the next statement.

Pressing the Esc key or entering the STOP statement gets you out of direct mode and returns you to the Main Menu.

In direct mode, PROMULA issues the prompt

PROMULA?

and expects you to enter a statement on the same line of the screen. To enter a statement, simply type it in and press the

Enter key. After entering a statement, PROMULA will execute it and prompt you again for a new statement.

Some PROMULA statements have a beginning, an end, and a number of other line entries inbetween. For such a structured

statement, PROMULA issues the short question mark prompt

?

until the end of the statement is entered. The short prompt is intended to remind you that you have not yet ended a

structured statement that you started in an earlier entry line. For example, entering in direct mode the set definitions of

Figure 2-2 would result in the following interaction:

Promula Application Development System User's Manual

14

 PROMULA? DEFINE SET
 ? month(12) "12 Months of the Year"
 ? acnt(3) "3 Profit and Loss Ledger Accounts"
 ? END SET
 PROMULA?

Any program compiled in batch using the Main Menu (option 5) can also be entered directly from the keyboard in

command mode. The result is the same as compiling in batch mode.

2.1.3. Running Interactive Programs in Batch

PROMULA programs may be executed interactively or in batch. During interactive execution, any questions or prompts

presented by the program are answered by a person using the keyboard and/or mouse. The person responding to the

program is referred to as the user. During batch execution, any questions or prompts presented by the program are

"answered" by one or more lines of text in a file on disk. The file containing the responses is referred to as the batch input

file or batch script.

A batch script can describe any sequence of inputs that PROMULA might expect from a program user. The responses in a

batch script are usually a mixture of batch commands and data for the program. The batch commands may also be used by

persons running PROMULA interactively on a terminal that does not support non-printing keys such as Home, End, and

Escape.

In order to prepare batch input files correctly, it is necessary to understand PROMULA's input model. PROMULA accepts

inputs in one of two forms: Keypresses and Records.

Keypresses are single keystrokes or simultaneous keystroke combinations (e.g., Alt-H). Almost all keypresses are input by

pressing some non-printable key on the keyboard. Keypresses may also be input by "pointing and clicking" on specific

areas of the screen with a mouse. Examples of keypresses are pressing the Page-Down key to move to the next page of a

display, pressing the End key to finish browsing or editing a display, and pressing a key to make a selection from a pick

menu.

Records are strings of printable characters that represent data or responses to program prompts. Most records are input by

reading them from a text file, or by typing them in and pressing the Enter key. Examples of records are PROMULA

statements entered in command mode, and data entered in response to an ASK or READ statement. Another example of a

record is the value entered in response to the

 Enter Value or End?

prompt generated by PROMULA's various EDIT statements.

When you prepare a batch script, you have to know exactly what happens when the program runs interactively. You also

have to keep track of when the program expects keypresses and when it expects records. If the program is expecting a

record, type it on the next line of the script. If the program is expecting a keypress, type the batch command for the

keypress on the next line of the script.

The batch commands are the simple one-character codes shown in Table 2-1 below:

Table 2-1: The PROMULA Batch Language Commands

CODE MEANING INTERACTIVE KEYPRESS* NOTES

s Display the screen image None 1

m Escape to main menu Esc 2

Promula Application Development System User's Manual

15

e End End 2

r Move right one position Right arrow 2

l Move left one position Left arrow

b Backspace Backspace

a Move to beginning of current line Ctrl-Left Arrow

z Move to end of current line Ctrl-Right Arrow

x Delete current character Del

i Toggle insertion characteristics Ins

t Tab right Tab 3

j Tab left Shift-Tab 3

u Move up one position Up arrow 3

d Move down one position Down arrow 3

f First page Home 3

p Previous page PgUp 3

n Next page PgDn 3

h Help Alt-H

1... Function key 1... F1...

11... Shift+Function key 11... Shift-F1...

! Explicit Return or Enter Return or Enter 4

* The interactive keypresses presented above correspond to keys on a standard IBM PC-Compatible keyboard.

Keyboard tables for other platforms are included with the PROMULA installation instructions.

Table 2-2 Notes:

(1) Most screen output is suspended during batch execution. The show command(s) may be used to display the screen. If

the run is being saved on disk or printed, the screen will be written to the output file or printed.

(2) The \E and \R batch commands for Escape and Resume an application are no longer compatible with PROMULA's

batch command language. They have been replaced with Main Menu selections so that the batch scripts can more

closely parallel interactive runs. For example, the new and old methods of escaping and resuming from a batch run are

illustrated below:

OLD WAY

PROMULA VERSIONS 2.XX AND EARLIER
 NEW WAY

PROMULA VERSIONS 3.XX AND LATER

batch statements.
.
.
\E

"command mode" statements
.
.
\R

.
.
more batch statements

batch statements.
.
.
m (or #m as a record)
10 (Main Menu option 10)

"command mode" statements
.
.
#m
7 (Main Menu option 7)
.
.
more batch statements

(3) During batch execution, the command-line buffer is not active, so the use of these keys to control it is not supported.

(4) The exclamation point (!) may be used to indicate that the Return or Enter key is to be pressed when PROMULA is

waiting for a keypress. The enter command is useful for putting PROMULA into data entry mode during batch

Promula Application Development System User's Manual

16

execution of an EDIT statement. Use of the exclamation point to signify the return used to enter a record is not

required or allowed.

Notice that the batch commands are printable characters and therefore look like records. If the program is expecting a

record, and you want to enter a keypress, precede the keypress code with a pound sign (#). For example, if the program is

expecting a record, and you want to escape from the application to the main menu, enter #m. If you put just an m, the

program will read m as the value of the record.

There is one exception to these guidelines: if the program is expecting a keypress that is also used as a batch command, you

must precede the keypress with a pound sign. For example, if the program has a popup pick menu option with selection key

m and you want to select the m option in your batch script, put a #m on the next line of the batch script. If you put just an m,

the program will escape to the main menu instead of selecting the program menu's m option.

The easiest way to prepare a batch script is to run the program interactively and make careful notes of the keypresses and

records that are entered. Next, translate the keypresses into batch commands using the relationships in Table 2-1. Each

record is placed on a line in the script just as it would be typed during interactive execution. Optionally, some data records

may be replaced by PROMULA commands. For example, instead of trying to use batch commands to respond to an EDIT

statement, escape from the application and use equations, READ statements, and procedure calls to assign values to the

variables. Of course, this method requires that you know the names of the items contained in the program.

There should be a close parallel between the interactive keypresses and records entered during interactive mode and the

commands and data in the batch script. Plots are the one exception to this rule: during an interactive run, PROMULA

pauses for a keypress after generating a plot; however, during a batch run, PROMULA does not pause after a plot, so no

keypress is needed.

There are two ways to run an application in batch: start the application using Main Menu option 8, or compile the

statements that start the application using Main Menu option 5 or a RUN statement. For example, compiling the following

statements start a batch run of the application contained in the segment file test.xeq; execution starts with the first statement

of the procedure called proc.

OPEN SEGMENT "test.xeq" STATUS=OLD
READ SEGMENT MAIN, DO proc
.
 batch commands
.

Example:

The program batche.prm shown below will be used as an example for the batch run.

OPEN SEGMENT "BATCHE.XEQ" STATUS=NEW
DEFINE PROGRAM "BATCH TEST"

DEFINE VARIABLE
 opt "menu option"
 b "b variable" TYPE=REAL(12,3)
 a "a variable" TYPE=REAL(12,3)
 x "x variable" TYPE=REAL(12,6)
END VARIABLE

DEFINE WINDOW
 sw(01,01,28,20, WHITE/BLACK, FULL/SINGLE/WHITE/BLACK)
 mw(32,01,78,20, WHITE/BLACK, FULL/SINGLE/WHITE/BLACK)
 pw(01,23,78,23, WHITE/BLACK, FULL/SINGLE/WHITE/BLACK)
END WINDOW

DEFINE MENU picmnu POPUP(SW,PW)
 \EDIT\

Promula Application Development System User's Manual

17

 \COMPUTE\
 \DISPLAY\
 \QUIT\
END
FIELD 1, SELECT=E, HELP=0, ACTION=1
 EDIT VALUES
END
FIELD 2, SELECT=C, HELP=0, ACTION=2
 COMPUTE VALUES
END
FIELD 3, SELECT=D, HELP=0, ACTION=3
 DISPLAY VALUES
END
FIELD 4, SELECT=Q, HELP=0, ACTION=4
 QUIT
END
END picmnu

DEFINE MENU datmnu
 ENTER INPUTS
 A = @@@@@@@@@@@@@@@
 B = @@@@@@@@@@@@@@@
END

batche.prm (continued)

DEFINE PROCEDURE ctrl
SELECT picmnu(opt)
DO IF opt EQ 4
 BREAK ctrl
ELSE opt EQ 1
 EDIT datmnu(a,b)
ELSE opt EQ 2
 x = a * b
ELSE opt EQ 3
 WRITE CENTER (a " * " b " = " x // "PRESS A KEY TO CONTINUE") CLEAR(-1)
END
ctrl
END PROCEDURE ctrl

DEFINE PROCEDURE start
OPEN mw MAIN
OPEN pw PROMPT
ctrl
CLEAR MAIN
CLEAR PROMPT
WRITE CLEAR(0)
END PROCEDURE start

END PROGRAM, DO start

Let's assume we want to run this program using Main Menu option 5 for two different sets of inputs. The first set of inputs

is (a=1.5, b = 4.0); the second set of inputs is (a=1.2, b = 6.0).

BATCH SCRIPT COMMENTS

OPEN SEGMENT "batche.xeq" Open the segment file containing the program.

READ SEGMENT MAIN Read the program into memory, execution starts with procedure start.

m SELECT picmnu(opt): expecting a keypress; escape to Main Menu

Promula Application Development System User's Manual

18

10 Main Menu: select option 10 to go to command mode.

a = 1.5 Command mode statement: a = 1.5

b = 4.0 Command mode statement: b = 4.0

#m PROMULA expecting a card, escape to Main Menu

7 Main Menu: select option 7 to resume an interupted application.

#c SELECT picmnu(opt): expecting a keypress; choose option C, Compute.

#d SELECT picmnu(opt): expecting a keypress; choose option D, Display.

! WRITE ... CLEAR(-1): Press any key (e.g., Enter)

#e SELECT picmnu(opt): expecting a keypress; choose option E, Edit

! EDIT datmnu(a,b): press enter for data entry mode.

1.2 Provide data card for first field of menu (a = 1.2).

! EDIT datmnu(a,b): press enter for data entry mode

6.0 Provide data card for second field of menu (b = 6.0).

e EDIT datmnu(a,b): press end to exit.

#C SELECT picmnu(opt): expecting a keypress; choose option C, Compute.

#D SELECT picmnu(opt): expecting a keypress; choose option D, Display.

! WRITE ... CLEAR(-1): Press any key (e.g., Enter)

#Q SELECT picmnu(opt): expecting a keypress; choose option Q, Quit.

2.1.4. PROMULA Keyboard Conventions

Depending on context, special keys have various effects. Local PROMULA prompts describe what the actions of the

various keystrokes are. Most special keys are used in browsing and editing operations or in picking from menus.

The PgUp, PgDn and Home keys are used for paging through multi-screen displays (browsing). The Ctrl key is used with

the PrtSc key to toggle the printer on and off.

The function keys (or numeric keys) are used for making selections off pick menus. The function keys are also used for

interactively paging through the dimensions of multidimensional reports. The Alt (or Shift) key is used with the function

keys to make selections off pick menus that have more than ten options; it is also used with most keystrokes of the

PROMULA Text Editor.

The Backspace, Del and Ins keys are used in line editing. The Ins and Del keys are also used in tagging and untagging

elements of lists during execution of the SELECT SET statement.

The Return or Enter key is the "end of record/line feed" signal and completes each PROMULA statement or data record.

The Arrow keys, Home, PgUp, and PgDn keys are used to move through selection lists, data menus, array variable

displays and for file browsing.

The End key is used to end most interactive processes such as variable browsing and editing, menu editing, selection lists,

etc.

See the description of Line Editing and the interactive PROMULA statements for more information on PROMULA's

keyboard conventions.

PROMULA displays a prompt describing the relevant key actions whenever an interactive statement is executed.

Promula Application Development System User's Manual

19

2.1.4.1. Esc -- Escape to the PROMULA Main Menu

The Esc key enables you to suspend a PROMULA application and return to the PROMULA Main Menu. The information

in your working space at the point of interruption is still available to you, and you may access it in command mode by

selecting Main Menu option 10. While the program is suspended, you may browse the PROMULA tutorial, show

intermediate results, perform various debugging operations, or even add new procedures and variables to the interrupted

application by typing them in or by using the RUN COMMAND statement to read them from a file.

To return to the interrupted application, press the Esc key again to return to the PROMULA Main Menu and then select

Main Menu option 7 — Resume an interrupted program.

2.1.4.2. Alt-H -- Get Context-sensitive Help

Pressing the Alt-H keys simultaneously will give you context-sensitive help, i.e., it will give you access to that topic within

a help file that is pertinent to the particular point of the application that you are currently working with. This kind of local,

context-sensitive help for the user has to be programmed in advance, i.e., a help file must be available and the logic to

access a particular help topic must be coded into the procedure that you are working with. See DEFINE DIALOG for

instructions on how to build help files, BROWSE DIALOG and BROWSE TOPIC for instructions on accessing help

files, and DO IF HELP and DO IF ERROR VALUE for instructions on how to detect a call for help and branch to field-

specific help accordingly.

2.1.5. Line Editing

When using PROMULA in direct mode or responding to prompts generated by the PROMULA editor, READ, EDIT, or

ASK statements, you will use PROMULA's line editor. All information entered while in the line editor is saved in the line

editor's buffer so that you may recall previously entered commands and data for modification and re-entry.

The following key conventions are used by the PROMULA line editor:

KEY ACTION

Enter Enter a line for processing and put it on the bottom of the line editor's buffer

Up-arrow move up line editor's buffer (recall previous entries)

Down-arrow move down line editor's buffer

Home clear the input line

PgUp move to top of line editor's buffer

PgDn move to bottom of line editor's buffer

Tab move cursor 8 spaces to the right

Shift-tab move cursor 8 spaces to the left

Right-arrow move cursor 1 space to the right

Left-arrow move cursor 1 space to the left

Ctrl Right-arrow move cursor to end of line

Ctrl Left-arrow move cursor to beginning of line

Delete delete the character over the cursor

Backspace delete character to left and move cursor 1 space to left

Insert toggle insert/overwrite mode

Promula Application Development System User's Manual

20

2.1.6. Printer Control

You can send output to your printer by doing the following:

1. Issue the command SELECT PRINTER=ON. This will send all PROMULA output to the printer until you issue the

command SELECT PRINTER=OFF.

2. On an IBM compatible computer, simultaneously press the Ctrl key and the PrtSc key. This will send all PROMULA

output to the printer until you turn the print toggle off by simultaneously pressing Ctrl-PrtSc again.

3. On an IBM compatible computer, simultaneously press the Shift key and the PrtSc key. This will send to the printer

the contents of the current screen.

Other printer control options are discussed in Chapter 3 under the SELECT option statement.

Some printer control commands will not work unless your printer is on and properly connected to the computer.

If a SELECT OUTPUT statement is executed before a SELECT PRINTER=ON, output will be saved in the specified

disk file.

2.2. PROMULA Application Programming

The following sections describe how to write the source code for a PROMULA application program.

An application program is an ordered set of instructions that tell the computer how to solve a particular problem, or perform

a particular function, operation, or procedure. The instructions of a program — sometimes called commands, statements, or

source code — are written in a human-readable notation, and describe how the program should work. Every statement

should perform one or more of the following basic functions:

1. Data Definition

This includes creating a framework for program information that is convenient and logical to work with.

2. Program Control

This includes constructing procedures, loops, conditional branches, and other structures that control the sequence of

events that take place during execution of the program.

3. Data Manipulation

This includes putting information into a data framework and manipulating it in various ways. Operations such as

performing calculations, reading data, sorting, selecting subsets of data, and doing other operations that transform the

inputs of a program into useful information fall into this category.

4. Report Generation

This includes producing displays of input data and output information. Once a program has transformed the input data

into useful results, it is desirable to produce a report. The report may be text or graphics displayed on the screen,

printed with a printer, or saved in an external file on disk.

5. Interface Design

Promula Application Development System User's Manual

21

 This includes creating a functional, attractive interface through which others can use the program easily and

effectively.

In the following discussion, these five basic programming tasks and other important concepts of application programming

are introduced in the context of a simple example called The Budget Program. This simple application helps its user

determine how much extra money he/she will have after paying all of his/her expenses each month. The budget program is

smaller than the typical PROMULA application, but it can serve to illustrate PROMULA's basic programming constructs

and techniques.

2.2.1. Data Definition
 KEY TOPICS:

 1. Variables — Scalars and Arrays

 2. Planning the Data Structures for an Application

 3. Defining Sets

 4. Defining Variables

 5. Relating Sets and Variables

2.2.1.1. Variables -- Scalars and Arrays

One of the most essential steps in creating an application program is data definition — the process of creating a framework

for program inputs and outputs that is convenient and logical to work with. To do this, the programmer must specify the

types of information the application will manipulate and must determine an efficient framework for storing this

information.

The basic unit of information storage in PROMULA, and most other computer programming languages, is called a

variable. The information stored in a variable may be in the form of letters, numbers, or other characters, and may be a

single value or a group of values.

Consider for example the value shown in Figure 2-5 below.

Average Monthly Expense ($) 1,001.33

Figure 2-5: A Scalar Variable

The value, 1,001.33, could be stored in a single PROMULA variable. A single-valued variable like this one is sometimes

referred to as a scalar. A numeric scalar variable is the simplest and smallest type of variable that can be defined in

PROMULA.

Now consider the list of values shown below:

 Average Expenses by Expense Category ($)

 RENT 409.00
 FOOD 275.24
 CAR SERVICE 126.18
 UTILITIES 88.44
 CAR INSURANCE 45.00
 PHONE 57.48

Figure 2-6: A One-dimensional Array Variable

Promula Application Development System User's Manual

22

The six values above could also be stored in a single PROMULA variable. Since this variable contains a group of values, it

is referred to as an array. Variables with a one-dimensional list structure like the one shown above are sometimes called

vectors. You may be familiar with statistical analysis packages that treat all variables like vectors. The values of this vector

are classified by expense category. This means that the "rows" of the variable are the "expense category" dimension. They

are a set of six elements, the expense categories: rent, food, car service, utilities, car insurance, and phone. The vector's

values would be difficult to interpret if the vector and its rows were not well defined.

Finally, consider the table of values below:

 Monthly Expenses by Category ($)

 RENT FOOD CAR SERVICE UTILITIES CAR INS PHONE
JAN 409.00 286.64 143.71 86.87 45.00 57.30
FEB 409.00 276.76 166.28 84.78 45.00 50.21
MAR 409.00 280.81 134.35 96.84 45.00 65.53
APR 409.00 294.05 99.55 98.06 45.00 61.30
MAY 409.00 286.98 88.13 86.77 45.00 58.03
JUN 409.00 275.43 152.85 98.06 45.00 56.45
JUL 409.00 269.81 103.88 87.47 45.00 56.45
AUG 409.00 289.93 127.67 72.28 45.00 50.61
SEP 409.00 261.35 171.10 76.47 45.00 55.64
OCT 409.00 258.71 127.52 88.28 45.00 58.33
NOV 409.00 250.12 105.25 91.41 45.00 69.28
DEC 409.00 272.28 93.81 93.93 45.00 50.67

Figure 2-7: A Two-dimensional Array Variable

The 72 values above could also be contained in a single PROMULA variable. Variables with this "row by column"

structure are sometimes referred to as two-dimensional arrays. You may be familiar with the two-dimensional worksheets

that most spread sheet and financial modeling programs manipulate. The array values above are classified by month and

expense category. The "rows" of the variable are the "month" dimension; they are a set of 12 elements, the months January

through December. The "columns" of the array are the "expense category" dimension. They are a set of six elements, the

expense categories: rent, food, car service, utilities, car insurance, and phone. Like the vector above, the array's values

would be meaningless if the array and its rows and columns were not well defined.

This progression can be carried further. For example a three–dimensional array can be thought of as a group of two-

dimensional arrays or tables. PROMULA arrays may have up to 10 dimensions, and the PROMULA language is designed

to make it easy for programmers and users to work with this type of highly structured information.

2.2.1.2. Planning the Data Structures for an Application

In PROMULA you must organize your information into array and scalar variables before your program can manipulate

them. Often it is useful to categorize the variables as being either inputs and/or outputs. For example, the budget program

will manipulate the following inputs and outputs.

BUDGET PROGRAM INPUTS

The essential inputs of the budget program are the worker's monthly expenses and income.

Monthly expenses: For each month, the worker must specify his/her monthly expenses. Since the program is intended to

determine the amount of extra money the worker will have at the end of each month, only those expenses that the worker

Promula Application Development System User's Manual

23

must pay each month will be included. The monthly expenses will be divided into six categories: rent, food, car service,

utilities, car insurance, and phone.

For each month, the program will compute the worker's Monthly Income from several other inputs:

Hourly Wage Rate ($/hr.) the dollars earned per hour (before taxes),

Payable Hours per Month the number of hours the worker expects to work each month,

Pay Lost to Taxes the fraction of wages lost to taxes,

Monthly Income Bonus ($) a dollar amount earned by the worker independent of the number of hours worked or the

tax rate. If the worker is salaried, this is the worker's monthly take-home pay.

BUDGET PROGRAM OUTPUTS

The worker's total monthly income and expenses will be computed from the program inputs. The monthly expenses will be

subtracted from the monthly income to give a monthly balance, or the amount of money that will be left over each month

for saving or spending on luxury items or emergencies. In addition, the annual totals and averages will be computed.

Having determined the inputs and outputs required for our program, we may use PROMULA to create a framework for this

information. The figure below shows the PROMULA statements that can create the essential input and output variables of

the budget program.

DEFINE SET
 mons(12) "Months"
 exps(6) "Expense Categories"
END SET

DEFINE VARIABLE
**
** INPUTS
**
 expns(mons,exps) TYPE=REAL(10,2) "Monthly Expenses by Category ($)"
 payhr(mons) TYPE=REAL(10,0) "Payable Hours per Month (hr.)"
 bonus(mons) TYPE=REAL(10,2) "Monthly Income Bonus"
 taxes TYPE=REAL(10,4) "Fraction of Pay Lost to Taxes"
 wager TYPE=REAL(10,2) "Hourly Wage Rate ($/hr.)"
**
** OUTPUTS
**
 incom(mons) TYPE=REAL(10,2) "Monthly Income ($)"
 expnm(mons) TYPE=REAL(10,2) "Monthly Expenses ($)"
 balns(mons) TYPE=REAL(10,2) "Monthly Balance ($)"
 aincom TYPE=REAL(10,2) "Average Monthly Income "
 aexpnm TYPE=REAL(10,2) "Average Monthly Expense "
 abalns TYPE=REAL(10,2) "Average Monthly Balance "
END VARIABLE

Figure 2-8: Definition of the Inputs and Outputs of the Budget Program

The code above illustrates the basic elements of data definition in the PROMULA language. The PROMULA statements

displayed above are discussed in the following sections.

Promula Application Development System User's Manual

24

2.2.1.3. Defining Sets

In PROMULA, a Set is an ordered list of elements that can serve as an index for and define the structure of array variables.

In other words, sets are classification schemes for information. For example, the values in Figure 2-7 are classified by

month and expense category; these two classification schemes could be defined as sets in PROMULA.

In PROMULA, sets are created with the DEFINE SET statement. The sets required to structure the budget program's

inputs and outputs are described in the table below.

Table 2-2: The DEFINE SET Statement for the Budget Program

Set Identifier Number of Elements (Size) Descriptor

mons 12 Months
exps 6 Expense Categories

Each set definition includes the set's identifier, size, descriptor, and other optional information. The set identifier is a short,

symbolic name for the set, and is used to refer to the set in other statements of the program. The set size specifies the range

of the set indices and the number of items which may be indexed by the set. The set descriptor is optional and is used to

describe the set for documentation and program interface purposes.

By default, the elements of a set are ordered from 1 to N, where N is the size of the set. In addition, each set element has a

Label and a sequence number. The default labels for sets are formed from the set identifiers and the element sequence

numbers in parentheses as shown below.

Labels for set mons Labels for set exps

 MONS(1) EXPS(1)
 MONS(2) EXPS(2)
 MONS(3) EXPS(3)
 MONS(4) EXPS(4)
 MONS(5) EXPS(5)
 MONS(6) EXPS(6)
 MONS(7)
 MONS(8)
 MONS(9)
 MONS(10)
 MONS(11)
 MONS(12)

The default element labels may be changed to other more (or less) descriptive ones by reading values into the set, or by

using a DEFINE RELATION or SELECT RELATION statement to specify user-defined labels for the elements. See

"Relating Sets to Variables" below.

For more information about sets, refer to Chapter 3 of this manual, especially the sections covering the PROMULA noun

set and the DEFINE SET, DO set, SELECT SET, SELECT ENTRY, and SELECT set statements.

2.2.1.4. Defining Variables

Variables are structures that store program information. It is in terms of variables that the data manipulations performed by

a program are expressed.

Promula Application Development System User's Manual

25

In PROMULA, variables are created with the DEFINE VARIABLE statement. Each variable definition must include a

unique identifier, and may also include a structure, type, descriptor, and other options for the variable. The variable

definitions for the budget program are shown in Figure 2-8 and are described in Table 2-2 below.

Table 2-3: The DEFINE VARIABLE Statement of the Budget Program

Variable Set No. of Value Format

Identifier Structure Values Type (w,d) Descriptor

expns mons,exps 72 REAL 0,2 Monthly Expenses by Category ($)
incom mons 12 REAL 10,2 Monthly Income ($)
payhr mons 12 REAL 10,0 Payable Hours per Month (hr.)
bonus mons 12 REAL 10,2 Monthly Income Bonus
taxes --(scalar) 1 REAL 10,4 Fraction of Pay Lost to Taxes
wager --(scalar) 1 REAL 10,2 Hourly Wage Rate ($/hr.)
expnm mons 12 REAL 10,2 Monthly Expenses ($)
balns mons 12 REAL 10,2 Monthly Balance ($)
aincom --(scalar) 1 REAL 10,2 Average Monthly Income ($)
aexpnm --(scalar) 1 REAL 10,2 Average Monthly Expense ($)
abalns --(scalar) 1 REAL 10,2 Average Monthly Balance ($)

The variable identifier is a short, symbolic name for the variable and is used to refer to the variable in the program. The

variable structure is the scheme according to which its contents are organized and is usually expressed in terms of program

sets. The variable descriptor is a description or label for the variable and is supplied for program documentation and user

interface purposes. The variable format type specifies the kind of values the variable contains and their default display

format.

If no type specification is included with the variable definition, it will have format type REAL(8,0) by default. This means

that when the variable is displayed, each of its values will fill a width of 8 characters and will be rounded to the nearest

whole number (0 decimal digits).

Missing from the above definitions are the contents, or values, of the variables. These may be introduced by the READ

statements or by equations. See "Reading in Data" and "Writing Equations" below. PROMULA initially sets the values of

variables to zero when they are defined unless a VALUE parameter is included with the variable definition. It is also

possible for a variable to obtain its values from a database. See Chapter 4 for details.

The following figure shows the default displays of some of the program variables defined above. Notice how PROMULA

uses the type specification and other information in the variable definitions to control the displays generated by the WRITE

variable statement:

WRITE expns
 Monthly Expenses by Category ($)

 EXPS(1) EXPS(2) EXPS(3) EXPS(4) EXPS(5) EXPS(6)
MONS(1) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(2) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(3) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(4) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(5) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(6) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(7) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(8) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(9) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(10) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(11) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(12) 0.00 0.00 0.00 0.00 0.00 0.00

WRITE payhr

Promula Application Development System User's Manual

26

 Payable Hours per Month (hr.)

 MONS(1) 0 MONS(2) 0
 MONS(3) 0 MONS(4) 0
 MONS(5) 0 MONS(6) 0
 MONS(7) 0 MONS(8) 0
 MONS(9) 0 MONS(10) 0
 MONS(11) 0 MONS(12) 0

WRITE taxes
Fraction of Pay Lost to Taxes 0.0000

WRITE wager
Hourly Wage Rate ($/hr.) 0.00

Figure 2-9: Display of some of the variables defined in the Budget Program

For a more comprehensive discussion of variables, refer to Chapter 3 of this manual, especially the sections covering the

PROMULA Noun Variable and the DEFINE VARIABLE statement.

2.2.1.5. Relating Sets and Variables

Although the variables defined above are fully functional, the displays in Figure 2-9 are not complete because the default

labels for the elements of sets mons and exps need to be replaced with more meaningful ones.

There are several methods of relating descriptive information to program sets. One simple and flexible way is to define a

vector variable that is dimensioned by the set whose elements you want to label, then assign appropriate set element

descriptions to the values of the variable and relate the variable to the set. Let's do this for set mons.

First, define a vector variable to contain the set element labels:

DEFINE VARIABLE
 monsn(mons) TYPE=STRING(4) "Month Names"
END VARIABLE

The statement above defines a vector of 12 values called monsn. The format type of this variable's values is STRING(4).

String type variables can contain alphanumeric data (letters, numbers, and other characters.) The default display format for

the values of variable monsn has a width of four characters.

Second, read in the values to be used as labels for set mons using the READ variable statement. In this case, we will use

three-letter abbreviations for each month.

READ monsn:4
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

The statement READ monsn:4 tells PROMULA to start reading in column one of the next line and to read four characters

for each of the 12 values of the vector variable monsn. The values of monsn after the read are displayed below:

 Month Names

 MONS(1) JAN MONS(2) FEB MONS(3) MAR
 MONS(4) APR MONS(5) MAY MONS(6) JUN
 MONS(7) JUL MONS(8) AUG MONS(9) SEP
 MONS(10) OCT MONS(11) NOV MONS(12) DEC

Promula Application Development System User's Manual

27

Third, relate the variable monsn to the set mons using a DEFINE RELATION statement.

DEFINE RELATION
 ROW(mons,monsn)
END RELATION

There are four types of relations between sets and variables in PROMULA: ROW, COLUMN, KEY, and TIME. These

are described in the discussion of the DEFINE RELATION statement in Chapter 3. The ROW relation is used to specify

the primary descriptor for a set's elements. The values of the primary descriptor are used to label the elements of the set in

displays of the set and in displays of variables whose rows are classified by the set.

Now, create labels for the elements of set exps. First, define a vector variable to contain the set element labels:

DEFINE VARIABLE
 expsn(exps) TYPE=STRING(16) "Expense Categories"
END VARIABLE

Second, assign values to be used as labels for the elements of set exps. In this case, we will do this with equations.

expsn(1) = "RENT"
expsn(2) = "FOOD"
expsn(3) = "CAR SERVICE"
expsn(4) = "UTILITIES"
expsn(5) = "CAR INS"
expsn(6) = "PHONE"

Third, relate the variable expsn to the set exps using a DEFINE RELATION statement.

DEFINE RELATION
 COLUMN(mons,monsn)
END RELATION

A COLUMN relation between a set and a variable tells PROMULA to use the variable's values to label columns classified

by the set in displays of array variables.

After defining, initializing, and relating labels to the program sets, a display of any variable dimensioned by the sets is

much more meaningful. For example, the display of variable expns is shown in the dialog below as an example:

WRITE expns

 Monthly Expenses by Category ($)

 RENT FOOD CAR SERVICE UTILITIES CAR INS PHONE
JAN 0.00 0.00 0.00 0.00 0.00 0.00
FEB 0.00 0.00 0.00 0.00 0.00 0.00
MAR 0.00 0.00 0.00 0.00 0.00 0.00
APR 0.00 0.00 0.00 0.00 0.00 0.00
MAY 0.00 0.00 0.00 0.00 0.00 0.00
JUN 0.00 0.00 0.00 0.00 0.00 0.00
JUL 0.00 0.00 0.00 0.00 0.00 0.00
AUG 0.00 0.00 0.00 0.00 0.00 0.00
SEP 0.00 0.00 0.00 0.00 0.00 0.00
OCT 0.00 0.00 0.00 0.00 0.00 0.00
NOV 0.00 0.00 0.00 0.00 0.00 0.00

Promula Application Development System User's Manual

28

DEC 0.00 0.00 0.00 0.00 0.00 0.00

For more information about relations between sets and variables, refer to Chapter 3 of this manual, especially the sections

covering the PROMULA noun Relation and the READ set, DEFINE RELATION, and SELECT RELATION

statements.

2.2.2. Program Control
 KEY TOPICS:

 1. Procedures

 2. Linear Flow

 3. Conditional Branches

 4. Looping

One of the most important tasks facing an application programmer is setting up structures to control the sequence of events

that take place during program execution. The efficiency of a program and the accuracy of its results are highly dependent

on the correct implementation of these structures. Fortunately, only three types of control structures are needed to handle

the control requirements of any application program. These are Linear Flow structures, Conditional Branch structures,

and Looping structures. In addition, a fourth type of control structure, the Procedure is often used to help modularize the

activities of a program into subunits that work together.

2.2.2.1. Procedures

A large computer program is like a complex machine; it can have many parts. The most fundamental of these parts are the

program's statements. Each statement performs a specific predefined task. In addition to the statements that are available in

the PROMULA language, it is possible to create your own. In PROMULA, a programmer-defined statement is called a

Procedure. A procedure is a set of statements that are executed as a group when the procedure's name is used as a program

statement. This is referred to as "calling" or "invoking" the procedure.

Defining procedures gives programmers the ability to break the programming process into simpler steps. Each procedure

creates a functional program unit that can later be integrated with the other procedures to create the full program.

When PROMULA encounters a procedure name in a program, it executes the statements of the procedure. When execution

of a procedure finishes, processing continues with the statement following the procedure call. Procedures can call other

procedures including themselves.

For more information on procedures, see the DEFINE PROCEDURE statement in Chapter 3 of this manual.

2.2.2.2. Linear Flow

PROMULA applications use linear control as the primary means of directing their course of action. This means that

executable operations are performed in the order in which they are defined. Thus, execution of a program begins with the

first statement of the first procedure of the program and proceeds to follow the program instructions one-by-one toward the

last statement of the program. After execution of the last statement, the program ends. A schematic of linear program flow

is shown in the diagram below:

 Start (Step 1)

Promula Application Development System User's Manual

29

 Step 2

 Step 3

 Other Steps...

 End (Last Step)

Figure 2-10: Linear Program Flow

Any one of these steps may be a simple statement, a procedure call, or another control structure.

2.2.2.3. Conditional Branches

A linear flow of action through a program in which every statement from the first to the last is executed in sequence is often

inflexible and inefficient. Even worse, it may lead to errors if the data put into the program does not fit the linear logic

defined by the code. In order to efficiently manage complex problems and data, your programs will require flexibility. The

basic element of all complex control structures is the Conditional Branch. Conditional branches are program statements

that can redirect linear flow and create more flexible and responsive execution paths. A schematic of a conditional branch is

shown in the figure below:

Process

A

Process

B

Condition

TRUE (1)

FALSE (0)

Figure 2-11: A Simple Conditional Branch

Conditional branch statements are often referred to as "IF-THEN-ELSE" statements. For example, the diagram above

illustrates a simple conditional branch that can be read as "If the Condition is true, then do Process A; else (the Condition is

false), do Process B". Process A and/or Process B may also contain Conditional branches.

An IF-THEN-ELSE statement that might be used in the budget program would check the value of the taxes variable to

make sure it "makes sense." Recall that variable taxes is used by the budget program to make a simple adjustment on the

worker's earnings to reflect the fraction of pay lost to taxes. The program expects this value to be between 0.5 and one. In

PROMULA, the DO IF statement is used to create logical branches.

An example of the DO IF statement that could be used to check the value of taxes and write an error message if the value

does not fit the expectations of the program is shown below:

DO IF taxes GT 1

 WRITE ("The value of taxes should be less than one.")

Promula Application Development System User's Manual

30

ELSE taxes LE 0

 WRITE ("The value of taxes should be greater than or equal to zero.")

ELSE taxes GT 0.50

 WRITE ("The value of taxes should be less than 0.5)

END IF

For more information on Branching refer to the sections covering the DO IF statement and the nouns Boolean Expression

and Relational Expression in Chapter 3 of this manual.

2.2.2.4. Looping

Looping refers to the process of repeatedly performing a set of operations. The basic components of a loop are the body of

the loop, and the DO condition for the loop. The body of the loop is simply the set of instructions that are executed on each

pass through the loop. The DO condition for the loop is a true-false expression that is evaluated before each iteration of the

loop to determine if the instructions in the body of the loop should be performed. PROMULA supports several types of

looping control structures; these include the DO WHILE, DO UNTIL, DO file, and DO set statements, and recursion.

DO WHILE loops execute the instructions in the body of the loop while the DO condition is true.

DO UNTIL loops execute the instructions in the body of the loop until the DO condition is false.

DO file loops are used with text or random files. They execute the instructions in the body of the loop once for each record

of the file and exit when the end of file is reached.

The DO set loop is unique to PROMULA; it is a set-controlled looping structure that executes the instructions in the body

of the loop once for each element of the set's selection vector. A set's selection vector contains the currently active elements

of the set. Thus, the order and range of a DO set loop can be controlled by sorting and/or selecting the elements of the set.

DO set loops are an extremely powerful tool for manipulating PROMULA's set-based array variables.

Recursion is a looping control structure that does not use one of PROMULA's DO loop statements explicitly. It is used to

execute a procedure repeatedly until some "exit" condition occurs. Recall that a procedure is a group of statements that are

executed as a unit when the procedure's name is used as a statement. Recursion occurs when one of the statements in the

procedure is a call to the procedure itself. A procedure that calls itself is referred to as a recursive procedure.

A simple example of a recursion loop is a procedure that offers the user selections from a menu repeatedly until the user

selects the exit option.

An example is procedure recurs shown below:

DEFINE MENU pickmenu

 1 \Exit Procedure\

 2 \Action A\
 3 \Action B\
 4 \Action C\
END

DEFINE VARIABLE
 choice
END VARIABLE

DEFINE PROCEDURE recurs

Promula Application Development System User's Manual

31

SELECT pickmenu(choice)

DO IF PICK EQ 1 Here is the test of the DO condition.
 BREAK recurs
ELSE PICK EQ 2
 Statements of Action A
ELSE PICK EQ 3
 Statements of Action B
ELSE PICK EQ 4
 Statements of Action C
END IF

recurs Here, the procedure recurs calls itself.
END PROCEDURE recurs

Notice that the last statement in procedure recurs is a call to itself. The DO condition for the recursion loop becomes false

when the user selects option 1 from the menu. The recursion loop is broken when the BREAK procedure statement is

executed. All other menu selections will allow the procedure to be called recursively.

For more information on looping, see the DO WHILE, DO UNTIL, DO set, and DO file, statements in Chapter 3.

2.2.3. Data Manipulation
 KEY TOPICS:

 1. Reading in data

 2. Selecting the Elements of a Set

 3. Sorting the Elements of a Set

 4. Writing Equations

Data manipulation is another fundamental programming task that includes loading information into program variables and

manipulating them to create output information.

2.2.3.1. Reading in Data

Getting data into its variables is a basic requirement of all computer programs. One of the easiest ways to read a fixed

amount of information into a variable is to use PROMULA's READ variable statement. This statement is used to read free

format data from the source code of your program or from the keyboard into a variable. Free format means that the format

of the data values does not have to be specified, and the values may be in a variety of arrangements. For numeric data, the

values need only be separated by blanks or commas, or be on separate lines, and there must be enough values to fill all

active cells of the variable.

For example, the 12 values of the monthly bonus variable defined in Figure 2-8 could be loaded with the values 100, 200,

300, ..., 1200 using any of the following READ variable statements.

READ bonus\5

READ bonus

JAN 100 100 200 300 400 500 600 700
FEB 200
MAR 300 800 900 1000 1100 1200

APR 400
MAY 500 READ bonus
JUN 600 100 200 300
JUL 700 400 500 600
AUG 800 700 800 900 1000 1100 1200

SEP 900
OCT 1000 READ bonus
NOV 1100
DEC 1200

100 200 300 400 500 600 700 800 900 1000 1100 1200

Promula Application Development System User's Manual

32

The READ variable statement may also be used for scalars. For example, the worker's Hourly Wage Rate ($/hr.), variable

wager, and the fraction of Pay Lost to Taxes, variable taxes, could be read in with the following two statements:

READ wager
10.0

READ taxes
0.30

Or, both scalar variables could be read in with a single statement:

READ (wager, taxes)
10.0 0.30

Reading in a multidimensional array like variable expns is a little trickier. As mentioned in the section on defining variables,

PROMULA uses the order of sets in an array variable's definition to control how its data values are read in by a READ

variable statement.

The first set is assumed to index the rows of data values.

The second set is assumed to index the columns of data values.

The third set is assumed to index the two-dimensional blocks of data.

The fourth set is assumed to index the three-dimensional blocks of data, and so on.

For example, the array expns is defined with set mons as its first (row) dimension, and set exps as its second (column)

dimension. Therefore, array expns could be assigned values identical to those displayed in Figure 2-7 with the following

READ statement:

READ expns Expense Categories go across (the columns)
409 286.64 143.71 86.87 45 57.30 Months go down (the rows)
409 276.76 166.28 84.78 45 50.21
409 280.81 134.35 96.84 45 65.53
409 294.05 99.55 98.06 45 61.30
409 286.98 88.13 86.77 45 58.03
409 275.43 152.85 98.06 45 56.45
409 269.81 103.88 87.47 45 56.45
409 289.93 127.67 72.28 45 50.61
409 261.35 171.10 76.47 45 55.64
409 258.71 127.52 88.28 45 58.33
409 250.12 105.25 91.41 45 69.28
409 272.28 93.81 93.93 45 50.67

If the data values were rotated relative to the definition of array expns, sets could be included with the READ variable

statement to explicitly indicate the rows and columns of the input data. Again, the first set is assumed to index the rows of

data values, the second set is assumed to index the columns of data values; the third set is assumed to index the two-

dimensional blocks of data; the fourth set is assumed to index the three-dimensional blocks of data, and so on.

 READ expns(exps,mons)
 409 409 409 409 409 409 409 409 409 409 409 409
 286.64 276.76 280.81 294.05 286.98 275.43 269.81 289.93 261.35 258.71 250.12 272.28
 143.71 166.28 134.35 99.55 88.13 152.85 103.88 127.67 171.10 127.52 105.25 93.81
 86.87 84.78 96.84 98.06 86.77 98.06 87.47 72.28 76.47 88.28 91.41 93.93
 45 45 45 45 45 45 45 45 45 45 45 45
 57.30 50.21 65.53 61.30 58.03 56.45 56.45 50.61 55.64 58.33 69.28 50.67

Promula Application Development System User's Manual

33

There is no need for formats or loops to read in the values of an array variable. The definition of the variable contains all

the information needed to control the read so that the data values are put into the appropriate cells of the array.

The examples above are simplistic and are based on reading from the source code of your program or from the keyboard.

PROMULA can also read data from complicated fixed and variable length text and binary (random) files. These techniques

are discussed in Chapter 3 in the sections covering the READ variable, READ variables, and READ file statements.

2.2.3.2. Selecting Sets

A common programming requirement is the selection of a subset of your data. For example,

1. to select the values of an array indexed by particular set sequence numbers before using the array in calculations or

input/output operations,

2. to select only those values of a variable that meet a given criteria,

3. to put the values of an array into an order that is not directly possible by using PROMULA's SORT statement.

Whatever your needs, having access to sets as the indexes of multidimensional data gives you a powerful and flexible

means of selecting and sorting subsets of your data.

The SELECT set statement is used to select the elements of a set. This is also called changing a Set selection vector.

The simplest set selection uses a literal specification of set element numbers to specify the elements of the set that are to

remain active. For example, to select the fall and spring months, the following statement could be used:

SELECT mons(9-11,3-5)

The statement above tells PROMULA to change the range and order of set mons to the fall and spring months — September

to November and March to May. In other words, the set's selection vector now contains the following values: 9, 10, 11, 3,

4, and 5 in that order. This means that all actions involving set mons will be performed only on values indexed by these

elements of the set. For example, the statement WRITE expns would produce the following display:

 Monthly Expenses by Category ($)

 RENT FOOD CAR SERVICE UTILITIES CAR INS PHONE
SEP 409.00 261.35 171.10 76.47 45.00 55.64
OCT 409.00 258.71 127.52 88.28 45.00 58.33
NOV 409.00 250.12 105.25 91.41 45.00 69.28
MAR 409.00 280.81 134.35 96.84 45.00 65.53
APR 409.00 294.05 99.55 98.06 45.00 61.30
MAY 409.00 286.98 88.13 86.77 45.00 58.03

To restore a set to its default size and order, use the SELECT set* statement.

Variables may also be used to indicate the elements to be selected. For example, in order to select the months October

through December, and March, the following statements could be used:

DEFINE VARIABLE
 m1
 m2
 m3
END VARIABLE

Promula Application Development System User's Manual

34

m1=10
m2=12
m3=3

SELECT mons(m1-m2,m3)

You can reverse the order of a set by using a set selection that specifies a range from the last element to the first element.

SELECT mons(12-1)

If a variable is related to a set by a KEY relation, the variable values may be used to specify set selections. For example, the

statements

SELECT KEY(mons,monsn)
SELECT mons(JAN,FEB,MAY)

will select the months January, February, and May from the set of months. Here, mons is a string variable containing the

three-letter month name abbreviations (see Relating Sets and Variables).

It is also possible to select the elements of a set if the values of a variable dimensioned by the set meet a given criterion.

The SELECT set IF statement is used for these types of selections. For example, in order to select the elements of set mons

that index values of monthly income that are greater than 1500 dollars, the following expression could be used:

SELECT mons IF incom GT 1500

Here, incom is a numeric variable, the monthly income values.

For more information on selecting set elements, see the discussions of the PROMULA noun Set and the PROMULA

statements SELECT set, SELECT SET, SELECT ENTRY, SELECT set IF, and SELECT VARIABLE.

2.2.3.3. Sorting Sets

One of the most common data manipulation tasks is sorting. PROMULA provides a straight forward and flexible means of

sorting of multidimensional data. For example, in order to sort the months of the year (set mons) using the monthly income

values (variable incom) in ascending order, the following statement can be used:

SORT mons USING incom

The statement above tells PROMULA to sort set mons in ascending order using the values of variable incom. In order for

the SORT statement to work, the variable used as the key for the sort must be dimensioned by the set being sorted.

To sort the set in descending order based on income, use the keyword DESCENDING after the word SORT:

SORT DESCENDING mons USING incom

To restore a set to its default order, use the SELECT set* statement.

It is also possible to use multidimensional arrays as the key for a sort as well. For example, in order to sort the months of

the year using the monthly food expense values, the following statements can be used:

SELECT exps(2)
SORT mons USING expns

The first statement above selects the second column of array expns; this column of the array contains the monthly food

expense values. The second statement tells PROMULA to sort set mons using the values of variable expns. Since the second

column of the set is selected before the sort, the values in the second column of array expns are used to order the set mons.

Promula Application Development System User's Manual

35

For more information and examples of sorting information, see the discussion of the SORT statement in Chapter 3 of this

manual.

2.2.3.4. Writing Equations

Equations are PROMULA statements that can change the values of variables. Equations may involve numeric or string

constants, variables, arithmetic and user-defined functions, and arithmetic and relational operators. For example, the

variable expns could be initialized with the following six equations that use PROMULA's built-in RANDOM number

function:

Equation Description

expns(m,1) = 409 Rent is $409 per month
expns(m,2) = RANDOM(250,300) Food varies between $250 and $300 per month
expns(m,3) = RANDOM(85,175) Car Service varies between $85 and $175 per month
expns(m,4) = RANDOM(70,100) Utilities vary between 70 and 100 per month
expns(m,5) = 270/6 Car Insurance is $270 for 6 months
expns(m,6) = RANDOM(50,70) Phone varies between $50 and $70 per month

The equations above use the dummy subscript, m, to drive equations over the elements of set mons. This means the letter

m in the above equations causes each equation to be performed once for each active element of set mons. Recall that the

variable expns is defined as a two-dimensional array classified by month and expense category. The first dimension of the

variable is the "months" dimension; it is a set of 12 elements: the months January to December. The second dimension of

the array is the "expense category" dimension. It is a set of six elements, the expense categories: rent, food, car service,

utilities, car insurance, and phone.

The "column" of the array (expense category) to which each equation applies is indicated explicitly by the number

following the subscript m in the parentheses. The first column of array expns (Rent) is constant at $409/month. Expense

categories 2, 3, 4, and 6 are random values within different ranges; PROMULA's RANDOM function is used with upper

and lower limits to simulate random expenditures in these expense categories. The fifth column of array expns (Car

Insurance) is assigned to the result of the division of 270 by 6 or $45 per month.

Here is a second example. The monthly income values will be computed by the budget program using the following

equation:

incom = payhr * wager * (1-taxes) + bonus

The equation above uses implicit subscripting. This means that all 12 values of variable incom will be computed from the

single equation above without DO loops or dummy subscripts. PROMULA "knows" that it should perform the expression

for each month because the incom variable was dimensioned by set mons in its definition. Furthermore, the variables payhr

and bonus are also dimensioned by set month, and the correspondence between the month elements of these two vectors and

those of variable incom is maintained automatically by PROMULA when the equation is processed. Thus, the single

equation above is equivalent to the following 12 equations:

incom(1) = payhr(1) * wager * (1-taxes) + bonus(1)
incom(2) = payhr(2) * wager * (1-taxes) + bonus(2)
incom(3) = payhr(3) * wager * (1-taxes) + bonus(3)
incom(4) = payhr(4) * wager * (1-taxes) + bonus(4)
incom(5) = payhr(5) * wager * (1-taxes) + bonus(5)
incom(6) = payhr(6) * wager * (1-taxes) + bonus(6)
incom(7) = payhr(7) * wager * (1-taxes) + bonus(7)
incom(8) = payhr(8) * wager * (1-taxes) + bonus(8)
incom(9) = payhr(9) * wager * (1-taxes) + bonus(9)
incom(10) = payhr(10) * wager * (1-taxes) + bonus(10)
incom(11) = payhr(11) * wager * (1-taxes) + bonus(11)

Promula Application Development System User's Manual

36

incom(12) = payhr(12) * wager * (1-taxes) + bonus(12)

The income equation tells PROMULA that the monthly income is equal to the number of hours worked per month (payhr)

times the hourly wage (wager) adjusted for taxes plus the monthly bonus.

Another example of an equation that uses implicit subscripting is the calculation of the difference between the monthly

income and monthly expense values to give the monthly balance figures:

balns = incom - expnm

An important point to remember when writing equations is that a variable may appear on both sides of an equation. In such

equations, the value of the expression on the right hand side of the equals sign is evaluated then passed to the variable on

the left hand side of the equals sign. For example, if the worker plans to work about six hours out of each working day and

five days out of each week, the number of payable hours each month can be estimated by the following statements:

READ payhr
31 28 31 31 31 30 31 31 30 31 30 31
payhr = 6 * payhr * 5/7

The first statement above reads into payhr the total number of days in each month. The second statement converts the days

per month to hours worked per month and stores the results in variable payhr.

PROMULA equations also may use PROMULA's extensive collection of functional operators. One of the most useful of

these is the array summation function, SUM, which can be used to sum up the values of multidimensional arrays. For

example, to compute the monthly total expenditures, it is necessary to sum over the expense categories of variable expns

and save the results in a vector indexed by month, expnm.

expnm(m) = SUM(e)(expns(m,e))

The expression above uses two dummy subscripts to drive the month and expense category dimensions. The single equation

above is functionally equivalent to the following 12 equations:

expnm(1) =expns(1,1) +expns(1,2) +expns(1,3) +expns(1,4) +expns(1,5) +expns(1,6)
expnm(2) =expns(2,1) +expns(2,2) +expns(2,3) +expns(2,4) +expns(2,5) +expns(2,6)
expnm(3) =expns(3,1) +expns(3,2) +expns(3,3) +expns(3,4) +expns(3,5) +expns(3,6)
expnm(4) =expns(4,1) +expns(4,2) +expns(4,3) +expns(4,4) +expns(4,5) +expns(4,6)
expnm(5) =expns(5,1) +expns(5,2) +expns(5,3) +expns(5,4) +expns(5,5) +expns(5,6)
expnm(6) =expns(6,1) +expns(6,2) +expns(6,3) +expns(6,4) +expns(6,5) +expns(6,6)
expnm(7) =expns(7,1) +expns(7,2) +expns(7,3) +expns(7,4) +expns(7,5) +expns(7,6)
expnm(8) =expns(8,1) +expns(8,2) +expns(8,3) +expns(8,4) +expns(8,5) +expns(8,6)
expnm(9) =expns(9,1) +expns(9,2) +expns(9,3) +expns(9,4) +expns(9,5) +expns(9,6)
expnm(10)=expns(10,1)+expns(10,2)+expns(10,3)+expns(10,4)+expns(10,5)+expns(10,6)
expnm(11)=expns(11,1)+expns(11,2)+expns(11,3)+expns(11,4)+expns(11,5)+expns(11,6)
expnm(12)=expns(12,1)+expns(12,2)+expns(12,3)+expns(12,4)+expns(12,5)+expns(12,6)

The final example illustrates how the annual averages will be computed for the budget program's summary report:

Average Monthly Income : aincom = SUM(m)(incom(m)) / mons:N
Average Monthly Expense : aexpnm = SUM(m)(expnm(m)) / mons:N

Average Monthly Balance : abalns = SUM(m)(balns(m)) / mons:N

Recall that the arithmetic average of a set of values is the sum of the values divided by the number of values used in the

sum. The three equations above do just that; they sum up the monthly values and divide the sum by the number of months

used in the sum. The notation mons:N has a value equal to the number of elements in the selection vector for set mons

(which may be changed by a set selection statement).

Promula Application Development System User's Manual

37

It is also possible to define your own functions in PROMULA to use in equations. Defining functions in PROMULA is

done with the DEFINE FUNCTION, and DEFINE LOOKUP statements.

For more information on writing equations, see the discussion of the PROMULA nouns Equation and Expression and the

COMPUTE statement.

2.2.4. Report Generation
 KEY TOPICS:

 1. Writing Variables

 2. Saving Reports on Disk

 3. Plotting Variables

Report generation is a critical part of any application program. An application must be able to generate reports that are of

interest to someone or it is not worth writing. PROMULA provides several report generation statements that can manage

multidimensional data for you, as well as a flexible WRITE statement that can be used for complicated or fancy text report

generation. There is also a PLOT statement that can be used to generate a variety of graphic reports.

2.2.4.1. Writing Variables

The budget program computes the monthly expenses, income, and balance as well as the annual total and average expense,

income, and balance. These values can all be displayed in a single one page summary report.

There are several ways to generate such a report. The technique used in the budget program is to collect the values of the

three monthly variables in a two-dimensional (12 x 3) array. The rows of this array are classified by the months of the year,

the columns of the array are classified by the three output categories: Income, Expenses, and Balance. The statements

required to define this array are shown below:

DEFINE SET
 mons(12) "Months"
 colm(03) "Report table Columns"
END SET

DEFINE VARIABLE
 rtabl(mons,colm) TYPE=REAL(15,2) "Summary Table"
 monsn(mons) TYPE=STRING(4) "Month Names"
END VARIABLE

READ colm KEY(1,10,10)
INCOME
EXPENSES
BALANCE

READ monsn:4
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

SELECT KEY(mons,monsn)

The DEFINE SET and DEFINE VARIABLE statements above define a two-dimensional variable called rtabl, and a

variable for the month labels called monsn. A READ set statement is used to assign labels to the elements of set colm. A

READ variable statement is used to read in labels for the elements of set mons. Finally, a SELECT RELATION

statement relates the month labels to the set mons.

After computing the values of the output variables, they can be passed to the variable rtabl using the following equations.

rtabl(m,1) = incom(m)

Promula Application Development System User's Manual

38

rtabl(m,2) = expnm(m)
rtabl(m,3) = balns(m)

The three equations above initialize all 36 values of variable rtabl: the first column picks up the values of variable incom;

the second column picks up the values of variable expnm; and the third column picks up the values of variable balns.

The output report variable is now loaded and ready to be displayed. The final report is produced by the WRITE variable

statement below:

WRITE rtabl,
TOTAL(mons),
TITLE("Budget Summary"//,
aincom:L"="aincom/,
aexpnm:L"="aexpnm/,
abalns:L"="abalns)

The WRITE variable statement above includes the TITLE and TOTAL options.

The TOTAL option tells PROMULA to report the specified totals along with the variable's values. In this case, only the

totals over set mons are desired so the mons set is indicated in parentheses following the keyword, TOTAL.

The TITLE option tells PROMULA to replace the default title for the variable (i.e., the variable's descriptor) with the title

specification enclosed in the parentheses. In this case a five-line title is specified: the first line of the title contains the

words "Budget Summary"; the second line of the title is blank as indicated by the two slashes (//) — a slash character tells

PROMULA to go to the next line; the third, fourth, and fifth lines of the title contain the descriptors and values (separated

by equal signs) of the three annual average variables: aincom, aexpnm, abalns. The notation aincom:L is used to identify the

descriptor of the variable aincom in titles and other WRITE statements.

A typical budget program report (produced by the statement above) is displayed below:

 Budget Summary

 Average Monthly Income = 1,565.00
 Average Monthly Expense = 1,001.33
 Average Monthly Balance = 563.67

 INCOME EXPENSES BALANCE
 Total 18,780.00 12,016.02 6,763.98
 JAN 1,580.00 1,028.52 551.48
 FEB 1,490.00 1,032.03 457.97
 MAR 1,580.00 1,031.54 548.46
 APR 1,580.00 1,006.96 573.04
 MAY 1,580.00 973.91 606.09
 JUN 1,550.00 1,036.79 513.21
 JUL 1,580.00 971.61 608.39
 AUG 1,580.00 994.50 585.50
 SEP 1,550.00 1,018.56 531.44
 OCT 1,580.00 986.85 593.15
 NOV 1,550.00 970.06 579.94
 DEC 1,580.00 964.70 615.30

Figure 2-12: Typical report produced by the Budget Program

PROMULA automatically computes and displays the columns totals, and centers the title and the table of values on the

screen. The formatting of the table values (i.e., a width of 15 characters with two decimal digits) is also done automatically

according to the format type specified in the definition of variable rtabl.

Promula Application Development System User's Manual

39

It is possible to rotate the dimensions of the WRITE variable display by specifying a set order different from the one used

in the definition of rtabl. For example, the report table could be displayed with months as the columns and the report

categories as the rows by the following statement:

WRITE rtabl\10:10(mons,colm), TOTAL(mons), TITLE("Budget Summary"//,
aincom:L"="aincom/,
aexpnm:L"="aexpnm/,
abalns:L"="abalns)

This WRITE variable statement is almost exactly like the last one except that it includes a local format and set order

specification that will override the ones in the definition of variable rtabl. The format specification \10 means that the row

descriptors should have a width of 10 characters, and :10 means that each column should have a width of 10 characters. The

resulting display is shown below:

 Budget Summary

 Average Monthly Income = 1,565.00
 Average Monthly Expense = 1,001.33
 Average Monthly Balance = 563.67

 Total JAN FEB MAR APR MAY JUN
INCOME 18,780.00 1,580.00 1,490.00 1,580.00 1,580.00 1,580.00 1,550.00
EXPENSES 12,016.02 1,028.52 1,032.03 1,031.54 1,006.96 973.91 1,036.79
BALANCE 6,763.98 551.48 457.97 548.46 573.04 606.09 513.21

 JUL AUG SEP OCT NOV DEC
 INCOME 1,580.00 1,580.00 1,550.00 1,580.00 1,550.00 1,580.00
 EXPENSES 971.61 994.50 1,018.56 986.85 970.06 964.70
 BALANCE 608.39 585.50 531.44 593.15 579.94 615.30

For more information on writing reports, refer to Chapter 3 of this manual, especially the WRITE variable, WRITE

TABLE, WRITE text, and WRITE menu statements. See also the DO DESCRIBE, DO CORRELATE, and DO

REGRESS statements for information about PROMULA's Statistical Report Generator.

2.2.4.2. Saving a Report on Disk

There are two ways of saving textual information on disk. One is by writing fixed format to a disk file using the WRITE

file statement. The other is by codirecting screen output to a disk file using the SELECT OUTPUT statement.

Using the WRITE file statement has the advantage that what is sent to the output file is not simultaneously displayed on

the screen. The disadvantage is that the WRITE file statement cannot be used with PROMULA's automatic report

generation statements like WRITE variable, and more explicit instructions are required to format the output. For example,

in order to write the values of the expns array to a text file with the WRITE file statement, the following code would be

required:

DEFINE FILE
 tf TYPE=TEXT "A Text File"
END FILE

OPEN tf "expns.dat" STATUS=NEW
DO mons
 WRITE tf((exps)(expns(mons,expns))
END mons
WRITE tf(aincom/aincom/abalns)
CLEAR tf

Promula Application Development System User's Manual

40

The contents of file expns.dat after execution of the above code is displayed below.

 409.00 286.44 115.39 97.18 45.00 66.71
 409.00 269.90 160.10 81.95 45.00 55.94
 409.00 291.50 172.05 77.12 45.00 55.24
 409.00 269.86 111.38 95.15 45.00 67.92
 409.00 295.66 89.88 96.78 45.00 50.37
 409.00 295.24 146.84 94.36 45.00 50.98
 409.00 260.47 142.10 95.11 45.00 52.52
 409.00 255.69 141.09 91.46 45.00 56.32
 409.00 289.86 87.59 92.76 45.00 65.28
 409.00 287.99 135.75 73.38 45.00 64.77
 409.00 269.20 96.19 95.47 45.00 61.09
 409.00 273.29 145.37 72.39 45.00 63.61
 1565.00
 1565.00
 555.77

This file would be useful as an input file for another program, but it is not very interesting to look at.

If you want to take advantage of PROMULA's automatic report generation statements WRITE variable, WRITE menu,

and the Statistical Report Functions for the creation of report files, you may use the SELECT OUTPUT statement. This

statement can be used to create any text file that can be created with the WRITE file statement, and it can also be used to

send the results of any text display produced by PROMULA, including character graphics, multidimensional displays, and

data menu screens to a text file on disk. The disadvantage of this type of report generation is that output appears on the

screen as it is being sent to disk (although this problem can be gotten around with some sneaky windowing.)

For example, the statements required to reproduce the file expns.dat shown above are simply:

OPEN SELECT OUTPUT "expns.dat" PRINTER=ON

DO mons
 WRITE (exps)(expns(mons,expns))
END mons
WRITE (aincom/aincom/abalns)
SELECT PRINTER=OFF

The statements required to capture the typical budget program report in a file called budget.rpt are

OPEN SELECT OUTPUT "budget.rpt" PRINTER=ON

WRITE rtabl,
TOTAL(mons),
TITLE("Budget Summary"//,
 aincom:L"="aincom/,
 aexpnm:L"="aexpnm/,
 abalns:L"="abalns)

SELECT PRINTER=OFF

For more information about saving a report on disk, refer to Chapter 3 of this manual, especially the WRITE variable,

WRITE TABLE, WRITE menu, WRITE file and SELECT OUTPUT statements.

2.2.4.3. Plotting Variables

Promula Application Development System User's Manual

41

PROMULA's PLOT statement is used to generate graphs and charts. For example, the statement

PLOT BAR balns TITLE("Budget Program -- "balns:L/abalns:L" = "abalns)

will display a bar chart of the monthly balance variable, balns.

This sample PROMULA bar plot is displayed below.

The PLOT function has many options and is fully discussed in Chapter 3 of this manual.

2.2.5. Interface Design
 KEY TOPICS:

 1. Interactive and Noninteractive Programs

 2. Selections

 3. Editing Data

 4. Multi-page Displays and Windowing

2.2.5.1. Interactive and Noninteractive Programs

The interface of a program is the way in which it interacts with its users (i.e., how it receives and transmits information).

Application program interfaces can be classified as being interactive, noninteractive, or a mixture of the two.

Noninteractive applications are controlled by the instructions they receive from an external text file. These files usually

contain information that tells the program what to do and what data values to use as inputs. Noninteractive programs can be

inflexible because they can only be told to do things that they can read from their command files. They may also be hard to

use if they require the user to create complicated control files. On the other hand, noninteractive programs are sometimes

more convenient than interactive ones since they can run without a user present.

Interactive applications are typically controlled by commands entered with a keyboard or mouse. Such programs conduct a

dialog with the user by displaying menus, asking questions, presenting screens to the user and reacting to the user's

responses. Interactive programs can be more responsive and permissive than noninteractive ones, and they are often easier

for non-programmers to use effectively.

Noninteractive applications usually require only four of the five basic programming tasks: data definition, program control,

data manipulation, and report generation. The fifth basic programming task, interface design, is optional and is needed only

if you want to create interactive applications.

Interface design involves setting up the screens through which program users can control the program and implementing

the structures that control these screens.

There are two basic actions that an interactive program interface must support: displaying information on the screen and

getting information from the user. These two tasks are often intimately related since the program may display information

on the screen in order to instruct the user about what information is required and how it should be provided. Furthermore,

the course of action through the program depends on the user's responses. Getting information from the user usually takes

one of two forms: letting the user make selections, and letting the user enter data.

2.2.5.2. Selections

Most selections fall into one of the following categories:

1. selecting from a fixed number of options,

Promula Application Development System User's Manual

42

2. selecting a program variable for input or output purposes,

3. selecting one or more elements from a variable number of options.

2.2.5.2.1 Selecting from a Fixed Number of Options

Most interactive programs require the user to select from a fixed set of options. PROMULA provides several ways to do

this. The simplest is with the ASK statement. The ASK statement is an interactive conditional branch statement that asks

the user to enter a choice then branches according to the response. For example, a simple program interface may offer the

following options: edit inputs, calculate results, view outputs, and exit. The following procedure contains an ASK

statement that could be used to let the user select one of these options and branch accordingly:

DEFINE PROCEDURE askit
WRITE ("E>dit inputs; C>alculate; V>iew outputs; or press [End] to exit"/)
ASK "Please enter your selection." END
 BREAK askit
ELSE E
* statements for editing inputs
ELSE C
* statements for calculations
ELSE V
* statements for viewing outputs
END ASK
askit
END PROCEDURE askit

Another simple way of letting the user select from a fixed set of options is with a Pick Menu. The code below illustrates

how to implement a pick menu that offers the same options as procedure askit above.

DEFINE VARIABLE
 choice
END VARIABLE

DEFINE MENU pickmenu
 1 \Exit \
 2 \Edit inputs\
 3 \Calculate\
 4 \View outputs\
END

DEFINE PROCEDURE menuit
SELECT pickmenu(choice)
DO IF PICK EQ 1
 BREAK menuit
ELSE PICK EQ 2
* statements for editing inputs
ELSE PICK EQ 3
* statements for calculations
ELSE PICK EQ 4
* statements for viewing outputs
END IF
menuit
END PROCEDURE menuit

2.2.5.2.2 Selecting Variables

Often it is desirable to help the user select a program variable for input or output operations. PROMULA has two constructs

that may be used to implement this type of selection. The first is an extension of the ASK statement; the second is the

SELECT indirect statement.

Promula Application Development System User's Manual

43

For example, assume your program has three variables a, b, and c, and you want to help the user select one of the variables

for display on the screen. The simplest way to do this is with a SELECT indirect statement. The statements required to use

the SELECT indirect statement in this capacity are listed below:

DEFINE VARIABLE
 a "a"
 b "b"
 c "c"
 indir* "An Indirect Variable"
END VARIABLE

DEFINE PROCEDURE selvar
SELECT indir(a,b,c)
DO IF END
 BREAK selvar
END
WRITE indir
END PROCEDURE selvar

You may notice that the definition of variable indir looks different from other variables defined in this chapter — it has an

asterisk (*) at the end of its identifier. This tells PROMULA that indir is an indirect. Indirects can "point" to other variables.

Once they are pointing at a variable, statements using the indirect will use the variable it points to instead of the indirect

itself. The PROMULA statements that can use indirects in this manner are the WRITE variable, BROWSE variable,

EDIT variable, READ variable, SORT, SELECT set IF, and PLOT statements. Thus, one indirect can be used for the

general input/output needs of many program variables.

The statement SELECT indir(a,b,c) will clear the Main Screen (see Advanced Windowing) and list the identifiers and

descriptors of variables a, b, and c for selection. A prompt will appear at the bottom of the screen describing how to select a

variable by moving to the desired variable with the arrow keys and pressing the Enter key.

The second way to let the user select from a list of variables is to use the ASK statement with a VARIABLE = indirect

option. This method also assigns an indirect to the selected variable, but the Main Screen is not automatically cleared, and

the variables are not automatically listed for selection. The statements required to implement a variable selection routine

using the ASK statement are shown below:

DEFINE VARIABLE
 a "a"
 b "b"
 c "c"
 indir* "An Indirect Variable"
END VARIABLE

DEFINE PROCEDURE askvar
AUDIT VARIABLE(a,b,c)
ASK "Enter desired variable name or Press End to Exit" END
 BREAK askvar
ELSE VARIABLE=indir
 WRITE indir
END ASK
END PROCEDURE askvar

Procedure askvar above uses the AUDIT VARIABLE statement to list the identifiers and descriptors of variables a, b, and c

on the screen. The ASK statement supplies the prompt indicating how to select a variable, picks up the user's selection, and

assigns it to indir.

2.2.5.2.3 Selecting Set Elements

Promula Application Development System User's Manual

44

Frequently, it is useful to let the user make selections from program sets, and there are several PROMULA statements that

can be used to implement this type of selection. These include the SELECT ENTRY, SELECT SET, SELECT

VARIABLE, and ASK statements.

The SELECT ENTRY statement is the simplest of these and is used to help the user pick a single element of a PROMULA

set from an interactive selection list.

The SELECT SET statement is similar to SELECT ENTRY except it allows the user to pick several elements of a

PROMULA set from an interactive selection list.

The SELECT VARIABLE statement automatically prompts the user to make selections from all the sets dimensioning a

specified variable.

The ASK statement with the SET=set option can be used to allow the user to make selections from the specified set.

More information and examples of these statements are available in Chapter 3.

2.2.5.3. Editing Data

One of the most critical of all interface functions is editing data. PROMULA offers a general purpose data editor that

facilitates interactive data editing for PROMULA's multidimensional array variables. For example, the statement

EDIT expns

will display the array variable expns for interactive spread-sheet style data editing. The editing screen is displayed below.

 Monthly Expenses by Category ($)

 RENT FOOD CAR SERVICE UTILITIES CAR INS

PHONE JAN 409.00 286.64 143.71 86.87 45.00

57.30 FEB 409.00 276.76 166.28 84.78 45.00

50.21 MAR 409.00 280.81 134.35 96.84 45.00

65.53 APR 409.00 294.05 99.55 98.06 45.00

61.30 MAY 409.00 286.98 88.13 86.77 45.00

58.03 JUN 409.00 275.43 152.85 98.06 45.00

56.45 JUL 409.00 269.81 103.88 87.47 45.00

56.45 AUG 409.00 289.93 127.67 72.28 45.00

50.61 SEP 409.00 261.35 171.10 76.47 45.00

55.64 OCT 409.00 258.71 127.52 88.28 45.00

58.33 NOV 409.00 250.12 105.25 91.41 45.00

69.28 DEC 409.00 272.28 93.81 93.93 45.00

50.67

 End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Select Enter:

Edit

Note that, like the WRITE variable statement, the EDIT variable statement uses the information in the variable's

definition to control the appearance of the report.

Promula Application Development System User's Manual

45

In addition, your application can use data menus for data entry. Data menus make data entry easier and improve the

appearance of the application. PROMULA's DEFINE MENU statement lets you create data menus simply by typing them

into your source code. The EDIT menu statement is then used to help the user interactively edit information in the menu.

To help the user edit several variables at once, you may use the EDIT table statement.

2.2.5.4. Multi-Page Displays and Windowing

The typical computer terminal is only large enough to display 24 or 25 lines of 80 characters. This can make it difficult to

let the user view large arrays or reports on the screen. Fortunately, PROMULA has several statements which can make this

difficult task easier.

The BROWSE variable statement can be used to let the program user interactively view a multidimensional array variable.

This statement manages a display similar to the one generated by the EDIT variable statement except it does not let the

user change data values

If you want to let the user browse more than one variable on the screen at the same time, the BROWSE TABLE or

BROWSE menu statement can be used.

The BROWSE FILE statement can be used to let the program user view multi-page free form textual reports contained in

external files on disk. The RUN EDITOR command can be used to load a text file into the PROMULA Text Editor.

If you want to create dynamic, multi-color, multi-window displays, you may use PROMULA's DEFINE WINDOW and

OPEN WINDOW statements. To find out more about PROMULA's windowing statements see the discussions of Basic

and Advanced Windowing, and the PROMULA statements DEFINE WINDOW, OPEN WINDOW, and CLEAR

WINDOW.

2.2.6. Application Programming Summary

The discussion of application programming above is not intended to teach you how to program or to present the elements of

good programming style. These skills can only be developed through experience and practice.

From here, you should play with the source and executable versions of the budget program. These are included on the

PROMULA Sample Applications Disk in the files BUDGET.PRM and BUDGET.XEQ. You should also browse through the

contents of Chapter 3, the PROMULA language reference. Refer to Table 3-3 for a brief description of all the statements of

PROMULA. Once you have an idea of the statements available to you, try writing your own applications. Before you start

writing large scale applications, refer to Chapter 4 for a discussion of database management and program management

issues in PROMULA.

Promula Application Development System User's Manual

46

3. PROMULA LANGUAGE REFERENCE
The purpose of this chapter is to provide the detailed information you need to use the statements of PROMULA and write

PROMULA applications. It is your reference chapter for the structural elements of the PROMULA language — its nouns

and verbs — and it describes the syntax and use of PROMULA statements. The chapter is divided into two sections:

1. The PROMULA Nouns

This section defines the nouns, or objects, of PROMULA and gives some information about their use in PROMULA

programs.

2. The PROMULA Statements

This section discusses the purpose, syntax, and other information relevant to the PROMULA statements. Most of the

statements are illustrated by examples. The contents of each section are presented in alphabetical order.

3.1 The PROMULA Nouns

The nouns, or objects, of the PROMULA language are listed in Table 3-1. These are the structural elements of PROMULA

programs. The information of a PROMULA program is stored in these elements.

 Table 3-1: The Nouns, or Objects, of the PROMULA Language

Equation

An identity relationship between one variable and an expression of other variables and/or constants

involving arithmetic, relational, functional, and logical operators.

File A place on disk for storing information. PROMULA uses three types of files: data files for storing

variables, segment files for storing code segments, and dialog files for storing tutorials.

Function An intrinsic or user-defined operator which returns a single value depending on the values of its arguments.

The returned value is computed according to the functional relationships of the operator.

Menu A screen template designed to help its user either pick from a list of options or view and/or edit program

variables. There are two types of menus: pick menus and data menus.

Parameter A variable that allows the transfer of values between a program variable and a procedure.

Procedure An ordered set of statements that is compiled and executed as a unit.

Program An ordered set of statements.

Relation A relationship between a set and a variable. Its purpose is to assign descriptors to the set elements.

Segment A program segment that may be saved on disk for later execution. Segments are usually linked into

hierarchical tree structures to form large programs that would not otherwise fit in the working space.

Set An ordered set of elements. Sets are used to dimension the values of array variables. Sets are also used for

sorting and selecting ranges of array values.

Statement A complete instruction in a PROMULA program.

Promula Application Development System User's Manual

47

 Table 3-1: The Nouns, or Objects, of the PROMULA Language
System A system of n real equations with n unknowns whose solution is obtained by solving simultaneously for the

unknowns. The equations may be linear or nonlinear.

Table A tabular display or report showing the values of several variables.

Variable A storage structure for information. Variables are manipulated by the statements of a program and are related

to one another by the equations of a program.

Window A display area for program input and/or output. Basic Windowing supports two functional screens: the

Action Window (upper half of the screen) and the Comment Window (lower half of the screen). Advanced

Windowing supports a system of four functional screens: Main, Prompt, Comment, and Help. The

appearance, location, and behavior of each functional screen is set by defining and opening a specific window

for it.

3.1.1 Equation

Purpose:

Makes the value (or values) of a variable equal to the value (or values) of a numeric or character expression.

Syntax:

var[(subs)]=expression[(subs)]

Remarks:

var is a variable identifier.

subs is a list of set identifiers, set element codes or numbers, or dummy subscripts. These subscripts are

usually used with array variables to denote multiple equations that apply to the cells of the

multidimensional arrays.

expression is a numeric or character expression.

Examples:

1. Single-valued equations

Below, a, b and c are scalars because there are no sets used in their definitions. Each equation is only done once, and

only one value is assigned.

DEFINE VARIABLE
 a
 b
 c
END VARIABLE

a = b + c : a is equal to the sum of b and c
a = b*EXP(c): a is equal to b times the exponential of c
a = b LT c : a is equal to 1 if b is less than c; otherwise a is equal to 0

2. Multiple-valued equations using implicit subscripts

Promula Application Development System User's Manual

48

Below, A and B are both arrays containing six values.

DEFINE SET
 row(3)
 col(2)
END SET

DEFINE VARIABLE
 A(row,col)
 B(row,col)
END VARIABLE

The equation

A = 1

makes all six values of array A equal to 1. The subscripts row and col are implicit.

Similarly, the equation

A = B

makes all six values of array A equal to the corresponding values of array B. It does the same work as the following six

equations.

A(1,1) = B(1,1) A(1,2) = B(1,2)
A(2,1) = B(2,1) A(2,2) = B(2,2)
A(3,1) = B(3,1) A(3,2) = B(3,2)

3. Multiple-valued equations using dummy subscripts

The equation

A(r,c) = B(r,c)

makes all six values of the A array equal to the corresponding values of the B array. The subscripts r and c are dummy

subscripts that stand for the row and col sets.

4. A Character Equation

Given the following definitions and data:

DEFINE VARIABLE
 A TYPE=STRING(20)
 B TYPE=STRING(20)
 C TYPE=STRING(40)
END VARIABLE

READ A
The cow jumped ov
READ B
er the moon.

the equation

C = A+B

will put the concatenation of strings A and B into variable C.

Promula Application Development System User's Manual

49

WRITE C
The cow jumped over the moon.

5. A Mixed Character and Numeric Variable Equation

PROMULA is a "loose" typing language. This means that you may mix variables of different types in your

expressions; PROMULA will make the appropriate conversions for you. For example it is possible to write expressions

using variables of type STRING or DATE with variables of the numeric types: REAL, INTEGER, and MONEY. If

a numeric variable is on the left-hand side of an expression, any string type variables on the right-hand side of the

expression containing all numerals will be converted to their numeric values when the result is computed. Similarly, if

a string variable is on the left-hand side of an expression, the results of numeric expressions on the right-hand side are

computed then converted to their numeral string values before they are passed to the left hand side.

DEFINE SET
 pnt(4)
END SET

DEFINE VARIABLE
 str1(pnt) TYPE=STRING(20) "String Result"
 num1(pnt) TYPE=REAL(10,3) "1st Number"
 num2(pnt) TYPE=REAL(10,3) "2nd Number"
END VARIABLE

num1(i) = i*2
num2(i) = i*3
str1(i) = num1:-3:0(i) +" PLUS "+ num2:-3:0(i) +" = "+(num1(i)+num2(i))

Given the definitions and assignments made above, the statement

WRITE str1:-40

produces the output below.

 String Result

 PNT(1) 2 PLUS 3 = 5.000
 PNT(2) 4 PLUS 6 = 10.00
 PNT(3) 6 PLUS 9 = 15.00
 PNT(4) 8 PLUS 12 = 20.00

3.1.2 Expression -- Arithmetic
Definition:

A numeric expression involving at least one arithmetic operator. The operands of arithmetic expressions may be variables,

constants, functions, and other expressions.

Remarks:

The arithmetic operators in order of precedence are:

OPERATOR EXPRESSION PRECEDENCE MEANING

Promula Application Development System User's Manual

50

** A ** B 1 Raise A to the B power

* A * B 2 Multiply A times B

/ A / B 2 Divide A by B

– A – B 3 Subtract B from A

+ A + B 3 Add A to B

The above precedence may be altered by parentheses. In cases of equal precedence the order of evaluation is from left to

right. The SELECT HIERARCHY=ON statement causes operator precedence to be determined by the (left to right) order

of operators in the expression..

Arithmetic expressions may have other numeric expressions as operands.

3.1.3 Expression -- Boolean

Definition:

An expression involving variables, constants, functions, relational and logical operators, and other expressions. A Boolean

expression is either true or false. If true, it has the value 1; if false, it has the value 0.

Remarks:

The relational operators are:

OPERATOR EXPRESSION MEANING

LT A LT B A less than B
LE A LE B A less than or equal to B
EQ A EQ B A equal to B
NE A NE B A not equal to B
GE A GE B A greater than or equal

to B
GT A GT B A greater than B

The logical operators are:

OPERATOR EXPRESSION MEANING

NOT NOT A 1 if A is false; 0 otherwise
AND A AND B 1 if A and B are true; 0

otherwise
OR A OR B 1 if A or B is true; 0 if both

are false

A and B may be Boolean variables or Boolean expressions.

Promula Application Development System User's Manual

51

3.1.4 Expression -- Character

Definition:

A formula consisting of character variables and character operators.

Remarks:

A character expression has character operands. Some character expressions have character values; others have numeric

values.

PROMULA has the following character operators:

OPERATOR EXPRESSION MEANING

+ A+B Concatenate B to A

COMPARE COMPARE(A,B) Compare string A to string B; return
the value 1 if A equals B, otherwise
return the value 0.

Relational A GT B, A GE B,
A EQ B, A NE B,
A LE B, A LT B

Evaluates the relationship between A
and B, the result is 1 if the
relationship is true, otherwise the
result is 0.

Here, A and B are string or numeric expressions. If either A or B is a character expression, the result is the string

concatenation of B to A. If both A and B are numeric expressions, the result is the arithmetic sum of A and B.

Examples:

The dialog below illustrates some examples of character expressions and of mixed (numeric/character) expressions.

DEFINE VARIABLE
 A TYPE=STRING(20)
 B TYPE=STRING(20)
 C TYPE=STRING(40)
 V TYPE=REAL(8,0)
END VARIABLE

READ A
The cow jumped ov
READ B
er the moon.

C = A+B

WRITE C
The cow jumped over the moon.

V = 10

Promula Application Development System User's Manual

52

C = V*20 + V

WRITE C
210

The equation

V = COMPARE(A,B)

returns V = 0, since string A is not equal to string B.

It is also possible to use PROMULA's COMPARE function with a quoted string as illustrated in the example below.

DEFINE VARIABLE
 rsp TYPE=STRING(8)
END VARIABLE

DEFINE PROCEDURE comp
 WRITE "Do you agree? (Y/N)"
 READ rsp
 DO IF COMPARE(rsp,"Y")
 WRITE ("Why do you agree?")
 ELSE COMPARE(rsp,"N")
 WRITE ("Why don't you agree?")
 END IF
END PROCEDURE comp

NOTE: The COMPARE function is obsolete; it is retained for compatibility with older versions of PROMULA. It is now

possible to use the relational operators EQ, NE, LT, etc. to compare string expressions.

PROMULA is a "loose" typing language. This means that it is allowed to mix character variables and numeric variables in

the same expression. In fact, you may use character variables that contain numeric data as if they were numeric variables.

Although there are some limitations on the use of these mixed expressions, one useful application is the generation of

numbered lists.

DEFINE SET
 row(8)
END SET

DEFINE VARIABLE
 str(row) TYPE=STRING(10)
 val(row) TYPE=INTEGER(1)
END VARIABLE

val(i) = i

str="team # " + val

WRITE str

ROW(1) team # 1 ROW(2) team # 2
ROW(3) team # 3 ROW(4) team # 4
ROW(5) team # 5 ROW(6) team # 6
ROW(7) team # 7 ROW(8) team # 8

Promula Application Development System User's Manual

53

3.1.5 Expression -- Functional

Definition:

An expression involving at least one functional operator.

Remarks:

The built-in functional operators of PROMULA are of three types:

1. Arithmetic functions

2. File management functions

3. The INDIRECT function

Also, you may define your own functions by using the DEFINE PROCEDURE statement and parameters, or by using the

DEFINE FUNCTION statement.

3.1.5.1 Arithmetic Functions

The built-in arithmetic functional operators of PROMULA are listed in Table 3-2 below

Table 3-2: The Arithmetic Functional Operators of PROMULA

Functional Expression

MEANING

ABS(x) Absolute value of x

ARCCOS(x) Angle (in radians) whose cosine is x

ARCSIN(x) Angle (in radians) whose sine is x

ARCTAN(x) Angle (in radians) whose tangent is x

COMPARE(x,y) Compare string x to string y; returns the value 1 if x=y, otherwise it returns the value 0.

(Note: COMPARE is obsolete; use (x EQ y)

COS(x) Cosine of x (x in radians)

COTAN(x) Cotangent of x (x in radians)

EXP(x) Exponential of x (ex)

FLOOR(x) Integer nearest to x that does not exceed x

IFIX(x) Integer nearest to x that does not exceed the magnitude of x

LN(x) Natural logarithm of x, base e (e = 2.718282)

LOG(x) Common logarithm of x, base 10

MAX(i)(x(i)) Maximum element of vector x(i)

MIN(i)(x(i)) Minimum element of vector x(i)

PRODUCT(subs)(x(subs)) Multiply over the elements of x, where

 x is an array or array expression

subs is a list of subscripts classifying the elements of x.

RANDOM(arg) Random number. Result depends on number of parameters specified in arg.

ROUND(x) Integer nearest to x

SIN(x) Sine of x (x in radians)

SQRT(x) Square root of x

SUM(subs)(x(subs)) Sum over the elements of x, where

 x is an array or array expression

subs is a list of subscripts classifying the elements of x.

TAN(x) Tangent of x (x in radians)

Promula Application Development System User's Manual

54

XMAX(x,y,...) Maximum of x,y,...

 Minimum of x,y,...

Examples:

1. The ROUND, FLOOR, and IFIX functions are illustrated in the example below. These three functions are similar in

that they all return integers, but they have subtle differences.

FLOOR(x) Returns the integer nearest to x that does not exceed x.

IFIX(x) Returns the integer nearest to x that does not exceed the magnitude of x. In other words, IFIX(x)

truncates the decimal part of x.

ROUND(x) Returns the integer nearest to x.

DEFINE VARIABLE
 x
 a
 b
 c
END VARIABLE

DEFINE PROCEDURE calc
a = FLOOR(x)
b = ROUND(x)
c = IFIX(x)
WRITE (x:5:2 a:12:2 b:12:2 c:12:2/)

END PROCEDURE calc

DEFINE PROCEDURE test
WRITE "x FLOOR(x) ROUND(x) IFIX(x)"
WRITE "--"
x = -2.25
calc
x = -2.50
calc
x = -2.75
calc
x = 2.25
calc
x = 2.50
calc
x = 2.75
calc

END PROCEDURE test

The output of procedure test is displayed below.

x FLOOR(x) ROUND(x) IFIX(x)
--
-2.25 -3.00 -2.00 -2.00

-2.50 -3.00 -3.00 -2.00

-2.75 -3.00 -3.00 -2.00

 2.25 2.00 2.00 2.00

Promula Application Development System User's Manual

55

 2.50 2.00 3.00 2.00

 2.75 2.00 3.00 2.00

2. Using the SUM Operator

The SUM operator is used to sum the values of multidimensional expressions.

DEFINE SET
 row(3)
 col(2)
 page(2)
END SET

DEFINE VARIABLE
 AAA(row,col,page) "A 3-dimensional Array" VALUE = 1
 AA(row,col) "A 2-dimensional Array"
 A(row) "A vector"
 S "Sum of AAA"
END VARIABLE
*
* For each row and col, sum AAA over page and place the result in AA.
*
 AA(r,c) = SUM(p) (AAA(r,c,p))
*
* For each row, sum AAA over col and page and place the result in A.
*
 A(r) = SUM(c,p) (AAA(r,c,p))
*
* Sum AAA over row, col and page and place the result in S.
*
 S = SUM(r,c,p)(AAA(r,c,p))

The results of the definitions and expressions above are illustrated in the dialog below.

WRITE AA

A 2-dimensional Array

COL(1) COL(2)

ROW(1) 2 2
ROW(2) 2 2
ROW(3) 2 2

WRITE A

A Vector

ROW(1) 4
ROW(2) 4
ROW(3) 4

WRITE S
Sum of AAA 12

3. Using the MIN and MAX Functions

Promula Application Development System User's Manual

56

The MIN and MAX operators may be used to find the minimum and maximum values of multidimensional

expressions respectively. This is demonstrated in the dialog below.

READ A
1 2 3 4 5 6 7 4 3 2

S = MIN(r)(A(r))
WRITE(/"The minimum value in vector A is ",S/)

The minimum value in vector A is 1

S = MAX(r)(A(r))
WRITE(/"The maximum value in vector A is ",S/)

The maximum value in vector A is 7

4. Writing Your Own Functions

DEFINE PROCEDURE mod
DEFINE PARAMETER
 a
 b
 c
END PARAMETER
c = a / b
c = (c - IFIX(c))*b
END PROCEDURE mod

The procedure mod defined above computes the value of the first parameter modulus the second parameter, and returns

the result in the third parameter. A sample dialog with procedure mod is shown below.

DEFINE VARIABLE
 avar
 bvar
 cvar
END VARIABLE

avar=27
bvar=11
MOD(avar,bvar,cvar)
WRITE(/avar:0:2" MOD "bvar:0:2" = "cvar/)

27.00 MOD 11.00 = 5

avar=47
bvar=13
MOD(avar,bvar,cvar)
WRITE(/avar:0:2" MOD "bvar:0:2" = "cvar/)

47.00 MOD 13.00 = 8

avar=35
bvar=3
MOD(avar,bvar,cvar)
WRITE(/avar:0:2" MOD "bvar:0:2" = "cvar/)

Promula Application Development System User's Manual

57

35.00 MOD 3.00 = 2

5. Using the RANDOM Function.

 The RANDOM function can take zero to three arguments.

NUMBER OF

ARGUMENTS

EXPRESSION

VALUE RETURNED

0

x=RANDOM

a random number between 0 and 1 using the

current seed.

1 x=RANDOM(p1) a random number between 0 and 1 using p1 as

the seed.

2 x=RANDOM(p1,p2) a random number between p1 and p2 using the

current seed.

3 x=RANDOM(p1,p2,p3) a random number between p1 and p2 using p3 as

the seed.

The parameters (p1,p2,p3) may be numeric constants or variables. The seed is an internal PROMULA variable used by

the RANDOM function. The first time the random function is executed, the seed is zero.The RANDOM function

always returns the same value for a given seed and changes the internal seed each time it is executed. Several examples

are shown in the dialog below.

 DEFINE VARIABLE
 x "X=" TYPE=REAL(10,5)
 p1 VALUE=1000
 p2 VALUE=2000
 p3 VALUE=3000
 END VARIABLE

 x=RANDOM
 WRITE x
 X= 0.73275

 x=RANDOM
 WRITE x
 X= 0.53517

 x=RANDOM(p1) Using the same seed, p1, gives the same result every time
 WRITE x
 X= 0.71217

 x=RANDOM(p1)
 WRITE x
 X= 0.71217

 x=RANDOM(p1,p2) With two parameters, RANDOM returns a random number
 WRITE x between p1 and p2 using the internal seed.
 X= 1,403.12500

 x=RANDOM(p1,p2)

Promula Application Development System User's Manual

58

 WRITE x
 X= 1,009.17900

 x=RANDOM(p1,p2,p3) With three parameters, RANDOM returns a random
 WRITE x number between p1 and p2 using p3 as the seed.
 X= 1,671.02100

 x=RANDOM(p1,p2,p3)
 WRITE x
 X= 1,671.02100

6. Procedure functs below shows how a variety of PROMULA's arithmetic functions behave.

DEFINE VARIABLE
 xvar "xvar = "
 avar "avar = "
 bvar "bvar = "
 cvar "cvar = "
 drg "Factor Converting Degrees to Radians"
END
drg=3.1415 / 180

DEFINE PROCEDURE functs
 cvar = 6
 avar = EXP(cvar)
 WRITE("The Exponential of"cvar\30:0:2,46" = "avar:0:4)
 cvar = LN(avar)
 WRITE("The Natural Logarithm of"avar\30:0:4,46" = "cvar:0:4)
 cvar = 30
 avar = SIN(cvar*drg)
 WRITE("The Sine Function of"cvar\30:0:2" degrees",46" = "avar:0:4)
 cvar = ARCSIN(avar) / drg
 WRITE("The ArcSine Function of"avar\30:0:2,46" = "cvar:0:2" degrees")
 avar = COS(cvar*drg)
 WRITE("The Cosine Function of"cvar\30:0:2," degrees"46" = "avar:0:4)
 cvar = ARCCOS(avar) / drg
 WRITE("The ArcCosine Function of"avar\30:0:4,46" = "cvar:0:2" degrees")
 cvar = 45
 avar = TAN(cvar*drg)
 WRITE("The Tangent Function of"cvar\30:0:2," degrees"46" = "avar:0:4)
 cvar = ARCTAN(avar) / drg
 WRITE("The ArcTangent Function of"avar\30:0:4,46" = "cvar:0:2" degrees")
 cvar = 2
 avar = SQRT(cvar)
 WRITE("The Square Root of"cvar\30:0:2,46" = "avar:0:4)
 avar = cvar**0.5
 WRITE("The 1/2 Power of"cvar\30:0:2,46" = "avar:0:4)
 bvar = 3
 avar = XMIN(bvar,cvar)
 WRITE("The Minimum of"bvar\30:0:1" and "cvar:0:1,46" = "avar:0:2)
 avar = XMAX(bvar,cvar)
 WRITE("The Maximum of"bvar\30:0:1" and "cvar:0:1,46" = "avar:0:2)
END PROCEDURE functs

The output of procedure functs is displayed below.

The Exponential of 6.00 = 403.4288
The Natural Logarithm of 403.4288 = 6.0000

Promula Application Development System User's Manual

59

The Sine Function of 30.00 degrees = 0.5000
The ArcSine Function of 0.50 = 30.00 degrees
The Cosine Function of 30.00 degrees = 0.8660
The ArcCosine Function of 0.8660 = 30.00 degrees
The Tangent Function of 45.00 degrees = 1.0000
The ArcTangent Function of 1.0000 = 45.00 degrees
The Square Root of 2.00 = 1.4142
The 1/2 Power of 2.00 = 1.4142
The Minimum of 3.0 and 2.0 = 2.00
The Maximum of 3.0 and 2.0 = 3.00

3.1.5.2 File Management Functions

PROMULA has six functional operators that can help you manage files.

FILEDELETE takes a file specification in quotes or a string variable containing a file specification as its argument and

deletes the file and returns 1 if the file was found or 0 if the file was not found in the current directory.

FILEEXIST takes a file specification in quotes or a string variable containing a file specification as its argument and

returns 1 if the file was found or 0 if the file was not found in the current directory.

FILEEXT takes a file specification in quotes or a string variable containing a file specification as its argument and

returns the file extension.

FILENAME takes a file specification in quotes or a string variable containing a file specification as its argument and

returns the file name.

FILEPATH takes a file specification in quotes or a string variable containing a file specification as its argument and

returns the file path.

FILESIZE takes the identifier of a random file as its argument and returns the number of records in the file.

GETDIR takes a file specification in quotes or a string variable containing a file specification (wild card characters

work here) as its argument and generates a selection list in the main screen if any files are found. The

user's selection is stored in the string variable that is assigned to the function. This value can be

systematically disassembled into its components by the FILEEXT, FILENAME, and FILEPATH

functions.

Example:

The FILEEXIST, FILEDELETE, and FILESIZE functions are illustrated by the examples below:

* Create and open two array files and one random file.
DEFINE FILE
 file1 TYPE=ARRAY
 file2 TYPE=ARRAY
 file3 TYPE=RANDOM
END FILE
OPEN file1 "file1.dba" STATUS = NEW
OPEN file2 "file2.dba" STATUS = NEW
OPEN file3 "file3.ran" STATUS = NEW
DEFINE VARIABLE
 fexist "File Exist Status = "
 fdelete "File Delete Status = "

Promula Application Development System User's Manual

60

 records "Number of records in a random file = "
 fname TYPE=STRING(20) "File Name"
END VARIABLE

Check whether or not a file exists — The FILEEXIST Function

fname = "file1.dba"
fexist = FILEEXIST(fname)
WRITE fexist
File Exist Status = 1

fexist = FILEEXIST("file1.xxx")
WRITE fexist
File Exist Status = 0

Delete a file — The FILEDELETE Function

fdelete = FILEDELETE(fname)
WRITE fdelete

File Delete Status = 1

fdelete = FILEDELETE("file2.xxx")
WRITE fdelete

File Delete Status = 0

Size of a random file — The FILESIZE Function. file3 is empty so it has a size of zero

 records = FILESIZE(file3)
 WRITE records

 Number of records in a random file = 0

The GETDIR, FILEEXT, FILENAME and FILEPATH functions are illustrated by procedure filefunc in the example

below:

 DEFINE VARIABLE
 srch TYPE=STRING(25) "Search Path = "
 fspec TYPE=STRING(25) "Selected File Specification = "
 fpath TYPE=STRING(25) "Selected File Path = "
 fname TYPE=STRING(9) "Selected File Name = "
 fextn TYPE=STRING(4) "Selected File Extension = "
 END VARIABLE

 DEFINE PROCEDURE filefunc
 srch = "*.txt"
 fspec = GETDIR(srch)
 DO IF NULL
 WRITE("NO FILES MATCH") CLEAR(-1)
 filefunc
 END
 DO IF END

Promula Application Development System User's Manual

61

 WRITE("NO FILE SELECTED") CLEAR(-1)
 BREAK filefunc
 END
 fpath = FILEPATH(fspec)
 fname = FILENAME(fspec)
 fextn = FILEEXT(fspec)
 WRITE srch:-25
 WRITE fspec:-25
 WRITE fpath:-25
 WRITE fname:-10
 WRITE fextn:-4
 WRITE CLEAR(-1)
 filefunc
 END PROCEDURE filefunc

The GETDIR function searches the specified directory for files that match the search mask. If any files are found, the

Main Screen is cleared and the files are displayed for selection. The user can browse up and down this list then press the

enter key to select a file.

You can use the DO IF NULL statement to test if any matches for the GETDIR search were found, and you can use the

DO IF END statement to test if the user pressed the End key instead of pressing Enter to make a file selection.

Assuming the user selects NEWSTAT.TXT from the list, the filename functions will break down the selected file specification

into its component parts and return the results to string variables on the left-hand side of the equations. The WRITE

statements in procedure filefunc display the following results.

Search Path = *.txt
Selected File Specification = C:\PRMDOC\NEWSTAT.TXT
Selected File Path = C:\PRMDOC
Selected File Name = NEWSTAT
Selected File Extension = TXT

3.1.5.3 The INDIRECT Function

PROMULA allows you to assign place-holder variables to other variables using the ASK statement and the SELECT

indirect statement. These place-holder variables are called indirects. Indirects are defined as scalar variables that have an

asterisk (*) following their identifier. The INDIRECT function is used to determine if an indirect is assigned to a variable.

It is a useful accessory to both the ASK statement and the SELECT indirect statement. The syntax and use of this function

are described below:

Syntax:

INDIRECT(indir[,varlist])

Remarks:

indir is the identifier of an indirect variable.

varlist is a list of variable identifiers.

The INDIRECT function returns a one if indir is assigned to a variable in varlist; otherwise it returns a zero.

Example:

Promula Application Development System User's Manual

62

Here is an example of using the INDIRECT function.

DEFINE VARIABLE
 a "A value =" TYPE=REAL(10,4) VALUE=1
 b "B value =" TYPE=REAL(10,4) VALUE=2
 c "C value =" TYPE=REAL(10,4) VALUE=3
 indir*
END VARIABLE

DEFINE PROCEDURE selvar
SELECT indir
DO IF END
 BREAK selvar
END
DO IF INDIRECT(indir,a)
 WRITE ("You have selected variable A"/)
ELSE INDIRECT(indir,b,c)
 WRITE ("You have selected variable B or variable C"/)
END IF INDIRECT
WRITE indir
WRITE (indir:L)
WRITE (/"Press any key to continue") CLEAR(-1)
selvar
END PROCEDURE selvar

Execution of procedure selvar and selection of variable b produce the following results:

 Ident Description

 A A value =

 B B value =

 C C value =

 End: Exit Arrows PgUp PgDn Home: Move Enter: Select

You have selected variable B or variable C

B value = 2.0000
B value =

Promula Application Development System User's Manual

63

Press any key to continue

3.1.6 Expression -- Logical

Definition:

A numeric expression involving at least one logical operator. A logical operator operates on true-false expressions to

produce the value 1 if the resultant expression is true, or the value 0, if the resultant expression is false.

The logical operators, in order of precedence, are:

OPERATOR EXPRESSION MEANING

NOT

NOT A

1 if A is false; 0 otherwise

AND A AND B 1 if A and B are true; 0 otherwise

OR A OR B 1 if A or B is true; 0 if both are false

A and B are evaluated as true-false expressions.

3.1.7 Expression -- Numeric

Definition:

A formula for computing a numeric value or values. It consists of a sequence of operands and operators. The operands may

be variables, constants, and other expressions. The operators specify the operation to be performed on the operands.

Remarks:

In order of precedence, the operators are shown in Table 3-3.

Operations at the same level of precedence in the list are performed in left to right order. To alter the order in which

operations are performed, use parentheses. Operations within parentheses are performed first. Inside parentheses, the above

order of operations is maintained. To force left-to-right precedence for all operators, execute a SELECT

HIERARCHY=OFF statement.

Table 3-3: The Precedence of Operators in PROMULA

OPERATOR

EXPRESSION

PRECEDENCE

MEANING

Functional

f() f(x) 1 Evaluate the function f(x)

Arithmetic

Promula Application Development System User's Manual

64

** A**B 2 Raise A to the B power

* A*B 3 Multiply A times B

/ A/B 3 Divide A by B

− A-B 4 Subtract B from A

+ A+B 4 Add A to B

− −A 5 Take the negative of A

Relational

LT A LT B 6 A less than B

LE A LE B 6 A less than or equal to B

NE A NE B 6 A not equal to B

EQ A EQ B 6 A equal to B

GE A GE B 6 A greater than or equal to B

GT A GT B 6 A greater than B

Logical

NOT NOT A 7 Not A

AND A AND B 8 A and B

OR A OR B 9 A or B

3.1.8 Expression -- Relational

Definition:

A numeric expression involving at least one relational operator. A relational expression compares two operands and is

either true, if the result of the comparison is true, or false, if the result of the comparison is false. It has either the value 1, if

true, or the value 0, if false.

Remarks:

The relational operators are:

OPERATOR

EXPRESSION

MEANING

LT A LT B A less than B
LE A LE B A less than or equal to

B
EQ A EQ B A equal to B
NE A NE B A not equal to B
GE A GE B A greater than or equal

to B
GT A GT B A greater than B

Examples:

Promula Application Development System User's Manual

65

1. The expression 5 LT 7 has the value 1 (TRUE); the expression 5 GT 7 has the value 0 (FALSE).

2. Given the following definitions:

DEFINE VARIABLE
 A(10)
 B(10)
END VARIABLE

A(i) = i

 the equation

B = A LT 5

produces the following results:

 A A LT 5 B=A LT 5

 1 True 1
 2 True 1
 3 True 1
 4 True 1
 5 False 0
 6 False 0
 7 False 0
 8 False 0
 9 False 0
 10 False 0

3.1.9 File

Definition:

A place on disk that stores information.

Remarks:

Files allow you to extend the storage available to your programs beyond the central memory of the computer. Files also

allow you to save information on disk for use at a later time. In addition, files are one means by which you may transfer

data to and from other programs or computers.

Your computer has two kinds of memory:

1. Primary memory (also known as system memory, central memory, RAM (Random Access Memory), on-line memory,

core, or working space).

2. Secondary memory (also known as disk memory, off-line memory, peripheral memory, or mass storage).

Since the access time for primary memory is faster than disk memory, primary memory is more expensive than disk

memory and, thus, it is available in relatively small quantities. At the time of this printing, a system memory of one

Megabyte (enough to store about one million characters) is average for a typical personal computer. Disk memory, on the

other hand, is relatively inexpensive and comes in the form of removable diskettes or fixed disks, which can hold many

Promula Application Development System User's Manual

66

megabytes of data; the smallest disk drives can hold ten Megabytes of data; the largest can hold several thousand

Megabytes.

The extension of your programs to disk memory is inevitable, and for large-scale programing applications necessary. The

reasons for this are:

1. Programs written and compiled now need to be saved for use later.

2. Large-scale programs are usually data intensive, often manipulating millions of data values during a single execution

cycle. It is usually impossible to store all of these values within the central memory of the machine, so off-line disk

storage is needed to extend the data storage area required by the execution of the program.

3. PROMULA data files need to be used by other software systems or programs written in other languages.

4. PROMULA programs need to use data created by other software or programs written in other languages.

PROMULA has a database manager and a program segment manager to help you manage your program if it becomes so

large that it does not fit in your working space.

Large program management is achieved by using files. PROMULA files can be classified as falling into one of the three

functional types:

1. Data files for storing data in text or binary form.

2. Segment files for storing the executable code and data of PROMULA applications.

3. Dialog files for storing on-line help libraries.

The above three types of files, used alone or in combination, give you the flexibility and power to develop and manage

large-scale applications.

3.1.9.1 Data Files

Data files are used for the storage and retrieval of program data or variables; thus, they extend the data storage available to

a program.

Data files are of four types:

1. Text files of sequential-access records

2. Random files of direct-access records

3. Inverted files that index the records of random files

4. Array files of value-addressable multidimensional variables.

3.1.9.1.1 Text Files

Text files are files that contain text and may be created and/or changed by a text editor. Text consists of ASCII codes; thus,

text files are also known as "ASCII files".

Text files are sequential-access files of variable-length text records. Each record consists of data items that are laid out in

lines of variable length (up to a maximum of 255 characters).

Promula Application Development System User's Manual

67

Sequential access means that in order to access the (N+1)th record in the file you must first access the (N)th record.

The items in a text record may be laid out by a person using a text editor, or by a computer program.

The DEFINE FILE statement defines a text file.

The OPEN file statement opens a text file for use.

The READ file statement reads data from a text file.

The WRITE file statement writes data to a text file.

The CLEAR file statement physically closes a text file, saving its current contents.

The DO file statement allows you to access all records of a text file in sequential order (from Record 1 to Record N, where

N is the last record of the file).

3.1.9.1.2 Random Files

Random files are random-access files of fixed-length binary records. Each record consists of a fixed number of variables.

The variables of a random file may be scalar items that each fill a single field and/or multidimensional arrays that fill many

fields. Random files may be used to build "relational databases" (i.e., with a tabular structure) in PROMULA.

Random-access means that you may access any record in the file arbitrarily without having to access all records before it in

the file. In this respect, they are more efficient than text files.

A record number is associated with each record in a random file. This number varies from 1 to N, where N is the total

number of records in the file. It is via the record number that you can access any record of the file in random-access

fashion.

The DEFINE FILE statement defines a random file.

The DEFINE VARIABLE statement defines the record structure, i.e., the variables, of a random file.

The OPEN file statement opens a random file for use.

The READ file statement reads one complete record of data from a random file.

The WRITE file statement writes one complete record of data to a random file.

The CLEAR file statement physically closes a random file saving its current contents.

The SELECT file statement allows you to access at random any record in the file by specifying the desired record number.

It is this feature that distinguishes random files from text files.

The DO file statement allows you to access all records of a random file in sequential order (from Record 1 to Record N,

where N is the last record of the file).

PROMULA random files may be used directly by programs written in languages such as FORTRAN and C. For example,

the FORTRAN READ statement can read PROMULA random files, provided you specify three parameters: the file name

(or number), the record number, and the record length (in bytes). The length of a record is simply the number of values in

the variables of the record multiplied by 4 (note that each character in a STRING type variable is considered as a value, so

that a variable with TYPE=STRING(10) has a length of 40 bytes).

Promula Application Development System User's Manual

68

3.1.9.1.3 Inverted Files

Inverted files offer a means to make rapid selections from a random file based on the values of variables in the records of

the random file.

Inverted files are used only by PROMULA, and are closely related to random files.

The DEFINE FILE statement defines an inverted file.

The OPEN file statement opens an inverted file for use.

The READ file statement reads data from an inverted file.

The WRITE file statement writes data to an inverted file.

The SELECT file statement makes selections from an inverted file.

The CLEAR file statement physically closes an inverted file, saving its current contents.

The DO file statement sequentially accesses the selected records of an inverted file.

The definition and use of Inverted files is illustrated in the examples given in the SELECT file statement.

3.1.9.1.4 Array Files

Array files are value-addressable, random-access files that contain indexed, multidimensional arrays of data. Though stored

on disk, the variables of array files are defined via the DEFINE VARIABLE statement in the same way as program

variables that are stored in your working space. Obviously disk variables can store many more values than standard

program variables.

Though unique to PROMULA, array files may be converted to text data (ASCII files) for transfer to other programs or

other computers, using the COPY file and WRITE statements.

Moreover, the values of array files can also be used directly by programs written in other languages, such as C or

FORTRAN.

The method of access for array files is direct — any array or any connected subset of an array may be accessed at random.

Array files are value-addressable; if desired, you may access information by single cell (or value).

The DEFINE FILE statement defines an array file.

The DEFINE VARIABLE statement defines the array structure, i.e., the variables, of an array file.

The OPEN file statement opens an array file for use.

The READ DISK statement reads data from an array file.

The WRITE DISK statement writes data to an array file.

The CLEAR file statement physically closes an array file, saving its current contents.

The COPY file statement allows you to display the contents of an array file or to copy an array file into another array file

or into a text file for transfer to other programs.

The AUDIT file statement allows you to list the contents of an array file.

Promula Application Development System User's Manual

69

A virtual access method is also available via the DISK option of the DEFINE VARIABLE statement. This allows you to

use the variables of array files without using explicit READ DISK and WRITE DISK statements. See Chapter 4 for

examples of this.

3.1.9.2 Segment Files

The code of any PROMULA program may be divided into a hierarchy. This is particularly useful when the program is

large, which happens when either the program code, the program data, or both, become larger than your working space.

Segment files are used for the storage and retrieval of program segments. They are needed primarily so that previously

written program segments can be saved and loaded for later use.

Segment files contain not only the executable code of a program, but also the values associated with the variables of the

program. By breaking a program into segments, you partition both the code space and the data (value) space for the

variables in the code, thus extending both.

The OPEN SEGMENT statement opens a segment file on disk.

The DEFINE PROGRAM and DEFINE SEGMENT statements mark the beginning of a program segment.

The READ SEGMENT statement reads the information in a segment file from disk.

The END PROGRAM and END SEGMENT statements write a segment file to disk.

The READ VALUE and WRITE VALUE statements allow you to retrieve and update the variable values in a program

segment without explicitly accessing the variables themselves.

3.1.9.3 Dialog Files

Dialog files are on-line help files that can be accessed in a menu-driven or random manner. A dialog file is defined as a

collection of topics. Each dialog topic definition consists of:

1. A short title (up to 25 characters)

2. The topic text (which can have as many characters as you wish)

Upon execution, a dialog file will display its contents to the user in a menu-driven, conversational format — hence its

name.

Dialog files provide a powerful method of generating on-line, conversational help systems for your applications. They

provide a menu-driven framework for tutorials; all you need to do is type in the topic headers and the tutorial text.

A dialog file is initially defined as a series of topics via the DEFINE DIALOG statement.

Upon execution of the BROWSE DIALOG statement, the topic titles form a menu from which you may select and browse

the topic texts. A specific topic may be displayed with the BROWSE TOPIC statement.

Dialog files are demonstrated in the examples given in the DEFINE DIALOG statement.

3.1.9.4 Access Methods

PROMULA supports three basic ways to access the contents of a datafile:

Promula Application Development System User's Manual

70

1. Sequential access — In text files. Here, information is accessed in terms of variable length text records. The records

are accessed in sequence, one record at a time, starting at 1 and ending at N, where N is the last record in the file.

Before accessing the (N+1)th record, you must first access the (N)th record.

2. Random access — In random files. Here, information is accessed in terms of structured fixed length binary records.

The records are accessed at random, one record at a time, by simply specifying the record number or by using an

inverted file to select the records of the file that contain a field that matches a specified key.

3. Direct access — In array files. Here, information is accessed in terms of variables, the notion of record does not

apply. The variables may be either single-valued (scalars) or multi-valued (arrays). Array file variables are value-

addressable, i.e., you may access single data cells (values) in them or any connected subset of their values.

For example, if A is a four-dimensional variable classified by row, column, page, and year, then you have the

following direct access options:

1. You can access all values of A.

2. You can access a three-dimensional part of it, say, all the rows, columns and pages for a particular year.

3. You can access a two-dimensional part of it, say, all the rows and columns for a particular page and year.

4. You can access a one-dimensional part of it, say, all the years for a particular row, column and page.

5. You can access a single cell of it, say, the value for row=3, column=2, page=2, and year=10.

This kind of selectivity is particularly useful when you have very large arrays in your disk database that do not fit in

your working space. In addition to the direct access method, variables in array files may be accessed virtually or

dynamically via local variables. See Chapter 4 for details of this.

3.1.9.5 File Names

Each file has two names: a logical name and a physical name.

The logical name is the name by which the file is referenced in a PROMULA program. A logical name can be any string of

alphanumeric characters whose first character is alphabetic. Only the first six characters are significant.

The logical name for a segment file is introduced via the DEFINE SEGMENT statement. For unsegmented programs, the

DEFINE PROGRAM statement introduces a segment file with the logical name MAIN.

The logical name for a data file is introduced via the DEFINE FILE statement.

The physical name is the name by which the file is known to the operating system. A physical file name must be specified

according to the file naming conventions of the particular operating system that you are using.

Before a given file can be accessed, it must be opened, i.e., declared to the operating system via its physical file name.

The physical name of a segment file is specified via the OPEN SEGMENT statement.

The physical name of a data file is specified via the OPEN file statement.

3.1.9.6 Interface PROMULA Files with Other Software

PROMULA text files may be used directly by other software or programs written in other languages, such as FORTRAN

and C.

Promula Application Development System User's Manual

71

In the case of text files, this interface is automatic. By definition, a text file is a file that may be treated as text. To show its

contents, for example, you may use the TYPE, COPY, or PRINT command of your operating system. To change the

contents of a text file, you may use a text editor.

It is through text files that PROMULA communicates with other software, such as electronic spreadsheets, word

processors, and database managers.

To access PROMULA text files by programs written in other languages, such as FORTRAN or C, you need to use the

appropriate OPEN, READ, and WRITE statements of these languages.

Users of the virtual data management capabilities of the PROMULA language translators or the PROMULA Virtual

Memory Management Library may create C or FORTRAN programs that can access PROMULA's array databases.

3.1.10 Function

Definition:

A function is a curve on the (x,y) plane. It is defined by a set of points whose coordinates are given by the values of two

array variables, the x-variable and the y-variable.

Remarks:

The table of values below defines a function f(x):

A FUNCTION f(X)

X-VARIABLE Y-VARIABLE

x(1) y(1)
x(2) y(2)
x(3) y(3)

. .

. .

. .
x(n) y(n)

For an arbitrary argument x the function f(x) returns the value on the curve defined by the above table of points. The value

of the function is computed by using two-point linear interpolation between the points defining the function.

PROMULA allows multidimensional arrays to be used as function value vectors provided that both arrays have the same

set classifying their first dimension.

Functions may be used in equations and conditional expressions.

The DEFINE FUNCTION and DEFINE LOOKUP statements define a function.

Expressions that act on their X and Y variables modify a function.

The READ function statement modifies a function and its X and Y variables.

The WRITE function and BROWSE function statements display a function in tabular form.

The PLOT statement displays a function in graphical form.

Promula Application Development System User's Manual

72

3.1.11 Menu
Definition:

A screen template which is designed to help its user to either pick from a list of options or view and/or edit the values of

program variables.

Depending on content and intended use, there are two kinds of menus:

1. Pick menus for helping the user select an option

2. Data menus for helping the user view and/or edit program variables

Menus are manipulated by several statements:

DEFINE MENU Defines a menu

SELECT menu Helps the user make a selection from a pick menu

EDIT menu Helps the user enter information into a data menu

READ menu Helps the user enter information into a data menu

WRITE menu Displays a data menu

BROWSE menu Draws a data menu then pauses until the next user event (keypress or mouse click)

SELECT PULLDOWN Creates and displays a pulldown pick menu for selection

SELECT FIELD Modifies the selection fields of a simple or popup pick menu

3.1.11.1 Pick Menus

Depending on thier definition and behavior, there are three types of pick menus:

1. Simple, one-window pick menus defined with a basic DEFINE MENU statement

2. Popup, two-window pick menus defined with a DEFINE MENU POPUP statement

3. Pulldown pick menus defined with a SELECT PULLDOWN statement

Simple and Popup pick menus are executed by the statement:

SELECT menu(option)

where menu is the name of the menu, and option is a variable that will contain the number of the selection picked.

Pulldown pick menus are executed by the statement:

SELECT PULLDOWN option = menudesc

where menudesc is the description of the pulldown menu, and option is a variable that will contain the number of the

selection picked.

In both cases, the value of option may be used to determine alternative execution paths.

When displayed, all pick menus contain a number of selection fields. You may highlight the desired field by pressing the

arrow keys. To execute your selection, press the Enter key. For all pick menus, you may also chose an option by

positioning the mouse sprite over the desired field and clicking the mouse button. Simple and popup pick menu fields may

also be selected by single keypresses as described below.

Simple pick menus allow you to easily create a simple selection display. In these menus, a number of selection fields are

laid-out on a single screen template. Each selection field in the menu is text that is bracketed by two backslashes (\) in the

Promula Application Development System User's Manual

73

menu template. The selection fields are ordered from 1 to n as you go from left to right and from top to bottom of the menu

template.

When a simple pick menu is used in a SELECT menu statement, PROMULA clears the window opened to the Main

Screen, displays the menu, and highlights the first selection field. Selections may be made using the function keys (or the

numeric keys) directly. The F1 (numeric 1) key picks the first selection in the menu, the F2 (numeric 2) key picks the

second selection, and so forth. If you have more than ten selection fields, then press the Alt or Shift key together with one

of the ten Function keys to get up to twenty selections. For example, pressing Alt-F1 picks the 11th selection.

Popup menus give you the ability to define a network of menus that function as a unit. They also allow you to create menus

that use any printable key for selections, and to define context sensitive help for each selection field. A popup menu

definition consists of a top level menu definition and zero or more submenu definitions. Each menu definition consists of a

selection screen and a group of FIELD statements. Each selection screen in a popup menu contains a number of selection

fields. Each selection field in the menu is text that is bracketed by two backslashes (\). The selection fields are ordered from

1 to n as you go from left to right and from top to bottom of the menu template.

Each selection field in the selection screen of a popup menu requires a FIELD statement. The FIELD statement contains

the following information:

1. a descriptor for the selection field,

2. a key code that allows the user to select the field with a single keystroke,

3. an optional reference to field-specific on-line help,

4. and an action code that is used to branch to alternate execution paths depending on the user's selection.

When defined, a popup menu is associated with a pair of windows: The first window will display the selection screen(s);

the second window will display the field descriptions.

Pulldown menus are displayed in a dynamic system of windows that drop-down from a user-defined menu bar window.

The menu bar window, the values of the selection field labels, and the action codes returned by menu selections are all

defined by the parameters of the SELECT PULLDOWN statement when it is executed. The field labels and action codes

of the SELECT PULLDOWN statement may be variables or constants. Pulldown menu selections may only be made by

highlighting the desired selection field and pressing enter or by pointing and clicking with a mouse.

3.1.11.2 Data Menus

Data menus contain a number of fields to be displayed and/or edited by the user. Each field in the menu is denoted by a

series of contiguous at signs, @, or contiguous tilde characters (~). The number of field characters should be equal to the

desired number of characters in the data value that will be displayed in the field. The fields are ordered from left to right

and from top to bottom of the menu template. Fields defined with at signs will be editable and are referred to as data fields,

fields defined with tilde characters will not be editable and are referred to as display-only fields.

To execute a data menu, enter the following statement:

EDIT menu(vars)

where menu is the name of the data menu, and vars is a list of variables that correspond to the fields of the menu. The

variables in the list must be arranged in the same order as the fields in the menu to which they correspond.

Upon execution, the data menu becomes a screen display that has the first data field highlighted by the bounce bar. Use the

movement keys to move the bounce bar to the desired data field. To edit the highlighted data field, press the Enter key and

enter the new value, as prompted at the bottom of the menu.

Examples:

Promula Application Development System User's Manual

74

The definition and use of menus are illustrated in the examples given with the DEFINE MENU, SELECT PULLDOWN,

and SELECT FIELD statements.

3.1.12 Numeric Precision
PROMULA stores REAL numbers with six significant digits and INTEGERs with ten significant digits.

REAL numeric expressions are evaluated in double precision to maintain at least six significant digits.

INTEGER and MONEY expressions are evaluated to ten significant digits of accuracy.

PROMULA allows mixed-mode arithmetic. A real variable is rounded to the nearest integer when equated to an integer

variable.

On the IBM PC, Reals less than ABS(8.43E-37) cause underflows in calculations. Real values greater than ABS(3.37E+38)

cause overflows. Integers are valid in the range (−231 − 3, +231 + 3), about ± 2.1 billion. Integers outside this range cause

overflows and cannot be processed by the system. Money type variable values are valid in the range (−231 − 3, +231 + 3),

about ± 2.1 billion cents or 21 million dollars. Overflows and underflows in calculations cause errors.

The value zero, of course, is valid, except in denominators of divisions where it does not make sense, or in logarithms.The

PROMULA system can be configured to allow these types of math errors; see the SELECT MATHERROR statement.

Examples:

1. Given the following definitions:

DEFINE VARIABLE
 A "A real value"
 B "An integer value" TYPE=INTEGER(8)
END

A=10.6

 the equation B = A rounds the value of A to yield the value

B = 11

2. The equation B = IFIX(A) on the other hand, truncates the value of A to yield

B = 10

3.1.13 Parameter

Definition:

A parameter is a numeric variable which is used locally within a procedure and is used to transfer data values to and from

the procedure.

Parameters are used to transfer data values to and from procedures.

Parameters may be scalars or multidimensional arrays, but they cannot be passed as string type variables.

A parameter identifier cannot be defined or referenced outside a procedure.

See DEFINE PARAMETER and DEFINE PROCEDURE for more details and examples.

Promula Application Development System User's Manual

75

3.1.14 Procedure

Definition:

A procedure is a group of statements that are compiled as a unit under a unique identifier for later reference and execution.

Remarks:

A procedure definition or compilation is initiated with the DEFINE PROCEDURE statement and is terminated by the

END statement.

Procedure execution is initiated by entering the procedure identifier, optionally preceded by the word DO. When a

procedure is called, its statements are executed sequentially in the same order as they are defined.

Procedure execution ends after the last statement of the procedure is executed or when a BREAK procedure statement is

executed. After ending, execution continues with the statement after the original procedure call that started the procedure.

3.1.15 Program
A PROMULA program is an ordered set of statements that allows you to transform input data to output information. A

statement is a complete instruction in a PROMULA program. Input data is given or known information which you "read

into" the program; output information is what the program computes and "writes out" for you.

A PROMULA program has two states: source and executable. When you first write it, the program is in its source state.

From its source state, the program is transformed to its executable state by the process of compilation. In its source state, a

program can be modified with a text editor and compiled but not executed. The computer can execute a program only if it

has been successfully compiled and is in an executable state.

The two main operations of the PROMULA system are program compilation and program execution. Both of these

operations can be performed either directly, with interactive input from the console (Options 10 and 6 of the Main Menu),

or indirectly, with batch input from disk (Options 5 and 8 of the Main Menu).

To write and/or edit PROMULA source programs, you can use your own text editor or PROMULA's Text Editor — Main

Menu option 4 .

3.1.16 Relation
Definition:

A relation is a rule of correspondence between the elements of a set and the contents of a variable indexed (subscripted) by

that set.

A set is a classification scheme and as such it is an abstraction. Its elements are usually ordered from 1 to n, where n is the

size of the set. However, if related to a variable of n values the elements of the set take on a less abstract meaning.

For example, the set month is an ordered set of the numbers 1, 2, ..., 12. The string variable mn(month) contains 12 values

that are the month names January, February, ..., December. If the set month and the variable mn are related, then the

elements of the set month and the values of the variable mn have the following correspondence:

Set month Variable mn

1 January

2 February

. .

Promula Application Development System User's Manual

76

. .

. .

12 December

PROMULA supports four kinds of relations:

ROW specifies the variable whose values will serve as the primary descriptor for a set's elements. The primary

descriptor values are used to label rows of values classified by the set in WRITE, BROWSE, and EDIT

statements. They are also used in bar plots, page headings, and displays of the set itself.

COLUMN specifies the variable whose values will serve as the column descriptor for a set's elements. The column

descriptor values are used to label columns of values classified by the set in WRITE, BROWSE, and

EDIT statements.

KEY specifies the variable whose values will serve as the codes for a set's elements. If no ROW relation for the

set is specified, the code values, also referred to as keys, are used as the primary descriptors for the set. If

no COLUMN relation for the set is specified, the code values are used as column descriptors. In addition,

set codes may function as set element identifiers in displays of the set and in coded set selections.

TIME specifies the variable whose values will serve as the time values for a set's elements. If no ROW relation for

the set is specified, the time values, also referred to as keys, are used as the primary descriptors for the set.

If no COLUMN relation for the set is specified, the time values are used as column descriptors. In addition,

time values may function as set element identifiers in displays of the set and in coded set selections. If a set

has a TIME relation, it becomes a Time Series Set.

A related feature is PROMULA's TYPE=set option for variables. A variable of this type displays the row descriptor of the

set element which corresponds to its value. For example, if a variable, ms, has the type specification TYPE=month(15), and ms

contains the value 2, then the statement

WRITE (ms)

would display the word February with a width of 15 characters. Furthermore, if ms is assigned any value that is not between

1 and 12, (the range of set month) it is given the value zero instead.

See DEFINE RELATION and SELECT RELATION for more details.

3.1.17 Segment
Definition:

The segment is a part of a program that may be saved on disk for later loading and execution.

Remarks:

A program segment is bounded by a DEFINE SEGMENT statement at its beginning and an END SEGMENT statement

at its end.

A large program may be segmented into a hierarchical tree structure of segments.

For simple one-segment programs, the program segment should be initiated by a DEFINE PROGRAM statement and

ended with an END PROGRAM statement. The enclosed program segment is given the default name MAIN.

Chapter 4 describes program segmentation in detail.

3.1.18 Set

Promula Application Development System User's Manual

77

Definition:

A finite set of discrete elements that are ordered from 1 to N, where N is the size of the set.

Remarks:

A set has the following characteristics:

A unique identifier

A size

An optional descriptor

An optional format specification for displays of the set and arrays dimensioned by the set

An optional disk reference to descriptors of the set's elements

Sets are used primarily as subscripts of array variables and serve to build their multidimensional structure. They may also

be used to control program flow and to provide descriptive information for reports.

The descriptors associated with the elements of a set classify the values of variables subscripted by the set and serve as the

row, column, and page headings of such variables.

The default descriptors of the elements of a set are:

SET(1), SET(2),..., SET(N)

where SET is the set identifier.

A set is defined by the DEFINE SET statement.

The contents of a set may be displayed via the WRITE set and BROWSE set statements.

The sets of a program may be listed via the AUDIT SET and BROWSE SET statements.

The order and range of a set may be modified by the SELECT set, SELECT set IF, and SORT statements. The current

range and order of a set's elements are stored in a structure referred to as the set's selection vector.

The elements of a set may be selected interactively via the SELECT SET, SELECT ENTRY, ASK...ELSE SET, and the

SELECT VARIABLE statements.

Sets may be used to drive DO loops with the DO set statement.

Descriptive information may be associated with set elements with the DEFINE RELATION, SELECT RELATION, and

READ set statements.

The descriptors of a set may be displayed as the values of a variable by using the TYPE=set type specification in the

variable's definition.

PROMULA has some special notation for use with sets that can be useful in working with sets and multidimensional

variables. This notation is discussed below.

set:M A scalar containing the maximum size of set. This is the value of N used in defining

the set.

set:N A scalar containing the current size of set.

Promula Application Development System User's Manual

78

set:S[(i)] A vector containing the element sequence numbers of the selection vector of set.

The (i) subscript is optional and is used to indicate which element of the selection

vector is being referenced. The default is i = 1. Set:S is useful as an iteration counter

in a DO set loop or as a switch between alternate execution paths.

In addition, set:S(1) contains the sequence number of the element corresponding to

the minimum (maximum) value of a vector after a SORT (DESCENDING)

statement.

set:R A scalar containing the current range of set. Initially, set:R = set:M.

set:V[(i)] A vector containing the values associated with a TIME related set. This variable is

useful in dynamic simulation applications.

Normally, you will not assign values to these variables. However, if you want to make your own assignments, you will

have to use the PROMULA verb, COMPUTE. For example, it is possible to change the default range of a set to 1 through

m with the following statements:

COMPUTE set:R = m
SELECT set*

You should not increase the size of a set above its definition size, as this can result in loss of program information.

To restore the range of a set to its default, use the statements

COMPUTE set:R = set:M
SELECT set*

Examples:

1. Defining a Set

DEFINE SET
 month(12) "Set of 12 Months"
 acnt(3) "Account"
END

2. Using Sets as Subscripts to Define Array Variables

DEFINE VARIABLE
 md(month,acnt) "Data by Month and Account"
END VARIABLE

3. Selecting Set Elements

SELECT month(1,6,9-12)
SELECT month*
SELECT SET (month)
SELECT ENTRY (month)
SELECT VARIABLE (md)
SELECT month IF md GT 4

4. Special Set Notation:

Some of the special notations for sets (set:M, set:R, set:N, set:S) are illustrated in the dialog below.

DEFINE SET

Promula Application Development System User's Manual

79

 pnt(4)
END SET
DEFINE VARIABLE
 x "X="
END VARIABLE

DO pnt
 WRITE (pnt)
END pnt
PNT(1)
PNT(2)
PNT(3)
PNT(4)

x=pnt:M
WRITE x
X= 4

x=pnt:R
WRITE x
X= 4

x=pnt:N
WRITE x
X= 4

SELECT pnt(3,2,4)
x = pnt:S(3)
WRITE ("pnt:S(3) = "x)
pnt:S(3) = 4

DO pnt
 x=pnt:S
 WRITE ("pnt:S = "x)
 x=pnt:N
 WRITE ("pnt:N = "x)
END
pnt:S = 3 Note that within a DO set loop, the size of the set (set:N)
pnt:N = 1 is one element.
pnt:S = 2
pnt:N = 1
pnt:S = 4
pnt:N = 1

x=pnt:N
WRITE x
X= 3

5. Using sets directly from a database.

Sets may be defined as part of the structure of an array file (see DEFINE SET). These disk sets may be accessed

directly — without having the database definition in memory by using the file:set notation. For example, the following

code creates a database with three sets.

DEFINE FILE
 af TYPE=ARRAY
END

Promula Application Development System User's Manual

80

OPEN af "test.dba" STATUS=NEW

DEFINE SET af
 rec(1000)
 fld(8)
 pag(10)
END SET af

... The rest of the database definition (e.g., variables and relations).

CLEAR af

The sets in file test.dba can be manipulated by PROMULA by opening the array file — STATUS=OLD, then using

the file:set notation.

For example af:rec is the identifier of the 1000 element set in the array file test.dba.

3.1.19 Statement

Definition:

A complete instruction in a PROMULA program.

Remarks:

There are two types of statements: line and structured. Line statements are entered on a single line which may be continued

to additional lines according to the rules of line continuation. Structured statements, on the other hand, require more than

one line of code; they start in one line and end in another with a number of other lines in-between. A structured statement

may contain other line or structured statements in it. All structured statements end with an END statement.

Examples:

The statement

WRITE a

is a line statement.

The statement

DEFINE VARIABLE
 a
 b
END

is a structured statement.

All PROMULA statements begin with one of the verbs of the language, except for equations which begin with the optional

verb COMPUTE, procedure execution statements which begin with the optional verb DO, and data lines.

All definition statements are structured. They begin with the verb DEFINE and end with the verb END.

PROMULA statements have no line numbers and may begin anywhere on an input line.

Blanks or commas must be used to separate distinct statement parts.

Promula Application Development System User's Manual

81

A statement may be as long as you wish; however, if it is longer than 80 characters it is good style to continue the statement

on the next input line by using a comma at the end of the current line. You may use as many continuation lines as you wish.

3.1.20 System

Definition:

A system of n equations and n unknowns.

A system has a name, n parameters (or unknowns), and n equations. The number of equations in a system, n, can be as large

as you can fit in your working space.

The system is defined by the DEFINE SYSTEM statement.

Equations are written in the usual algebraic notation:

f(x1, x2,...) = g(x1, x2,...)

where f and g are arbitrary real, continuous functions of x1, x2,...

The solution of a system is obtained by an iterative process which you start by making an initial guess for all of the

unknowns.

A system sys with parameters x1, x2,... may be solved by simply entering its name and specifying an ordered list of scalar

variables a1, a2,... corresponding to the parameter list. The number and order of variables in the variable list must agree

with the number and order of the parameters as defined in system sys:

sys(a1,a2,...)

The solution of system sys, if it exists, will be returned as the values of the variables a1, a2,...

If the attempt to solve system sys does not converge after a reasonable number of iterations, then you are given the message

to try another starting guess for the unknowns.

A diagnostic is also given if the system does not have a real solution.

See also the DO LSOLVE statement which may be used to solve systems of linear equations.

Examples:

An example of system definition and system solution is given in the DEFINE SYSTEM statement.

3.1.21 Table

Definition:

A tabular report (or display) of several variables.

A table has a body and an optional title and format. The body of the table contains the names of the variables whose values

will be displayed as the 'body' of the table. The format specifies the width of the rows and columns of the table.

The values of the variables in a table are classified by a common set. This common set classifies the columns of the table.

You may include as many variables as you wish in the body of a table.

Promula Application Development System User's Manual

82

A table may be 'browsed' by using the BROWSE TABLE statement. This allows you to browse the pages of a table one at

a time.

A table may be 'written' by using the WRITE TABLE statement. This allows you to display or print the table in its

entirety.

A table may be 'edited' by using the EDIT TABLE statement. This allows you to browse the pages of a table one at a time

and change its values.

Tables may also be defined using the DEFINE TABLE statement.

3.1.22 Time Parameters
Definition:

In PROMULA, the words TIME, DT, BEGINNING, and ENDING are reserved keywords that name four scalar

parameters that are used mainly in dynamic simulation applications. Such applications contain procedures involving time

series variables and time integration algorithms.

These four internal variables are used with the dynamic simulation subsystem of PROMULA where they are used explicitly

with the level and rate statements to specify approximate (first order) integrations of level variables over time:

level(TIME + DT) = level(TIME) + DT * rate(TIME)

Here, the value of a variable at time (TIME + DT) is equal to its value at time TIME plus the product of DT times the rate of

change of the variable at time TIME.

In the dynamic simulation, these parameters have the following meanings:

TIME The TIME variable

DT A time increment for the TIME variable

BEGINNING The beginning value of TIME

ENDING The ending value of TIME

Some of the sample programs on the PROMULA Demo Disk are dynamic simulation models converted to PROMULA and

contain examples that use these parameters.

See the RATE, LEVEL, and TIME statements as well as the discussion of Dynamic procedures in this Chapter for more

information on these constructs.

3.1.23 Variable
Definition:

A place for storing numeric or character information. A variable may have a single value or a number of values. A single-

valued variable is called a scalar. A variable with many values is called an array.

Remarks:

A variable has the following characteristics:

A unique identifier

A structure

A value or values

A format type

Promula Application Development System User's Manual

83

An optional descriptor

A storage type

The identifier of a variable is its symbolic name. It may have up to six alphabetic and numeric characters, the first being

alphabetic. No special characters are allowed. Any characters over six are ignored. Two variables may not share the same

identifier.

The structure of an array variable is defined by the sets or numeric constants classifying its dimensions. An array may

have up to ten dimensions or subscripts. A scalar variable has no internal structure, since it only has one value.

The values of a variable are the pieces of information it contains. The number of values in a scalar variable is one. The

number of values in an array variable is equal to the product of the sizes of the sets structuring it. These values are arranged

in rows, columns, and pages. The rows are classified by the first set of the variable; the columns are classified by the

second set; the pages by the third set, and so forth.

The Format Type of a variable is the kind of information that it contains. PROMULA has eight format types:

REAL contains real numbers (numbers with decimal digits) in the ranges:

 (-3.37E+38,-8.43E-37)

 0

 (+8.43E-37,+3.37E+38)

 Reals outside these ranges are not valid and cause underflows or overflows in calculations,

which result in errors.

INTEGER contains integer numbers (whole numbers) in the range:

 (-231-3,+231-3) about ± 2.1 billion

 Integers outside this range cause overflows and cannot be processed by the system.

STRING contains character values, i.e., strings of characters.

CODE contains codes. Codes are short character strings that are used for set selections. For

example, JAN and FEB may be used to select the months of January and February.

MONEY contains money values (dollars and cents). This type is useful for accounting arithmetic

where one-cent accuracy is important. Money variables maintain ten significant digits of

accuracy. The range of MONEY type variables is

(-2**31-3,+2**31-3) about ± 2.1 billion cents or 21 million dollars.

DATE contains date values. Dates are values of the form mm/dd/yy, where mm is a month

number, dd is a day number, and yy is a year number. Internally, the date value is stored

as a numeric quantity equal to yymmdd. Alternative date formats (e.g., dd/mm/yy or

mm/dd/yyyy) are available by executing a SELECT DATE statement.

UPPERCASE contains string values that are automatically converted to uppercase when they are input

from the keyboard.

set contains integers from 0 to N. If the values of the set type variable are within the range of

set, the descriptors of set are displayed, otherwise, the variable is assigned and displays

the value 0. This type of variable is useful for helping the user enter or verify categorical

data.

Promula Application Development System User's Manual

84

Details and examples of using the various format types are presented with the discussion of the DEFINE VARIABLE

statement.

The descriptor of a variable is a string of characters that will be used as a default title when the variable is displayed by the

report generator.

Variable descriptors and identifiers can be displayed in write statements and in titles through use of the :I, :L, :D operators.

The notation variable:I can be used to indicate that the identifier of a variable is to be displayed.

The notation variable:L can be used to indicate that the descriptor of a variable is to be displayed.

The notation variable:D can be used to indicate that the identifier, followed by a colon, a space, and the descriptor for the

variable is to be displayed.

These operators may be used with indirects to display the identifier and/or descriptor of the variable that the indirect is

"pointing" at.

For example, given the following definition

DEFINE VARIABLE
 pop "POPULATION SIZE"
END VARIABLE

the following relations are true

pop:L = POPULATION SIZE
pop:D = POP: POPULATION SIZE
pop:I = POP

The storage type of a variable determines where it resides, in RAM memory, or on disk, and whether or not its values can

be cleared from memory. Depending on where their values are stored, variables are of three types: fixed, scratch, and

disk. In addition, there are two pseudo-storage types: virtual and dynamic associated with disk access. Additional

information about the storage types is presented in Chapter 4.

The DEFINE VARIABLE statement creates new variables and databases.

The READ statements put values into variables from a file or the keyboard.

The EDIT statements allow a program user to interactively modify variable values.

The WRITE, BROWSE, and PLOT statements display variables in tabular or graphical form.

Equations modify the values of variables.

Functions define relationships between pairs of variables.

Relations define relationships between sets and variables.

The DO IF, DO UNTIL, and DO WHILE statements use the values of variables to control program flow.

The Statistical Functions generate statistical reports based on the values of selected variables.

Examples:

Promula Application Development System User's Manual

85

1. Defining fixed variables in memory

DEFINE VARIABLE
 A(row,col) "A 2-Dimensional Array"
 B "A Scalar"
 C "A String Variable" TYPE=STRING(8)
 D "A Date" TYPE=DATE(8)
 M "A Money Variable" TYPE=MONEY(10)
END VARIABLE

2. Defining scratch variables in memory

DEFINE VARIABLE SCRATCH
 scr "A Scratch Variable"
END VARIABLE

3. Defining disk variables on a file

DEFINE VARIABLE file
 dsk "A Disk Variable"
END VARIABLE file

4. Defining virtual variables in memory

DEFINE VARIABLE
 dd "A fixed Disk Variable" DISK(file,dsk)
END VARIABLE

5. Using variables in equations

B = SUM(r,c)(A(r,c))
B = PRODUCT(r,c)(A(r,c))

6. Putting values into a variable with an equation

A=1
A=RANDOM(1000,2000)
A(i,j)=j*i+(i-1)*(j EQ 1)

7. Reading values into a variable

DEFINE SET
 row(3)
 col(2)
END

DEFINE VARIABLE
 a(row,col) "A 2-Dimensional Array"
END VARIABLE

READ A
1 2
3 4
5 6

8. Displaying a variable

WRITE a

Promula Application Development System User's Manual

86

 A 2-Dimensional Array

 COL(1) COL(2)
 ROW(1) 1 2
 ROW(2) 3 4
 ROW(3) 5 6

WRITE a::2(col,row) TITLE("Display of "a:L)

 Display of A 2-Dimensional Array

 ROW(1) ROW(2) ROW(3)
 COL(1) 1.00 3.00 5.00
 COL(2) 2.00 4.00 6.00

9. Using disk variables directly off an array database — The file:variable notation

Suppose you have created an array database and you wish to access one of its variables. The name of the database is

array.dba and the name of the variable is sales. The example below shows how to browse the variable sales directly.

DEFINE FILE
 f1
END

OPEN f1 "array.dba"
BROWSE f1:sales

The syntax for such direct reference of disk variables is: file:var, where file is the array file containing the variable var

that you wish to access. Disk variables may also be accessed directly off an array database by using the COPY file,

IMAGE command.

3.1.24 Window -- Basic
PROMULA lets you split the screen into two sections. The upper section is called the Action window; it is used for

interactive displays such as data editing and selection menus and lists; the lower section is called the Comment window; it

is normally used for providing comments about what is happening in the Action window.

The default length of the Action window is 25 lines; the default length of the Comment window is 0 lines. To set the length

of the Comment window, use a SELECT COMMENT=n statement, where n is the number of lines desired in the

Comment window.

Windows provide the means for writing tutorial programs. In such programs you show the execution of something in the

Action window and provide comments about it in the Comment window.

The statements of Basic Windowing are:

SELECT COMMENT=n starts windowing mode, sets the length of the Comment window to n

lines, where n is an integer in the range 1 to 22, and splits the screen by

drawing a dividing line that is n spaces from the bottom.

SELECT COMMENT=0 gets you out of Basic windowing mode and closes the Comment

window.

WRITE COMMENT writes text in the Comment window without prompting for browsing.

Promula Application Development System User's Manual

87

BROWSE COMMENT writes text in the Comment window with prompting for browsing.

The displays of all other input/output statements are shown in the Action window.

The following procedure is an example of Basic Windows:

DEFINE PROCEDURE window
SELECT COMMENT=12
WRITE TEXT
 This text was produced by the WRITE TEXT statement.
 Note that it shows up in the Action Window (upper half of screen).
END
BROWSE COMMENT
 The PROMULA code that produced the text in the above window is:

 WRITE TEXT
 This text was produced by the WRITE TEXT statement.
 Note that it shows up in the Action Window (upper half of screen).
 END

END
WRITE COMMENT
 This text was produced by the WRITE COMMENT statement.
 Note that it shows up in the Comment Window (lower half of screen).
END
BROWSE TEXT
 The PROMULA code that produced the text in the window below is:

 WRITE COMMENT
 This text was produced by the WRITE COMMENT statement.
 Note that it shows up in the Comment Window (lower half of screen).
 END
END
END PROCEDURE window

Upon execution of this procedure, the following display results:

Promula Application Development System User's Manual

88

 This text was produced by the WRITE TEXT statement.

 Note that it shows up in the Action Window (upper half of screen).

 The PROMULA code that produced the text in the above window is:

 WRITE TEXT

 This text was produced by the WRITE TEXT statement.

 Note that it shows up in the Action Window (upper half of screen).

 END

After pressing any key, the following display results:

 WRITE COMMENT

 The PROMULA code that produced the text in the window below is:

 This text was produced by the WRITE COMMENT statement.

 Note that it shows up in the Comment Window (lower half of screen).

 END

 Press any key to continue

 This text was produced by the WRITE COMMENT statement.

 Note that it shows up in the Comment Window (lower half of screen).

Promula Application Development System User's Manual

89

3.1.25 Window -- Advanced
The windowing capabilities discussed in the previous section are the most basic type of windowing available to

PROMULA users. For users who wish to create a truly professional-looking user interface for their applications, the

Advanced Windowing capabilities are available.

In PROMULA the custom design of the screen is specified using the DEFINE WINDOW and OPEN WINDOW

statements. The DEFINE WINDOW statement allows you to create windows. The OPEN WINDOW statement allows

you to assign one of your custom-designed windows to handle a specific set of display functions.

The OPEN WINDOW statement takes two parameters:

1. The functional type of the screen to which you want to assign the window.

2. The name of a window that you want to use for the screen of this functional type.

These two parameters are discussed below.

The screen parameter of the OPEN WINDOW statement specifies the functional screen to be assigned a window.

PROMULA supports five types of functional screens; each one is used for a particular set of operations. The five types of

screens: MAIN, PROMPT, COMMENT, ERROR, and HELP, are discussed below:

1. MAIN

The Main Screen is used for most of the input/output operations done by an application. These operations are

performed by the following statements:

ASK...ELSE

AUDIT / BROWSE / EDIT / WRITE variable

AUDIT / BROWSE / SELECT SET

AUDIT / BROWSE / SELECT VARIABLE

AUDIT / BROWSE / WRITE / set

AUDIT / COPY file

BROWSE / EDIT / SELECT / WRITE menu

BROWSE / EDIT / WRITE TABLE

BROWSE / WRITE function

BROWSE / WRITE TEXT

BROWSE FILE

PLOT (in character mode)

SELECT ENTRY

SELECT indirect

Statistical Functions

table

variable = GETDIR(filespec)

WRITE text

The PROMULA Text Editor uses the colors of the Normal Text in the Main Screen.

2. PROMPT

The Prompt Screen is used for displaying the prompts produced by the following PROMULA statements.

ASK CONTINUE

ASK...ELSE

BROWSE / SELECT VARIABLE

BROWSE / EDIT variable

BROWSE / SELECT SET

BROWSE set

BROWSE FILE

BROWSE / EDIT / SELECT menu

BROWSE function

BROWSE / EDIT TABLE

BROWSE TEXT

SELECT ENTRY

SELECT indirect

variable = GETDIR(filespec)

PROMULA's command mode prompt uses the Prompt Screen.

If a user-defined window is not opened to the Prompt Screen, PROMULA displays prompts at the bottom of the Main

Screen.

Promula Application Development System User's Manual

90

If a window is opened as the Prompt Screen, it will automatically appear on the screen whenever PROMULA needs to

display prompts.

3. COMMENT

The Comment Screen is used for displaying the output of the WRITE COMMENT and BROWSE COMMENT

statements.

If a user-defined window is not opened to the Comment Screen, PROMULA displays comments in the Main Screen.

4. ERROR

The Error Screen is used for displaying execution error messages.

If a user-defined window is not opened to the Error Screen, PROMULA displays an error message in the Main Screen.

5. HELP

The Help Screen is used to display on-line help. The Help Screen will contain the display produced by the BROWSE

DIALOG and BROWSE TOPIC statements.

In addition, on-line help in response to an Alt-H is displayed in the Help Screen.

If a window is not opened to the Help Screen, PROMULA uses the Main Screen for displaying on-line help.

If a window is opened as the Help Screen, it will automatically appear on the screen whenever PROMULA needs to

display the output of help statements.

The window parameter of the OPEN WINDOW statement specifies which user-defined window should be assigned to a

functional screen. A Window is a rectangular section of the screen. The name, location, appearance, and popup type of the

rectangle are specified by a DEFINE WINDOW statement.

The popup type of window determines what happens to information on the screen that is covered when the window is

opened. There are two popup types, Static and Popup.

When a static window is associated with a functional screen, it is immediately displayed on the screen. Any text that gets

covered by the static window is lost and cannot be restored (unless it is written to the screen again). A static window,

including its borders and contents, will remain on the screen even after it is closed by a CLEAR WINDOW statement.

This feature makes static windows useful for creating a backdrop for your application or displaying instructions or

comments about a running program. A window will be static if it does not have the optional keyword POPUP in its

definition.

When a popup window is associated with a functional screen, it is not immediately displayed. A popup window is only

displayed while the functional screen associated with it is in use. The window is opened whenever a statement that uses the

associated functional screen is executed. After execution of such a statement, the window is removed from the display, and

any text that was covered by the window is automatically redrawn. Popup windows are useful for displaying on-line help or

other messages that will only be shown briefly. A window is of type Popup if it has the optional keyword POPUP in its

definition.

The DEFINE WINDOW statement is used to define the name, location, appearance, and popup type of a window.

The OPEN WINDOW statement is used to open a window on a specific functional screen.

The CLEAR WINDOW statement is used to end the association between a window and a functional screen.

Promula Application Development System User's Manual

91

Screen areas can also be assigned to serve as the display areas for popup and pulldown pick menus. This feature is

described in the context of the DEFINE MENU and SELECT PULLDOWN statements respectively.

Examples:

The code below is a simple example of Advanced Windowing .

DEFINE WINDOW
 cwind(1,1,78,4, WHITE/BLACK,FULL/HEAVY /WHITE/BLACK)
 mwind(10,10,69,18,WHITE/BLACK,FULL/SINGLE/WHITE/BLACK,BLACK/WHITE)
 pwind(1,23,78,23, WHITE/BLACK,FULL/HEAVY/WHITE/BLACK,BLACK/WHITE) POPUP
END WINDOW

DEFINE SET
 row(4)
 col(5)
END SET

DEFINE VARIABLE
 A(row,col) "THE VALUES OF VARIABLE A" TYPE=REAL(9,2) VALUE=10
END VARIABLE

DEFINE PROCEDURE demo
OPEN cwind COMMENT
OPEN pwind PROMPT
OPEN mwind MAIN
WRITE COMMENT

 Edit the values below according to the instructions in the prompt
 at the bottom of the screen, or press [End] to continue.
END
EDIT A
END PROCEDURE demo

Procedure demo produces the following screen.

Promula Application Development System User's Manual

92

 Edit the values below according to the instructions in the prompt

 at the bottom of the screen, or press [End] to continue.

 THE VALUES OF VARIABLE A

 COL(1) COL(2) COL(3) COL(4) COL(5)

 ROW(1) 10.00 10.00 10.00 10.00 10.00

 ROW(2) 10.00 10.00 10.00 10.00 10.00

 ROW(3) 10.00 10.00 10.00 10.00 10.00

 ROW(4) 10.00 10.00 10.00 10.00 10.00

 End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Select Enter: Edit

3.2 Statement Format

In general, PROMULA is a free-form language. Its statements may start anywhere on the input line, and as many blanks or

commas as desired may be inserted between the various parts of the statement to improve readability.

PROMULA statements are not identified by line number; thus, PROMULA programs have no GO TO statements.

Comment lines may be inserted almost anywhere in the source code and are identified by having an asterisk in column 1. It

is possible to include in-line comments with some statements — for example after the procedure name in a DEFINE

PROCEDURE statement.

Full-line comments (i.e., those introduced by an asterisk in column 1) are not recognized as comments in two places: free

form text blocks like those used for the DEFINE MENU and BROWSE/WRITE TEXT/COMMENT statements, and in

the data lines for the READ variable statement. The slash character (/) in column one may be used to insert comments into

the data lines for the READ variable statement

3.3 Commas and Blanks

Commas or blanks play an important role in the syntax of PROMULA statements. They are delimiters and are used to

separate the different parts of a statement. Multiple delimiters are treated as a single delimiter, except when they are part of

a character string.

3.4 Line Length

Promula Application Development System User's Manual

93

An input line in PROMULA may contain up to 255 characters. Pressing the Enter key enters the line. Given the width of

most screens or printers, keeping each statement no longer than 80 characters will make your programs easier to read and

work with.

3.5 Line Continuation

If a statement is too long to fit on a single line, you may continue it on the next line. Continuation of a statement may be

indicated in one of three ways, depending on context:

1. If you are entering a character string, then continuation is automatic. The first character of the next line is concatenated

directly behind the last character of the preceding line, except that multiple trailing blanks are reduced to a single

blank.

2. If you are entering an equation, then continuation to the next line is indicated by the last non-blank character of the

current line, which must be a comma or an arithmetic, relational, or logical operator.

3. In all other cases, continuation to the next line is indicated by entering a comma as the last non-blank character of the

current line.

3.6 Format of PROMULA Statement Descriptions

The following sections describe the statements of PROMULA. Each statement description consists of four parts:

1. The purpose of the statement

2. The general syntax of the statement

3. Remarks about the syntax and the statement

4. Examples demonstrating the syntax and use of the statement.

The notation for the syntax follows these rules:

1. Words in capital letters are PROMULA keywords and must be entered as shown. They may be entered in any

combination of uppercase and lowercase. PROMULA converts all words to uppercase (unless they are character

data or part of a quoted string).

2. You must supply any items in lowercase letters.

3. Items in square brackets ([]) are optional.

4. An ellipsis (...) on a line by itself under an item indicates that you may repeat the item as many times as you wish,

on separate lines.

For example, the notation

DEFINE SET
 set(n) ["desc"]
 ...
END [comment]

describes the syntax of the DEFINE SET statement, and says the following:

Promula Application Development System User's Manual

94

1. Enter the words DEFINE SET to begin the definition.

2. Enter a set identifier, set, followed by a left parenthesis, (, followed by an integer, n, followed by a right

parenthesis,), followed by an optional descriptor, desc. If you include a descriptor, it must be enclosed in quotes, ".

3. You may enter as many set definitions as you wish. This is denoted by the ellipsis, ...

4. Enter the word END to end the set definitions. This may be followed by a comment, if you wish.

An ellipsis (...) in a line after an item indicates that you may repeat the item as many times as you wish, on that line or on

lines with the appropriate continuation character.

For example, the notation

PLOT (var1[,var2,...])

indicates that you may include one or more var specifications in the argument of the PLOT statement.

The meanings of the lowercase items that you must enter to form a statement are described in the Remarks of each

statement description.

3.7 The PROMULA Statements

3.7.1 ASK CONTINUE
Purpose:

Interrupts execution and issues the message

 Press any key to continue?

Syntax:

ASK CONTINUE

Remarks:

You may insert this statement anywhere inside a procedure to stop execution and give the user of the procedure the option

to continue execution or exit to the Main Menu. If the user presses the Esc key he is returned to the main menu; any other

key (or clicking the mouse button) results in continued execution.

This statement is a simple pause and is a useful feature for conversational applications or debugging.

To execute a pause without issuing the prompt, use a WRITE CLEAR(-1) statement.

3.7.2 ASK...ELSE
Asks the user something and executes a group of statements depending on the response.

Syntax:

ASK "prompt", response
 statement
 ...[ELSE [response]
 statement
 ...]

Promula Application Development System User's Manual

95

END

Remarks:

prompt is a message or prompt for the user.

response is a possible user response to prompt. Possible responses are of three types:

[WORD =] code

SET = set

VARIABLE = indir[(vars)]

where

code is a string of characters which must be entered in upper or lower case to qualify as a valid

response. PROMULA recognizes only the first six characters of code as a valid response;

the rest are ignored.

set is a set identifier and allows the user to make set selections (see Example 2 below).

indir is the identifier of an indirect variable which acts as a pointer to other variables and allows

the user to select a variable for subsequent input/output operations. You must put an asterisk

(*) after the identifier of indir in its definition to tell PROMULA that it will be used as an

indirect variable. Calculations with indirect variables are not allowed. (See Example 3

below).

vars is a list of variables from which the user is expected to make a selection. The selected

variable is transferred to indir for the input/output purposes of the ASK statement only. If

this list is omitted, all variables in the program are included in the list. (See Example 3

below).

statement is any executable statement (i.e., no definitions), including other ASK statements.

The ASK statement behaves like the DO IF statement, i.e., it provides an alternative path of execution if a condition is met.

The conditions of an ASK statement are satisfied if a user response matches one of the allowed responses specified either

by the ASK statement or by one of the ELSE statements included in the ASK.

A user response is checked against the responses of the ASK statement sequentially from top to bottom. When a match

occurs, program execution proceeds to the statements following the matched response until the next ELSE or END

statement, whichever comes first.

The SET=set option allows the user to make set selections. Appropriate user responses are set sequence numbers, set codes,

or scalar variables with values in the set range. The SELECT SET, SELECT ENTRY, and SELECT VARIABLE

statements provide alternative means of helping the user make a set selection.

The VARIABLE=indir option allows the user to select a program variable for input/output purposes by entering the

variable identifier. The SELECT variable statement and the INDIRECT function are also useful tools for helping the user

select a variable and working with interactive variable selections.

A null ELSE statement, i.e., one with a blank response, is executed only if all the other preceding ELSE statements fail.

For this reason, the null ELSE statement is usually the last one.

NOTE: The ASK statement is not case sensitive.

 ASK statements may be nested to any depth.

 ASK statements are allowed only inside procedures.

Promula Application Development System User's Manual

96

Examples:

1. The following is a procedure containing a simple ASK statement.

DEFINE PROCEDURE yesno
 ASK "Do you wish to continue? (yes/no)", yes
 WRITE("Continue")
 yesno
 ELSE no
 WRITE("Stop")
 END ask
END PROCEDURE yesno

 The purpose of the procedure is to issue the question "Do you wish to continue? (yes/no)" and take one of two execution

paths depending on user response. A sample dialog with procedure yesno is displayed below.

yesno

Do you wish to continue? (yes/no) An invalid response causes the
xxx question to be asked again.
Do you wish to continue? (yes/no)
yes
Continue
Do you wish to continue? (yes/no)
no
Stop

 The yes path writes the message Continue and issues the prompt Do you wish to continue?, thanks to the recursive nature

of PROMULA procedures. The no path issues the message Stop and exits the ASK statement. Any other user response

causes the prompt Do you wish to continue? to be issued again. Exit from this ASK statement is only possible if you

respond no.

2. The example below shows how to use the SET=set option in order to make alternative set selections. The procedure

selmon allows you to make various selections from the elements of the set month by entering set codes, variable

identifiers, or set element sequence numbers. The definitions and initializations of the example variables are shown

below.

DEFINE SET
 month(12)
END SET

DEFINE VARIABLE
 mv(month) "Month Value"
 mc(month) "Month Code" TYPE=CODE(5)
 mn(month) "Month Name" TYPE=STRING(12)
 x "x Value"
 y "y Value"
 indir* "An Indirect Variable"
END VARIABLE

DEFINE RELATION
 KEY(month,mc)
 ROW(month,mn)
END RELATION

Promula Application Development System User's Manual

97

DEFINE PROCEDURE selmon
 ASK "Select months or LIST or END" END
 ELSE LIST
 WRITE month
 selmon
 ELSE SET=month
 WRITE("The selected months are")
 WRITE mv
 END ask
END PROCEDURE selmon

READ mv
1 2 3 4 5 6 7 8 9 10 11 12

READ mc
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

READ mn
January
February
March
April
May
June
July
August
September
October
November
December

Given the definitions and initializations above, we can execute procedure selmon to
demonstrate the behavior of the ASK statement for making set selections. A sample
dialog with procedure selmon is shown below.

 selmon
 Select months or LIST or END
 ? LIST
 Member Description
 JAN January
 FEB February
 MAR March
 APR April
 MAY May
 JUN June
 JUL July
 AUG August
 SEP September
 OCT October
 NOV November
 DEC December
 Select months or LIST or END
 ? may,dec
 The selected months are
 Month Value

 (1)
 May 5
 December 12

Promula Application Development System User's Manual

98

 selmon
 Select months or LIST or END
 ? 6-9
 The selected months are
 Month Value
 (1)
 June 6
 July 7
 August 8
 September 9

 x = 5
 y = 7
 selmon
 Select months or LIST or END
 ? x,y
 The selected months are
 Month Value

 (1)
 May 5
 July 7

3. This example shows how to use the VARIABLE=indir option in order to select a program variable. Here, indir is an

indirect variable that serves as a substitute for other selected variables.

DEFINE PROCEDURE selvar
 ASK "Select variable or LIST or END", END
 ELSE LIST
 AUDIT VARIABLE
 selvar
 ELSE VARIABLE=indir
 WRITE indir
 selvar
 END ask
END PROCEDURE selvar

The procedure selvar allows you to select one of the variables of a program by entering the variable's identifier in

response to an ASK statement. A sample dialog with procedure selvar is shown below.

DO selvar
 Select variable or LIST or END
 ? LIST
 Identifier Description
 MV Month Value
 MC Month Code
 MN Month Name
 X X Value
 Y Y Value
 INDIR An Indirect Variable
 Select variable or LIST or END
 ? mv
 Month Value

 (1)
 January 1
 February 2

Promula Application Development System User's Manual

99

 March 3
 April 4
 May 5
 June 6
 July 7
 August 8
 September 9
 October 10
 November 11
 December 12
 Select variable or LIST or END
 ? x
 x Value 5
 Select variable or LIST or END
 ? end

3.7.3 AUDIT file
Purpose:

Produces a listing of the sets and variables in an array file.

Syntax:

AUDIT file

Remarks:

file is the identifier of the array file you wish to audit.

Examples:

The following code illustrates the AUDIT file statement:

DEFINE FILE
 arr1 TYPE=ARRAY "A Primary Array Data File"
END FILE

OPEN arr1 "arr1.dba", STATUS=NEW
DEFINE SET arr1
 yrs(10) "Year"
 pag(03) "Pages"
 sic(5) "SIC Codes"
END SET arr1

DEFINE VARIABLE arr1
DUR(yrs) TYPE=REAL(8,0) "Manufacturing Durables Employment"
EMP(pag,yrs) TYPE=REAL(8,0) "Employment by Industry"
EMPT(yrs) TYPE=REAL(8,0) "Total Employment"
WSEMP(yrs) TYPE=REAL(8,0) "Total Wage and Salary Employment"
SICST(sic) TYPE=STRING(30) "Names for Industrial Categories"
YEAR(yrs) TYPE=STRING(5) "Years"
END VARIABLE arr1

The statement AUDIT arr1 produces the listing below.

Promula Application Development System User's Manual

100

 Identifier Description
 YRS Year
 PAG Pages
 SIC SIC Codes
 DUR Manufacturing Durables Employment
 EMP Employment by Industry
 EMPT Total Employment
 WSEMP Total Wage and Salary Employment
 SICST Names for Industrial Categories
 YEAR Years

3.7.4 AUDIT SET
Purpose:

Produces a full or partial listing of the sets in a program.

Syntax:

AUDIT SET[(sets)]

Remarks:

sets is a list of set identifiers. If omitted, all program sets are listed.

The AUDIT SET statement lists the identifiers and descriptors of the program sets. If sets is omitted, the sets are listed in

the order in which they were defined; otherwise, they are listed in the order specified by sets.

Examples:

The dialog below demonstrates the AUDIT SET statement.

 DEFINE SET
 month(12) "12 Months"
 row(3) "3 Rows"
 col(10) "10 Columns"
 END SET

 AUDIT SET
 Identifier Descriptor
 month 12 Months
 row 3 Rows
 col 10 Columns

3.7.5 AUDIT VARIABLE
Purpose:

Produces a full or partial listing of the variables in a program.

Syntax:

AUDIT VARIABLE[(vars)]

Promula Application Development System User's Manual

101

Remarks:

vars is a list of variable identifiers. If omitted, all program variables are listed.

The AUDIT VARIABLE statement lists the identifiers and descriptors of the program variables. If vars is omitted the

variables are listed in the order in which they were defined; otherwise, the sets are listed in the order specified by vars.

Examples:

The dialog below demonstrates the AUDIT VARIABLE statement.

 DEFINE VARIABLE
 x "The x-values"
 y "The y-values"
 END VARIABLE

 AUDIT VARIABLE
 Identifier Descriptor
 x The x-values
 y The y-values

3.7.6 BREAK procedure
Purpose:

Escapes from the current procedure.

Syntax:

BREAK proc

Remarks:

proc is the name of the procedure that contains the BREAK procedure statement.

Upon execution, the BREAK procedure statement escapes from the current procedure and returns control to the program

unit which called the procedure. After returning, execution continues with the statement after the procedure call that

originally executed proc.

Examples:

The following example illustrates use of the BREAK statement to escape from a DO UNTIL loop.

DEFINE VARIABLE
 x "x = "
END VARIABLE

DEFINE PROCEDURE proc
 DO UNTIL x GT 10
 x = x + 1
 WRITE x
 DO IF x GT 5
 WRITE "Leaving proc"
 BREAK proc

Promula Application Development System User's Manual

102

 END IF
 END UNTIL
END PROCEDURE proc

DEFINE PROCEDURE call
 DO proc
 WRITE "Back from proc"
END PROCEDURE call

Executing procedure call generates the output shown below.

 DO call
 x = 1
 x = 2
 x = 3
 x = 4
 x = 5
 x = 6
 Leaving proc
 Back from proc

3.7.7 BROWSE COMMENT
Purpose:

Displays text for browsing in the "Comment" window (Basic Windows) or the active Comment Screen (Advanced

Windows).

Syntax:

BROWSE COMMENT
 text
 ...
END

Remarks:

text is any text that you enter. The text will be clipped to the width of the window opened to the Main or Comment

Screen or the Comment Window. No more than 255 lines (approximately 40 pages) of text may be stored in a

single BROWSE COMMENT statement.

The keyword END must be entered starting in column 1 and must be capitalized.

The text will be shown by page in the Comment Screen of the display. A prompt at the bottom of the Prompt Screen will

describe how to browse the text.

For more details, see the sections on Basic Windows and Advanced Windows.

See also the BROWSE menu statement.

3.7.8 BROWSE DIALOG
Purpose:

Promula Application Development System User's Manual

103

Displays a dialog menu for browsing the topics of a dialog file.

Syntax:

BROWSE DIALOG filespec

Remarks:

filespec is a quoted string or string variable containing the name of the physical disk file where the dialog file that you

want to browse is stored. This name is formatted according to the file naming conventions for your operating

system.

Upon execution, the BROWSE DIALOG statement displays a menu whose selection fields are the titles of the topics

contained in the dialog file. From this menu, you may browse any of the topics. The display will be shown in the window

opened to the Help Screen if one is active.

Examples:

The use of this statement is demonstrated in the context of the example given in the DEFINE DIALOG statement.

3.7.9 BROWSE FILE
Purpose:

Displays a text file for browsing.

Syntax:

BROWSE FILE filename

Remarks:

filename is a quoted string or string variable containing the name of the text file to be displayed for browsing. This

name is any valid file specification and is used to identify the file to the operating system.

Upon execution, PROMULA clears the Main Screen and displays the specified text file for browsing. A prompt in the

Prompt Screen will tell the user how to browse the file.

NOTE: On the IBM PC, the size of the files you can browse is limited to 32K or less. To browse larger files you may

invoke the PROMULA Text Editor or use the RUN DOS command to invoke your own file viewing system.

See the RUN EDITOR and RUN DOS statements.

The display will be clipped to the width of the window opened to the Main screen.

Examples:

1. The statement

BROWSE FILE "demo.prm"

will display the file demo.prm for browsing.

2. Similarly, the following statements

DEFINE VARIABLE
 fname TYPE=STRING(12) "File Name"
END

fname="demo.prm"

Promula Application Development System User's Manual

104

BROWSE FILE fname

will display the file demo.prm for browsing. Here, fname is a string variable containing the string demo.prm.

3.7.10 BROWSE function
Purpose:

Displays the values of a function in tabular form for browsing.

Syntax:

BROWSE func[fmt] [TITLE(text)]

Remarks:

func is the identifier of a function defined by the DEFINE FUNCTION or DEFINE LOOKUP statement.

fmt is a format specification of the form \p:w:d to indicate the position of the display, the width of the values

displayed, and the number of decimals in real values, where

p is an integer indicating the width in characters of the row descriptors for the display.

w is an integer indicating the width of the columns of values. A negative width parameter left justifies the

values in each column.

d is an integer indicating the number of decimal places to be displayed for each value. If d is an "E", the

values will be displayed in exponential notation.

For functions defined by the DEFINE LOOKUP statement, the default format is p=10, w=8 and d=2.

For functions defined by the DEFINE FUNCTION statement, w and d have the values specified in the DEFINE

VARIABLE statement for the function variables, and p is the width specified in the definition of the row

descriptors of the set subscripting the function.

text is a title for the display and can contain text, variables, and other formatting characters as described in the WRITE

text statement.

Upon execution, the BROWSE function statement clears the Main Screen and displays the values of the function in

tabular form for browsing. A prompt in the Prompt Screen will tell the user how to browse the function.

Examples:

The BROWSE function statement is illustrated below:

DEFINE SET
 pnt(60)
END SET

DEFINE VARIABLE
 x(pnt) "The X values"
 y(pnt) "The Y values"
 p(pnt) "PNT Names" TYPE=STRING(10)
END VARIABLE
x(i) = i
y(i) = i**2

Promula Application Development System User's Manual

105

p(i) = "PNT# "+i
SELECT ROW(pnt,p)

DEFINE FUNCTION
 fx(x,y)
END FUNCTION

Given the definitions above, the statement

BROWSE fx:10:4,
TITLE("Y=f(x)=x**2"/"-------------------------")

would clear the Main Screen and produce a tabular display of function fx for browsing as shown below.

 PNT# 1 1.00 1.00

 PNT# 3 3.00 9.00

 Y=f(x)=x**2

 (1) (2)

 PNT# 2 2.00 4.00

 PNT# 4 4.00 16.00

 PNT# 5 5.00 25.00

 PNT# 6 6.00 36.00

 PNT# 7 7.00 49.00

 PNT# 8 8.00 64.00

 PNT# 9 9.00 81.00

 PNT# 10 10.00 100.00

 PNT# 11 11.00 121.00

 PNT# 12 12.00 144.00

 PNT# 13 13.00 169.00

 PNT# 14 14.00 196.00

 PNT# 15 15.00 225.00

 PNT# 16 16.00 256.00

 PNT# 17 17.00 289.00

 PNT# 18 18.00 324.00

 PNT# 19 19.00 361.00

 End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

3.7.11 BROWSE menu
Purpose:

Displays a "data" menu including the values of its data fields. This statement is useful for displaying a screen of text and

data.

Syntax:

BROWSE menu(vars)

Remarks:

menu is the identifier of a data menu. A data menu is a screen template which is designed to help its user to edit and

display data. The fields in a data menu are previously defined in a DEFINE MENU statement.

Promula Application Development System User's Manual

106

vars is a list of variable identifiers that contain the values of the data fields to be displayed. The variables in the list

must be in the same order as the data fields in the menu (from left to right and top to bottom) to which they

correspond.

Data menus contain a number of data fields to be displayed by the user. In the DEFINE MENU statement, each data field

is denoted by a series of contiguous "at signs", @, or "tilde signs", ~, equal in number to the desired number of digits in the

data field. The data fields are ordered from left to right and from top to bottom of the menu template.

Upon execution, the data menu is displayed in the Main Screen. The values of the variables are displayed in the places

marked by @ or ~ characters. Execution pauses, and the user is allowed to view, but not modify, the values in the menu.

When the user is ready to continue, he/she presses a key or clicks the mouse button.

The use of the BROWSE menu statement is especially helpful if you want to show a data menu in read-only mode.

3.7.12 BROWSE SET
Purpose:

Produces a full or partial listing of the sets in a program for browsing.

Syntax:

BROWSE SET[(sets)]

Remarks:

sets is a list of set identifiers. If sets is omitted, all the program sets are listed in the order in which they were defined;

otherwise, selected sets are listed in the order specified by sets.

Upon execution, PROMULA clears the Main Screen and lists the identifiers (codes) and descriptors of the specified sets. A

prompt appears in the Prompt Screen describing how to browse the list.

Examples:

Given the folowing definitions

DEFINE SET
 month(12) "12 Months"
 row(04) "04 Months"
 col(10) "10 columns"
END

the statement

BROWSE SET

produces the display below for browsing.

Promula Application Development System User's Manual

107

 Ident Description

 MONTH 12 Months

 ROW 04 Rows

 COL 10 Columns

 Press any key to continue

3.7.13 BROWSE set
Purpose:

Shows the selection keys, descriptors, order, and range of the currently active elements of a set.

Syntax:

BROWSE set

Remarks:

set is the identifier of the set being shown.

Upon execution, the BROWSE set statement clears the Main Screen and lists the elements of set for browsing.

Examples:

DEFINE SET
 month(12)
END SET
DEFINE VARIABLE
 mn(month) "Month Name" TYPE=STRING(12)
END VARIABLE
READ mn:4
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
SELECT ROW(month,mn)

Given the definitions and relations above, the statement BROWSE month, produced the display below.

3.7.14 BROWSE TABLE
Purpose:

Displays a table of several variables on the screen to let you browse their values by page.

Promula Application Development System User's Manual

108

Syntax:

BROWSE TABLE(sets) [,TITLE(title)] [,FORMAT(rw,cw)]
BODY(["text1",] var1[fmt1] [,"text2",] var2[fmt2],...)

Remarks:

sets is a list of the identifiers of the sets classifying columns and pages of the variables in the table. The first set

will classify the columns of the table; the other sets, if any, will classify the pages of the table. Sets

dimensioning table variables which are missing from the list will classify the rows of the table. The sets list

sets must contain at least one set (or the number 1 for browsing a group of scalar variables) and must be

missing those set identifiers which will classify the rows of the multidimensional table variables.

title is text you wish to show as a title for the table.

text1 is any text that you wish to use as a subtitle for the values of var1. This text may not contain variables.

var1 is the identifier of the first variable in the table.

fmt1 is the desired format for the values of var1.

text2 is any text that you wish to use as a subtitle for the values of var2. This text may not contain variables.

var2 is the identifier of the second variable in the table.

fmt2 is the desired format for the values of var2.

rw is the width in characters of row descriptors.

cw is the width in characters of table columns.

Upon execution, the BROWSE TABLE statement clears the Main Screen, displays the first page of the table, and issues

the following prompt at the bottom of the Prompt Screen:

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

The highlighted portions of the message represent the following keypress options:

Fn press the Fn function key to browse up the nth dimension of the array, where n varies

from 1 to 10. The F1 key browses up the 1st dimension, the F2 key browses up the 2nd

dimension, and so forth.

Shift-Fn press simultaneously the Shift and Fn keys to browse down the nth dimension of the

array. The Shift-F1 key browses down the 1st dimension, the Shift-F2 key browses

down the 2nd dimension, etc.

Browsing

keys

The four movement arrows at the right-hand section of the keyboard allow you to move

the cursor to the desired value. The PgUp and PgDn keys are used to move up and

down the pages of the display.

Home moves the cursor to the "top" of the display, which is the first value on the screen.

End press the End key to exit editing mode or to exit browsing mode.

Examples:

Promula Application Development System User's Manual

109

The following program demonstrates the BROWSE TABLE statement:

DEFINE SET
 row(5)
 col(10)
END SET

DEFINE VARIABLE
 a(row,col) "A Data Set"
 b(row,col) "B data set"
 tot(col) "The Total of A and B"
END VARIABLE

DEFINE PROCEDURE brstab
SELECT WIDTH=70
BROWSE TABLE(col),
 TITLE("The Table Title"),
 FORMAT(20,10),
 BODY(tot:0:1/"The A Values"/,a:0:2,/"The B Values"/,b)
END PROCEDURE brstab

a = 1
b = 2
tot(c) = SUM(r)(a(r,c) + b(r,c))

Executing procedure brstab produces the display below.

 The Total of A and B 15.0 15.0 15.0 15.0 15.0

 The A Values

 ROW(1) 1.00 1.00 1.00 1.00 1.00

 ROW(4) 1.00 1.00 1.00 1.00 1.00

 ROW(2) 2 2 2 2 2

 The Table Title

 COL(1) COL(2) COL(3) COL(4) COL(5)

 ROW(2) 1.00 1.00 1.00 1.00 1.00

 ROW(3) 1.00 1.00 1.00 1.00 1.00

 ROW(5) 1.00 1.00 1.00 1.00 1.00

 The B Values

 ROW(1) 2 2 2 2 2

 ROW(3) 2 2 2 2 2

 ROW(4) 2 2 2 2 2

 ROW(5) 2 2 2 2 2

 End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

Pressing the F2 key, "browses up" the column or second dimension, as shown in the screen below:

Promula Application Development System User's Manual

110

 The Table Title

 COL(6) COL(7) COL(8) COL(9) COL(10)

 The Total of A and B 15.0 15.0 15.0 15.0 15.0

 The A Values

 ROW(1) 1.00 1.00 1.00 1.00 1.00

 ROW(2) 1.00 1.00 1.00 1.00 1.00

 ROW(3) 1.00 1.00 1.00 1.00 1.00

 ROW(4) 1.00 1.00 1.00 1.00 1.00

 ROW(5) 1.00 1.00 1.00 1.00 1.00

 The B Values

 ROW(1) 2 2 2 2 2

 ROW(2) 2 2 2 2 2

 ROW(3) 2 2 2 2 2

 ROW(4) 2 2 2 2 2

 ROW(5) 2 2 2 2 2

 End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

Note that this page shows columns six through ten of the table. Note also that the primary descriptors of set row are used as

the row descriptors of the table. This is because set row was deliberately omitted from the sets specification in the

BROWSE TABLE statement for this example.

See also the DEFINE TABLE, EDIT TABLE, and WRITE TABLE statements.

3.7.15 BROWSE TEXT
Purpose:

Displays text for browsing in the Action Window (Basic Windows) or the Main Screen (Advanced Windows).

Syntax:

BROWSE TEXT
 text
 ...
END

Remarks:

text is any text that you enter.

The keyword END must be entered starting in column 1 and must be capitalized.

Upon execution, the text will be shown by page in the Action Window or the current Main Screen of the display. A prompt

at the bottom of the Prompt Screen will let you browse the text. The text will be clipped to the width of the window opened

to the Main Screen or the Action Window. No more than 255 lines (approximately 40 pages) of text may be stored in a

single BROWSE TEXT statement.

Promula Application Development System User's Manual

111

For more details, see the discussion of the PROMULA noun Window.

3.7.16 BROWSE TOPIC
Purpose:

Browse a specific topic from a dialog file.

Syntax:

BROWSE TOPIC filespec n

Remarks:

filespec is a quoted string or string variable containing the name of the physical disk file where the dialog file that you

desire to browse is stored. This name is formatted according to the file naming conventions for your operating

system.

n is the dialog topic sequence number, as defined by its place in the dialog file, of the specific topic you wish to

browse.

Upon execution, the BROWSE TOPIC statement displays the specified topic for browsing.

Examples:

The use of this statement is demonstrated in the context of the example given in the DEFINE DIALOG statement.

3.7.17 BROWSE VARIABLE
Purpose:

Produces a full or partial listing of the variables in a given program for browsing.

Syntax:

BROWSE VARIABLE [(vars)]

Remarks:

vars is a list of variable identifiers. If vars is omitted, the variables are listed in the order in which they were defined;

otherwise, the sets are listed in the order specified by vars.

The BROWSE VARIABLE statement differs from the AUDIT VARIABLE statement in that it lets you interactively

browse a "long" list of variables while the audit does not.

Examples:

Given the definitions below:

DEFINE VARIABLE
 a "The A Value"
 b "The B Value"
 c "The C Value"
END VARIABLE

the statement BROWSE VARIABLE produces the following display.

Promula Application Development System User's Manual

112

 Ident Description

 A The A Value

 B The B Value

 C The C Value

 Press any key to continue

3.7.18 BROWSE variable
Purpose:

Displays a multidimensional variable on the screen and lets you browse its values by page.

Syntax:

BROWSE var[fmt][[ORDER](sets)][TITLE(title)][DISPLAY(dvar)][option][TRANSPOSE]

Remarks:

var is the identifier of the variable you wish to browse.

fmt is a format specification indicating the width of row descriptors, the width of the columns displayed, and the

number of decimals in real values, as follows:

\p:w:d

where

p is an integer specifying the width in characters for row descriptors. The default width is the width

specifications of the row descriptors related to the set subscripting the rows of the display.

w is an integer specifying the width in characters for each column of values. The default is the width

specification in the definition of var. A negative width parameter left justifies the values of var in each

column.

Promula Application Development System User's Manual

113

d is an integer specifying the number of decimals to display for real numeric values. The default is the

decimal specification (if applicable) in the definition of var. If d is an "E", the values of var will be displayed

in exponential notation (base-10), and will show seven digits and six decimal places.

If omitted, w and d are the parameters specified in the TYPE specification for var, and p is the width

specifications of the row descriptors related to the set sub-scripting the rows of the display.

sets is a list of the sets classifying the values of var. The order in which the sets are listed specifies the structure of

the display: the first set classifies the rows of the display, the second set classifies the columns, and the third to

last set classify the pages of the display. The keyword ORDER is optional. If it is omitted, sets specification

must follow immediately after the optional format specification.

title is any text you wish to show as a title for the table. The title may include variables, and other format characters

according to the rules defined in the WRITE variables statement.

dvar is a variable used to control the display of variable var. dvar should be subscripted by the set that defines the

rows of the display. PROMULA will display values of var only for those rows corresponding to elements of dvar

that contain nonzero values. See Example 4 below.

option is one of the following mutually exclusive BROWSE variable options:

TOTAL[(sets)] displays totals over the selected sets for browsing along with values of var. If sets is omitted,

all the marginal and grand totals for var will be displayed.

PERCENT(set) displays the percent distribution of the total over set of var.

CHANGE(n) The CHANGE option allows the user to show a table of percent change in time series data

for a previously defined time series variable. A time series variable is one which is

subscripted by a time series set.

The percent change for time t is computed from values for time t and t-1, where t and t-1 are

two consecutive selections of the time set. The selections depend on the current local setting

of the set. They may or may not be consecutive time points. There may be more than one

time unit between them.

Following the keyword, CHANGE, a real number within parentheses is required. It

represents the number of time units to be used in computing percent change. Internally it is

divided by the difference in time values for selections t and t-1.

Suppose values for 1970 and 1975 are used in computing the percent change. That is, the

user has selected these years for computation and output generation. Also, he wants to

compute an annual percent change, so one time unit (a year) is designated on the CHANGE

option (CHANGE(1)). The change for 1975 is computed as the difference in values for 1970

and 1975, divided by the 1970 value, and multiplied by 1/5 (for annual change). A factor of

100 gives the percent change from 1970 to 1975 in one year increments.

In the tabular display the words, Percent Change in, are placed in front of the original

descriptor (from the variable definition). If the TITLE option is used with the CHANGE

option, no words are prefixed.

GROWTH(n) The GROWTH option allows the user to show a table of growth rates in time series data for

a previously defined time series variable. n is an integer constant that specifies the number

of time units with which each change is associated. A time series dataset or array is one

which is subscripted by a time series set. The growth rate for time t is computed from values

for time t and t-1.

Promula Application Development System User's Manual

114

Following the keyword, GROWTH, a real number within parentheses is required and

stands for the number of time units between each pair of values for which growth rate will

be computed. Internally, it is divided by the difference in time values for selected t and t-1.

Suppose the user has selected 1970 and 1975 and wishes to show annual growth rates

(GROWTH(1)). The growth rate for 1975 is computed as a quotient — value for 1975 divided

by value for 1970 — raised to the power 1/5 (1.0/(1975-1970)). One is subtracted from this

quantity to get a growth rate, and a factor of 100 gives the final result as a percent rate from

1970 to 1975 in one year increments.

 In the tabular display, the words, Growth Rate in, are placed in front of the original title

unless a TITLE option is specified.

MOVING(n) The MOVING option allows the user to show a table of moving averages in time series

data for a previously defined time series array. Following the keyword MOVING, an integer,

n, within parentheses, gives the number of single unit time increments over which the

moving average is computed. The moving av-erage for time t is computed from values for

time t,...,t(n-1), where the t's are consecutive time points. They are not consecutive time set

selections, based on a local setting of the time set. Rather, they are time points as defined by

the time values related to the set subscripting var.

In the tabular display the words, Moving Average for, are placed in front of the original

title unless the TITLE option is specified.

If the keyword TRANSPOSE is included with the statement and the structure for the display is not explicitly specified, the

display will be transposed. This means that the first and last dimensions of the default display will be swapped.

Upon execution, the BROWSE variable statement clears the screen, displays the first page of the array and issues the

following message at the bottom of the display:

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

The highlighted portions of the message represent the following options:

Fn press the Fn function key to browse up the nth dimension of the array, where n varies from 1 to 10.

The F1 key browses up the 1st dimension, the F2 key browses up the 2nd dimension, and so forth.

Shift-Fn simultaneously press the Shift and Fn keys to browse down the nth dimension of the array. The

Shift-F1 key browses down the 1st dimension, the Shift-F2 key browses down the 2nd dimension,

etc.

Browsing keys The four movement arrows at the right-hand section of the keyboard allow you to move the cursor

to the desired value. The PgUp and PgDn keys are used to move up and down the pages of the

display.

Home moves the cursor to the "top" of the display, which is the first value on the screen.

End press the End key to exit editing mode or to exit browsing mode.

Examples:

1. Given the following definitions:

DEFINE SET
 row(3)

Promula Application Development System User's Manual

115

 col(2)
 page(2)
END SET
DEFINE VARIABLE
 a(row,col,page) "A 3-Dimensional Array"
END VARIABLE

the statement BROWSE a clears the screen and produces the following display:

 A 3-Dimensional Array

 PAGE(1)

 COL(1) COL(2)

 ROW(1) 0 0

 ROW(2) 0 0

 ROW(3) 0 0

 End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

Pressing the F3 key, "browses up" the page or third dimension, as shown in the screen below:

Promula Application Development System User's Manual

116

 A 3-Dimensional Array

 PAGE(1)

 COL(1) COL(2)

 ROW(1) 0 0

 ROW(2) 0 0

 ROW(3) 0 0

 End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

Pressing the Shift and F3 keys simultaneously, "browses down" the third dimension, as shown in the screen below:

 A 3-Dimensional Array

 PAGE(1)

 COL(1) COL(2)

 ROW(1) 0 0

 ROW(2) 0 0

 ROW(3) 0 0

 End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

NOTE: Pressing the F1 and F2 keys do not have any effect in this example, since all elements of both the "row"

and "column" dimensions of the array fit within the screen.

2. The following dialog illustrates the BROWSE variable options.

\
DEFINE SET

Promula Application Development System User's Manual

117

 yr(5), "The Years"
 END SET

 DEFINE VARIABLE
 yval(yr) "The Year Values"
 value(yr) "A Time Series" TYPE=REAL(30,2)
 END VARIABLE

 DEFINE RELATION
 TIME(yr,yval)
 END RELATION

 yval(y) = 69 + y
 value(y) = 10 * y

 BROWSE value TOTAL
 A Time Series

 Total 150.00
 70 10.00
 71 20.00
 72 30.00
 73 40.00
 74 50.00

 BROWSE value PERCENT(yr)
 Percent Distribution of A Time Series

 Total 100.00
 70 6.67
 71 13.33
 72 20.00
 73 26.67
 74 33.33

 BROWSE value GROWTH(1)
 Growth Rate in A Time Series

 71 100.00
 72 50.00
 73 33.33
 74 25.00

BROWSE value CHANGE(1)
 Percent Change in A Time Series

 71 100.00
 72 50.00
 73 33.33
 74 25.00

 BROWSE value MOVING(2)
 Moving Average for A Time Series

 71 15.00
 72 25.00
 73 35.00
 74 45.00

Promula Application Development System User's Manual

118

3. The example below illustrates how to browse a variable directly from an array disk file.

Suppose you have created an array database and you wish to access one of its variables. The name of the database is

array.dba and the name of the variable is sales. The example below shows how to browse the variable sales directly. In

fact, the file:variable notation may be used to access any variable in an array file. See Chapter 4 for more information on

working with PROMULA's array files.

DEFINE FILE
 f1
END

OPEN f1 "array.dba"

Once the array file is opened, its variables may be accessed directly using the file:variable notation. For example, the

statement BROWSE f1:sales displays the disk variable sales on file f1 as shown below.

 (1)

 Sales by Year ($1000)

 (1) 10,000

 (2) 12,000

 (3) 13,000

 End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

The syntax for such direct reference of disk variables is: file:var, where file is the array file containing the variable var

that you wish to access. The notation file:set may be used to refer to sets on an array file.

Variables on a disk file may also be browsed directly by using the COPY file IMAGE statement.

4. The example below illustrates the DISPLAY option of the BROWSE variable statement. There are no values shown

for rows 1 and 6 of the display because variable dvar contains a zero in these rows.

DEFINE SET
 tst(2) "Tests"
 grd(10) "Grade Ranges"
END SET

DEFINE VARIABLE
 cnt(grd,tst) TYPE=REAL(8,1) "Frequency by class and grade range"
 grdn(grd) TYPE=STRING(20) "Grade Range Names"
 dvar(grd) TYPE=REAL(8,0) "Display Flag" VALUE=1

Promula Application Development System User's Manual

119

END

DO grd
 READ (grdn:13)
END grd
CLASS A
 100-75
 74-50
 49-25
 24-0
CLASS B
 100-75
 74-50
 49-25
 24-0
READ cnt(tst,grd)
0 12 32 21 6 0 16 34 18 7
0 11 33 15 12 0 18 30 20 7
dvar(1)=0
dvar(6)=0

SELECT KEY(grd,grdn)

The statement BROWSE cnt:20:1 DISPLAY(dvar) produces the display below.

 Frequency by class and grade range

 TST(1) TST(2)

 CLASS A

 100-75 12.0 11.0

 74-50 32.0 33.0

 49-25 21.0 15.0

 24-0 6.0 12.0

 CLASS B

 100-75 16.0 18.0

 74-50 34.0 30.0

 49-25 18.0 20.0

 24-0 7.0 7.0

 End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

3.7.19 CLEAR file
Purpose:

Saves the contents of an open file on disk and then closes the file.

Syntax:

Promula Application Development System User's Manual

120

CLEAR file

Remarks:

file is the logical identifier of the open file that you wish to save and close.

A logical file identifier is created by the DEFINE FILE statement. A file is physically opened with the OPEN file

statement.

See the description of the PROMULA noun File for more information about PROMULA's file system.

3.7.20 CLEAR variable
Purpose:

Clears scratch variables from memory.

Syntax 1:

CLEAR *

Clears all scratch variables from memory.

Syntax 2:

CLEAR (vars)

Clears only specified scratch variables from memory.

Remarks:

vars is the list of those variable identifiers that are to be cleared.

The values of a scratch variable are not stored permanently in memory; they can be cleared or scratched from memory

when you need to make room for the values of other variables. This statement gives you the power to do what is sometimes

called "dynamic memory allocation." This is discussed in more detail in Chapter 4.

Examples:

The code below defines variables of four types:

DEFINE VARIABLE
 fixd, "A Fixed Variable"
END VARIABLE

DEFINE VARIABLE SCRATCH
 scr, "A Scratch Variable"
END VARIABLE

DEFINE SET
 row(3)
END SET

DEFINE FILE
 filea TYPE=ARRAY
END FILE

Promula Application Development System User's Manual

121

OPEN filea "filea.dba",STATUS=NEW
DEFINE VARIABLE filea
 dsk(row), "A Disk Variable on 'filea'"
END VARIABLE

DEFINE VARIABLE
 rp
 dd, "A Dynamic Disk Variable", DISK(filea,dsk(rp))
END VARIABLE

The variable fixd occupies a fixed space in memory and cannot be cleared by the CLEAR statement.

The variable scr is a scratch variable and can be cleared from memory by the CLEAR statement.

The variable dsk is a disk variable, its three values are permanently stored on disk, in a file named filea.dba.

The variable dd is a dynamic scalar subset of the disk variable dsk; its single value is related to one of the three values of the

variable dsk. Variable dd may be cleared from memory by the CLEAR statement.

The dialog below shows that the four variables initially have the value zero:

 WRITE fixd
 A Fixed Variable 0

 WRITE scr
 A Scratch Variable 0

 WRITE dsk

A Disk Variable on 'filea'

ROW(1) 0 ROW(2) 0 ROW(3) 0

 WRITE dd
 A Dynamic Disk Variable 0

The following statements:

fixd = 10
scr = 20
READ dsk
1 2 3

rp = 2
READ DISK dd

put values into the variables:

 WRITE fixd
 A Fixed Variable 10

 WRITE scr
 A Scratch Variable 20

 WRITE dsk

Promula Application Development System User's Manual

122

A Disk Variable on 'filea'

ROW(1) 1 ROW(2) 2 ROW(3) 3

 WRITE dd
 A Dynamic Disk Variable 2

The statement

CLEAR*

clears the values of the scratch variable, scr, from memory; the fixed variable fixd, and the disk variable, dsk, are not

effected as can be verified in the dialog below:

WRITE fixd
A Fixed Variable 10

WRITE scr
A Scratch Variable 0

WRITE dsk

A Disk Variable on 'filea'

ROW(1) 1 ROW(2) 2 ROW(3) 3

The treatment of dynamic variables, such as dd, is a little more difficult to illustrate. dd is cleared from memory by the

CLEAR statement, but as soon as it is referenced in an expression, such as a WRITE statement, or used in the right-hand-

side of an equation, PROMULA automatically reads it in from disk. The dialog below illustrates this behavior.

STATEMENTS MEANING

dd = 100

Variable dd is given a value via an equation.

WRITE dd

A Dynamic Disk Variable 100

rp = 2 Variable dd is given a value via an explicit
READ DISK dd READ DISK statement.
WRITE dd

A Dynamic Disk Variable 2

rp = 3 Variable dd is given a value via an implicit read
disk

WRITE dd operation that occurs after it is CLEARed from
A Dynamic Disk Variable 2 memory then used in a WRITE statement.
CLEAR dd

WRITE dd

A Dynamic Disk Variable 3

rp = 1 Variable dd is given a value via an implicit read
disk

CLEAR dd operation that occurs after it is CLEARed from
scr = dd memory then used on the right-hand-side of an
WRITE scr equation.

Promula Application Development System User's Manual

123

A Scratch Variable 1

WRITE dd

A Dynamic Disk Variable 1

3.7.21 CLEAR WINDOW
Purpose:

Tells PROMULA to stop using a user-defined window as the display area for a functional screen.

Syntax:

CLEAR type

Remarks:

type is the type of functional screen to be returned to its default behavior, and can be one of the following:

 MAIN the Main input/output Screen

 PROMPT the Prompt Screen

 COMMENT the Comment Screen

 ERROR the Error Screen

 HELP the Help Screen

This statement ends the association between a window and a functional screen that was started by a previous OPEN

WINDOW statement.

The effect of this statement depends on the popup type of the window that was opened to the functional screen being

cleared.

Clearing a screen that was opened to a popup window (i.e., a window that was defined with the POPUP option),

immediately removes the window from the display. Furthermore, any text that was covered by the window will be

redrawn.

Clearing a screen area that was opened to a static window only ends the association between the window and the

screen. The window and its contents remain on the screen.

To permanently erase a static window from the display after closing it, you must clear the display with the statements

CLEAR MAIN
WRITE CLEAR(0)

Alternatively, you may "erase" a window by opening a static window on top of it (i.e., by covering it up).

See also DEFINE WINDOW and OPEN WINDOW statements, and the discussion of Advanced Windows.

3.7.22 [COMPUTE] Equation
Purpose:

Makes the value (or values) of a variable equal to the value (or values) of a numeric or character expression.

Syntax:

[COMPUTE] var[(subs)] = expression[(subs)]

Remarks:

var is a variable identifier.

Promula Application Development System User's Manual

124

subs is a list of set identifiers or dummy subscripts. When used, such subscripts denote multiple equations that

apply to the cells of multidimensional arrays.

expression is a numeric or character expression.

Examples:

The verb COMPUTE is required for use with the expressions involving the set colon operators. For example, given the

definition below

DEFINE SET
 rec(100)
END SET

the statements

COMPUTE rec:R = 50
SELECT rec*

will redefine the default size of set rec changing it from 100 to 50.

The length of the rec's selection vector may be set to 10 elements by the statement

COMPUTE rec:N = 10

The set may be restored to its original size by the statements

COMPUTE rec:R = rec:M
SELECT rec*

There are many examples of equations in the discussion of the PROMULA nouns Equation and Expression.

3.7.23 COPY
Purpose:

1. Copies the data and structure of an array file into another array file, or copies the definition, and optionally the data, of

an array file to a text file or to an output device, such as the screen or the printer.

2. Copies the definition of an array file into memory so its variables can be directly accessed by PROMULA without

having to include the file structure definition or any disk variable definitions in your program. See the discussion of

data management in Chapter 4.

Syntax 1:

COPY file1 [INTO file2] [varspec] [DATA] [RAW]

Remarks:

Syntax 1 is typically used to make full or partial copies of an array database or to generate a listing of its structure and/or

data.

file1 is the identifier of the source (input) file. This must be an existing array file, i.e., has been opened with

STATUS=OLD

Promula Application Development System User's Manual

125

file2 is the identifier of the target (output) file. This must be a new array or text file, i.e., has been opened with

STATUS=NEW. If the INTO file2 option is omitted, the results of the copy will be written to the current

output device(s), screen and/or printer.

varspec a list of variables in file1 to be copied and may take one of the following forms.

INCLUDE(vars) specifies a partial copy to file2 that includes only selected variables from file1. Where

vars is the list of variables in file1.

EXCLUDE(vars) specifies a partial copy to file2 that excludes selected variables from file1. Where vars is

the list of variables in file1.

If varspec is omitted, all the variables in the dataset are included in the copy.

The varspec option may only be used with array files.

DATA indicates that both the structure and values of selected variables in file1 are to be copied. Here, structure means

the set, variable, and relation definitions in file1.

When making a text copy of an array file using the DATA option, local set selections are obeyed and the

relevant SELECT set statements are written in the output. See Example 5.

RAW indicates that you wish to make a raw copy of file1 in file2. This copy works like your operating system’s

generic file copy command. This is the quickest mode of the COPY statements and may not be used with any

other options.

Syntax 2:

COPY file IMAGE

Remarks:

file is the identifier of the array file containing the data you wish to access.

Syntax 2 reads the set, variable, and relation definitions of an array file into memory giving PROMULA direct access to

the information in the file.

This is an alternative to using local variables to virtually access disk variables in an array file.

Although this feature requires less programming, it does not give you full control over how large array variables are

"paged" into memory for processing. The variables remain on disk and are accessed directly, (i.e., the values of the

variables are accessed on disk and are not read into memory.)

In summary, the COPY statement allows four types of copy operations:

1. Copy from one binary data file to another. This is an efficient way to make copies of binary (array and random) files

for direct use by PROMULA. If a full copy of structure and data is desired, use the RAW option for maximum copying

speed.

2. Copy from an array to a text file. This is a way to convert binary data files into text data files that may be used as text

data by other PROMULA programs or by other software.

3. Copy an array file to an output device — the console or printer.

4. Copy an array file definition into memory for direct access using an IMAGE copy.

Promula Application Development System User's Manual

126

Examples:

The following examples of the COPY statement make copies of a database called original.dba. The definition of this

database is shown below.

DEFINE FILE
 orignl TYPE=ARRAY "Original Database"
END FILE

OPEN orignl "original.dba" STATUS=NEW

DEFINE SET orignl
 rec(4)
 col(6)
END SET orignl

DEFINE VARIABLE orignl
 a(rec,col) TYPE=REAL(10,1) "The A Matrix"
 b(rec,col) TYPE=REAL(10,1) "The B Matrix"
 recn(rec) TYPE=STRING(10)
 coln(col) TYPE=STRING(10)
END VARIABLE orignl

DEFINE RELATION orignl
 ROW(rec,recn)
 COLUMN(col,coln)
END RELATION orignl

recn(i)= "ROW # " + i
coln(i)= "COL # " + i
a(i,j) = i+10*j
b(i,j) = i+10*j

Example 1: Copy to the Console

Given the definition of file original.dba above, the statement

COPY orignl

will display the full definition of file original.dba on the console. This output shows the names of the sets, variables and

relations stored in the original database.

 DEFINE FILE
 ORIGNL, TYPE=ARRAY
 END
 OPEN ORIGNL"ORIGNL.dba", STATUS=NEW
 DEFINE SET ORIGNL
 REC(4)
 COL(6)
 END
 DEFINE VARIABLE ORIGNL
 A(REC,COL), TYPE=REAL(10,1), "The A Matrix"
 B(REC,COL), TYPE=REAL(10,1), "The B Matrix"
 RECN(REC), TYPE=STRING(10)
 COLN(COL), TYPE=STRING(10)
 END
 DEFINE RELATION ORIGNL
 ROW(REC,RECN)

Promula Application Development System User's Manual

127

 COLUMN(COL,COLN)
 END

The statement

COPY orignl EXCLUDE (a,b) DATA

will display a partial definition of file original.dba. The EXCLUDE option tells PROMULA to exclude the variables a and b

from the report, and the DATA option causes the values of the remaining variables to be displayed along with their

definitions.

 DEFINE FILE
 ORIGNL, TYPE=ARRAY
 END
 OPEN ORIGNL"ORIGNL.dba", STATUS=NEW
 DEFINE SET ORIGNL
 COL(6)
 REC(4)
 END
 DEFINE VARIABLE ORIGNL
 COLN(COL), TYPE=STRING(10)
 RECN(REC), TYPE=STRING(10)
 END
 DEFINE RELATION ORIGNL
 COLUMN(COL,COLN)
 ROW(REC,RECN)
 END
 READ COLN:10
 COL # 1 COL # 2 COL # 3 COL # 4 COL # 5 COL # 6
 READ RECN:10
 ROW # 1 ROW # 2 ROW # 3 ROW # 4

Example 2: Full Copy — array file to array file

The next example illustrates how to make a full copy of the database in a separate disk file. This option is most useful for

making working or backup copies of your databases. The copy will behave exactly as the original.

The DATA option is required to have the values in the original file copied with the definitions.

After copying orignl into fulcpy, the COPY statement is used to display the contents of fulcpy on the console.

DEFINE FILE
 fulcpy TYPE=ARRAY "Full Copy of Original Database"
END FILE

OPEN orignl "original.dba" STATUS=OLD
OPEN fulcpy "fullcopy.dba" STATUS=NEW

COPY orignl INTO fulcpy DATA

After copying orignl into fulcpy, the COPY statement is used to display the contents of fulcpy on the console.

COPY fulcpy DATA

 DEFINE FILE
 FULCPY, TYPE=ARRAY

Promula Application Development System User's Manual

128

 END
 OPEN FULCPY"FULCPY.dba", STATUS=NEW
 DEFINE SET FULCPY
 REC(4)
 COL(6)
 END
 DEFINE VARIABLE FULCPY
 A(REC,COL), TYPE=REAL(10,1), "The A Matrix"
 B(REC,COL), TYPE=REAL(10,1), "The B Matrix"
 RECN(REC), TYPE=STRING(10)
 COLN(COL), TYPE=STRING(10)
 END
 DEFINE RELATION FULCPY
 ROW(REC,RECN)
 COLUMN(COL,COLN)
 END
 READ A:12:E
 1.100000E1 2.100000E1 3.100000E1 4.100000E1 5.100000E1 6.100000E1
 1.200000E1 2.200000E1 3.200000E1 4.200000E1 5.200000E1 6.200000E1
 1.300000E1 2.300000E1 3.300000E1 4.300000E1 5.300000E1 6.300000E1
 1.400000E1 2.400000E1 3.400000E1 4.400000E1 5.400000E1 6.400000E1
 READ B:12:E
 1.100000E1 2.100000E1 3.100000E1 4.100000E1 5.100000E1 6.100000E1
 1.200000E1 2.200000E1 3.200000E1 4.200000E1 5.200000E1 6.200000E1
 1.300000E1 2.300000E1 3.300000E1 4.300000E1 5.300000E1 6.300000E1
 1.400000E1 2.400000E1 3.400000E1 4.400000E1 5.400000E1 6.400000E1
 READ RECN:10
 ROW # 1 ROW # 2 ROW # 3 ROW # 4
 READ COLN:10
 COL # 1 COL # 2 COL # 3 COL # 4 COL # 5 COL # 6

The RAW copy is also useful for making a full working or backup copies of your databases and it is the fastest copy mode.

The copy will behave exactly as the original.

Example 3: COPY EXCLUDE, COPY INCLUDE

The next example illustrates how to make a partial copy of your database in a separate disk file.

The first copy uses the EXCLUDE option to exclude variable a from the copy. The second copy uses the INCLUDE

option to include only variables coln and recn in the copy. Notice that without the DATA option, the values in the original

file are not copied into the new file.

DEFINE FILE
 prtcpy TYPE=ARRAY "Partial Copy of Original Database"
END FILE

OPEN prtcpy "prtcpy.dba" STATUS=NEW
COPY orignl INTO prtcpy EXCLUDE(a)

After the copy, the statement COPY prtcpy DATA may be used to verify the results as displayed below.

 DEFINE FILE
 PRTCPY, TYPE=ARRAY
 END
 OPEN PRTCPY"PRTCPY.dba", STATUS=NEW
 DEFINE SET PRTCPY
 REC(4)
 COL(6)

Promula Application Development System User's Manual

129

 END
 DEFINE VARIABLE PRTCPY
 B(REC,COL), TYPE=REAL(10,1), "The B Matrix"
 RECN(REC), TYPE=STRING(10)
 COLN(COL), TYPE=STRING(10)
 END
 DEFINE RELATION PRTCPY
 ROW(REC,RECN)
 COLUMN(COL,COLN)
 END
 READ B:12:E
 0.000000E0 0.000000E0 0.000000E0 0.000000E0 0.000000E0 0.000000E0
 0.000000E0 0.000000E0 0.000000E0 0.000000E0 0.000000E0 0.000000E0
 0.000000E0 0.000000E0 0.000000E0 0.000000E0 0.000000E0 0.000000E0
 0.000000E0 0.000000E0 0.000000E0 0.000000E0 0.000000E0 0.000000E0
 READ RECN:10

 READ COLN:10

 CLEAR prtcpy

 OPEN prtcpy "prtcpy.dba" STATUS=NEW
 COPY orignl INTO prtcpy INCLUDE(coln,recn) DATA
 COPY prtcpy DATA
 DEFINE FILE
 PRTCPY, TYPE=ARRAY
 END
 OPEN PRTCPY"PRTCPY.dba", STATUS=NEW
 DEFINE VARIABLE PRTCPY
 RECN(REC), TYPE=STRING(10)
 COLN(COL), TYPE=STRING(10)
 END
 READ RECN:10
 ROW # 1 ROW # 2 ROW # 3 ROW # 4
 READ COLN:10
 COL # 1 COL # 2 COL # 3 COL # 4 COL # 5 COL # 6

Example 4: Full Copy — array file to text file

The following example shows how to make a copy of a database definition in a text file on disk.

DEFINE FILE
 txtcpy TYPE=TEXT "TEXT File For Copy"
END FILE

OPEN orignl "original.dba" STATUS=OLD
OPEN txtcpy "textcopy.prm" STATUS=NEW

COPY orignl INTO txtcpy DATA

CLEAR txtcpy
CLEAR orignl

The file textcopy.prm is shown below. This text file could be edited or used directly to create a copy of the original database.

 DEFINE FILE
 ORIGNL, TYPE=ARRAY

Promula Application Development System User's Manual

130

 END
 OPEN ORIGNL"ORIGNL.dba", STATUS=NEW
 DEFINE SET ORIGNL
 REC(4)
 COL(6)
 END
 DEFINE VARIABLE ORIGNL
 A(REC,COL), TYPE=REAL(10,1), "The A Matrix"
 B(REC,COL), TYPE=REAL(10,1), "The B Matrix"
 RECN(REC), TYPE=STRING(10)
 COLN(COL), TYPE=STRING(10)
 END
 DEFINE RELATION ORIGNL
 ROW(REC,RECN)
 COLUMN(COL,COLN)
 END
 READ A:12:E
 1.100000E1 2.100000E1 3.100000E1 4.100000E1 5.100000E1 6.100000E1
 1.200000E1 2.200000E1 3.200000E1 4.200000E1 5.200000E1 6.200000E1
 1.300000E1 2.300000E1 3.300000E1 4.300000E1 5.300000E1 6.300000E1
 1.400000E1 2.400000E1 3.400000E1 4.400000E1 5.400000E1 6.400000E1
 READ B:12:E
 1.100000E1 2.100000E1 3.100000E1 4.100000E1 5.100000E1 6.100000E1
 1.200000E1 2.200000E1 3.200000E1 4.200000E1 5.200000E1 6.200000E1
 1.300000E1 2.300000E1 3.300000E1 4.300000E1 5.300000E1 6.300000E1
 1.400000E1 2.400000E1 3.400000E1 4.400000E1 5.400000E1 6.400000E1
 READ RECN:10
 ROW # 1 ROW # 2 ROW # 3 ROW # 4
 READ COLN:10
 COL # 1 COL # 2 COL # 3 COL # 4 COL # 5 COL # 6

Example 5: Partial Copy — array file to text file using local set selections

The following example shows how to make a partial copy of a database definition in a text file on disk. In this case, local

set selections will restrict which data elements are be output by the DATA option. In order to use this feature, the sets on

the database and the local sets must have the same identifiers.

DEFINE FILE
 txtcpy TYPE=TEXT "TEXT File For Copy"
END FILE

OPEN orignl "original.dba" STATUS=OLD
OPEN txtcpy "textcopy.prm" STATUS=NEW

DEFINE SET
 rec(4)
 col(6)
END SET

SELECT rec(1-2) col*
COPY orignl INTO txtcpy DATA

CLEAR txtcpy
CLEAR orignl

The file textcopy.prm is shown below. This text file could be edited or used directly to create a partial copy of the original

database.

Promula Application Development System User's Manual

131

DEFINE FILE
ORIGNL, TYPE=ARRAY
END
OPEN ORIGNL "ORIGNL.dba", STATUS=NEW
DEFINE SET ORIGNL
REC(4)
COL(6)
END
DEFINE VARIABLE ORIGNL
A(REC,COL)TYPE=REAL(10,1), "The A Matrix"
B(REC,COL)TYPE=REAL(10,1), "The B Matrix"
RECN(REC)TYPE=STRING(10)
COLN(COL)TYPE=STRING(10)
END
DEFINE RELATION ORIGNL
ROW(REC,RECN)
COLUMN(COL,COLN)
END

SELECT REC(1,2) Notice that PROMULA inserts set selection statements
SELECT COL(3,5,6) here, and also restricts the range of data values for the
 READs.
READ A:12:E
 3.100000E1 5.100000E1 6.100000E1
 3.200000E1 5.200000E1 6.200000E1
READ B:12:E
 3.100000E1 5.100000E1 6.100000E1
 3.200000E1 5.200000E1 6.200000E1
READ RECN:10
ROW # 1 ROW # 2
READ COLN:10
COL # 3 COL # 5 COL # 6

Example 6: IMAGE Copy

The dialog below illustrates the use of the COPY IMAGE statement. The file arr1org.dba is an array file on disk.
 DEFINE FILE
 demo TYPE=ARRAY
 END FILE
 OPEN demo "arr1org.dba" STATUS=OLD
 COPY demo

 DEFINE FILE
 DEMO, TYPE=ARRAY
 END
 OPEN DEMO"DEMO.dba", STATUS=NEW
 DEFINE SET DEMO
 YRS(4), "yrs"
 SIC(4), "SIC"
 END
 DEFINE VARIABLE DEMO
 EMP(SIC,YRS), TYPE=REAL(8,0), "Employment by Industry"
 SICST(SIC), TYPE=STRING(30), "Names for Industrial Categories"
 YEAR(YRS), TYPE=STRING(5), "Years"
 END
 DEFINE RELATION DEMO
 KEY(YRS,YEAR)
 KEY(SIC,SICST)

Promula Application Development System User's Manual

132

 END

 * Notice no sets or variables are available before the COPY IMAGE

 AUDIT SET
 AUDIT VARIABLE

 * The COPY demo IMAGE statement will read in the set, variable and
 * relation definitions in the array file for virtual access

 COPY demo IMAGE

 * Notice all the sets and variables in arr1org.dba are now
 * available for use after the COPY IMAGE

 AUDIT SET
 Ident Description
 YRS yrs
 SIC SIC

 AUDIT VARIABLE
 Ident Description
 YEAR Years
 SICST Names for Industrial Categories
 EMP Employment by Industry

 WRITE emp
 Employment by Industry

 1990 1991 1992 1993
 TRANSPORTATION 1 2 3 4
 AGRICULTURE 2 4 6 8
 INFORMATION 3 6 9 12
 BANKING 4 8 12 16

3.7.24 DEFINE DIALOG
Purpose:

Defines a dialog file for later use as on-line help or menu driven documentation.

Syntax:

DEFINE DIALOG "filespec"
 intro
 ...
END
TOPIC "title1"
 text1
 ...
END
TOPIC "title2"
 text2
 ...
END
 ...

Promula Application Development System User's Manual

133

END [DIALOG]

Remarks:

filespec is the name of the physical disk file that will store the dialog file. This name is formatted according to the file

naming conventions for your operating system.

intro is the text introducing the dialog menu.

title1 is the title for the first topic (up to 25 characters).

text1 is the text of the first topic.

title2 is the title for the second topic.

text2 is the text of the second topic.

The keyword END must be entered starting in column 1 and must be capitalized.

You may specify as many topics as you wish provided the resultant dialog file menu fits in the Help Screen that will be

active when the dialog file is browsed.

Dialog files are PROMULA programs which consist of text organized into one or more topics. Each topic consists of:

1. A short title (up to 25 characters)

2. The topic text

The BROWSE DIALOG statement allows you to browse a dialog file. Upon execution of the BROWSE DIALOG

statement, the topic titles form a menu from which you may browse the topic texts in a menu-driven, conversational format

— hence its name.

The BROWSE TOPIC statement displays a specific topic for browsing.

The PROMULA Tutorial is a collection of dialog files which you may browse by selecting option 3 off the Main Menu.

Examples:

1. The following program illustrates the definition of a dialog file. This file has three topics, entitled:

 Introduction
 Lesson 1
 Lesson 2

 All topics have text associated with them.

 The executable file is stored on a disk file named b:dialog.tut.

DEFINE DIALOG "b:dialog.tut"
 PROMULA Primer

 The primer is a series of topics. Each topic contains text that you can
 browse.
END
TOPIC "Introduction"

Promula Application Development System User's Manual

134

 The primer is a series of lessons. The lessons are designed to show you
 how to write PROMULA programs. Though arranged in order of increasing
 complexity, the lessons may be run in any order.

 Sometimes the information displayed does not fit in the windows. Use the
 movement keys at the right end of your keyboard to browse long messages. The
 up and down arrows let you scroll one line at a time. The PgDn key displays
 the next page. The PgUp key displays the previous page. The Home key brings
 you back to the first page of the message.
END
TOPIC "Lesson 1"
 In this lesson, we discuss the DEFINE PROGRAM statement.

 In case you don't know, a "program" is a sequence of instructions that tell
 PROMULA what to do. A PROMULA instruction is called a "statement" or a
 "command."
END
TOPIC "Lesson 2"
 In this lesson we discuss the DEFINE VARIABLE statement, which is
 used to define the variables in your program.
END
END DIALOG

3.7.24.1 Executing the BROWSE DIALOG Statement

The statement BROWSE DIALOG "b:dialog.tut" produces the following display:

 PROMULA Primer

 The primer is a series of topics. Each topic contains text that you can

 browse.

 Introduction Lesson 1 Lesson 2

 End: Exit Arrows Home: Select Enter: Browse

In this menu, the topic Introduction is highlighted first. Use the movement keys to select a topic, and press the Enter key to

pick a topic for browsing. If you select the Lesson 2 topic, the screen below is displayed.

Promula Application Development System User's Manual

135

 In this lesson we discuss the DEFINE VARIABLE statement, which is

 used to define the variables in your program.

 Press any key to continue

3.7.24.2 Executing the BROWSE TOPIC Statement

The BROWSE TOPIC statement displays a specific topic from a dialog file.

To display the first topic in the dialog file use the following statement:

BROWSE TOPIC "b:dialog.tut", 1

This produces the following display:

Promula Application Development System User's Manual

136

 The primer is a series of lessons. The lessons are designed to show you

 how to write PROMULA programs. Though arranged in order of increasing

 complexity, the lessons may be run in any order.

 Sometimes the information displayed does not fit in the windows. Use the

 movement keys at the right end of your keyboard to browse long messages. The

 up and down arrows let you scroll one line at a time. The PgDn key displays

 the next page. The PgUp key displays the previous page. The Home key brings

 you back to the first page of the message.

 Press any key to continue

3.7.25 DEFINE FILE
Purpose:

Defines a file that may be used as a program database, an input datafile, or an output report file.

Syntax:

DEFINE FILE
 file [TYPE=type] ["desc"]
 ...
END

Remarks:

file is the file identifier.

type is the file type, and can be one of the following:

ARRAY for a random-access file of sets, variables, and relations. You can include as many sets,

variables, and relations per file as you wish (within the capacity of your disk space). Array

files are unique to PROMULA, they are especially well suited for the storage and retrieval of

multidimensional information.

TEXT for a sequential-access file of variable-length text records. Each record consists of items (or

fields or scalar variables) that are laid out in lines of variable length (up to a maximum of 255

characters per line).

RANDOM for a random-access file of fixed-length binary records. Each record consists of a fixed number

of variables. The variables of a random file may be scalar items, or multidimensional arrays.

You can specify as many variables per record as you wish (within the capacity of your

Promula Application Development System User's Manual

137

working space). You can include as many records as you wish (within the capacity of your

disk space).

INVERTED(n) for a random-access file of user-specified keys associated with the records of a random file.

An inverted file provides a fast and efficient way to search a random file with symbolic keys.

n is an efficiency parameter that should equal your best estimate for the number of records that

will match a given key. The safest but probably not the most efficient value for n is the

number of records in the random file. Inverted files with a larger n require more disk space but

they usually require less time to search.

If the TYPE clause is omitted from the file definition, the file will be assumed to be an array file.

desc is a file descriptor. This descriptor is only useful for program documentation purposes; it is an inline comment.

For an ARRAY or RANDOM file, the variables whose values are stored on file are defined by means of the DEFINE

VARIABLE file statement.

The OPEN file statement physically opens a file to the place on disk where the data that you want to access through file is

stored. Existing files should be opened STATUS=OLD, new files should be opened STATUS=NEW. A file must be

opened before it can be used.

The CLEAR file statement closes the disk file that was assigned to a file by a previous open.

The READ DISK and WRITE DISK statements allow you to explicitly transfer information between your program

memory space and the variables in an array file.

The READ file and WRITE file statements allow you to physically transfer information between your program memory

space and the variables in text and random files.

Examples:

The following statements

DEFINE FILE
 txt "TEXT file" TYPE=TEXT

 dbf "RANDOM File" TYPE=RANDOM

 dba "ARRAY File" TYPE=ARRAY

 dbi "INVERTED File" TYPE=INVERTED(10)
END FILE

define three files: txt, which is a text file that may be used for test input and output, dbf, which is a random type file, and

dba, which is an array file.

The structure of the array file, dba, could be used to contain weather data by the following code:

OPEN dba "wthr.dba" STATUS=NEW

DEFINE SET dba
 days(31) "Day"
 mons(12) "Month"
 year(10) "Year"
END SET dba

DEFINE VARIABLE dba

Promula Application Development System User's Manual

138

 wthdsc(days,mons,year) TYPE=STRING(20) "Description"
 hitemp(days,mons,year) TYPE=REAL(10,1) "High Temp"
 lotemp(days,mons,year) TYPE=REAL(10,1) "Low Temp"
 hihumd(days,mons,year) TYPE=REAL(10,2) "High Humidity"
 lohumd(days,mons,year) TYPE=REAL(10,2) "Low Humidity"
 hibarp(days,mons,year) TYPE=REAL(10,2) "High Barometric Pressure"
 lobarp(days,mons,year) TYPE=REAL(10,2) "Low Barometric Pressure"
END VARIABLE dba

CLEAR dba

Notice that an array file must be physically opened before its structure can be defined. This is because PROMULA

physically initializes the entire file when its structure is defined for the first time.

To add variables to an existing array file, open the file STATUS=OLD.

Alternatively, this weather data coud be set up with random and inverted files as follows:

DEFINE VARIABLE dbf
 wthdsc TYPE=STRING(20) "Description"
 hitemp TYPE=REAL(10,1) "High Temp"
 lotemp TYPE=REAL(10,1) "Low Temp"
 hihumd TYPE=REAL(10,2) "High Humidity"
 lohumd TYPE=REAL(10,2) "Low Humidity"
 hibarp TYPE=REAL(10,2) "High Barometric Pressure"
 lobarp TYPE=REAL(10,2) "Low Barometric Pressure"
 wthdat TYPE=DATE(10) "Date"
END VARIABLE dbf

DEFINE VARIABLE dbi
 datekey TYPE=DATE(10) "Date Key"
 daterec TYPE=INTEGER(10) "Record"
END VARIABLE dbi

Notice that random and inverted type files do not have to be opened when their structure is defined. Of course, they have to

be opened when they are accessed.

For examples of using random and inverted files, see the SELECT file statement.

For examples of reading and writing to text files, see the READ file and WRITE file statements.

For additional examples on the use of array file databases in transferring data to and from disk, see Chapter 4.

See also the COPY statement and the discussion of the file management functions FILEDELETE, FILEEXIST,

FILESIZE, FILENAME, FILEEXT, FILEPATH, and GETDIR.

3.7.26 DEFINE FUNCTION
Purpose:

Defines a single-valued function as the linear interpolation between points defined on the x-y plane. A function expresses

an arbitrary relationship of one variable, the y-variable, to another variable, the x-variable. It is defined in terms of two

arrays or variables. The first array contains the values of the x-variable while the second contains the values of the y-

variable. These variable values are the x-y coordinates of the points defining the function.

Syntax:

DEFINE FUNCTION

Promula Application Development System User's Manual

139

 func(arrx,arry)
 ifunc(arry,arrx)
 ...
END

Remarks:

func is the function identifier.

ifunc is the identifier of the inverse of function func. Note, the order of arrx and arry is reversed.

arrx is the identifier of the real fixed or scratch variable containing the x-coordinates of the points defining the function.

arry is the identifier of the real fixed or scratch variable containing the y-coordinates of the points defining the function.

arrx and arry must be local variables: they may not be disk variables or variables used to access disk variables.

arrx and arry must have the same set as their first dimension. This is the set that "indexes" the function. The second and

higher dimensions of arrx and arry will be fixed at the first element of their respective selection vectors when the value of

the function is computed.

Although it is allowed for the sets dimensioning the second and higher dimensions of arrx to be different from those

dimensioning arry, doing so will interfere with the displays produced by the WRITE, BROWSE, and PLOT function

statements.

Functions are used in conditional expressions and in arithmetic expressions on the right-hand side of equations to yield the

y-value corresponding to some x-value argument.

The value of a function for an arbitrary argument is obtained by 2-point linear interpolation between the points defining the

function. For an argument outside its domain, the function returns the y-value of the function's nearest end point.

The argument of a function may be a constant, a scalar, a multidimensional variable, an arithmetic expression of many

variables, or another function.

A function of x, y=func(x), gives you the value of y for a given value of x. The inverse function of x, x=ifunc(y), gives you

the value of x for a given value of y (see Example 2 below).

In addition to their computational use, functions may be displayed in tabular form with the BROWSE function and

WRITE function statements, and may be viewed in plotted form via the PLOT statement.

Examples:

1. The statements

DEFINE SET
 point(4)
END SET

DEFINE VARIABLE
 a(point) "x-coordinates"
 b(point) "y-coordinates"
 x
 y
END VARIABLE

DEFINE FUNCTION
 stepf(a,b)

Promula Application Development System User's Manual

140

END FUNCTION

READ a
-1 0 .00001 1
READ b
-1 -1 1 1

 define the step function y=stepf(x) shown below:

Y

X

() ()

(−)(−−)

The step discontinuity at (0,0) is represented approximately to within =0.00001. For an arbitrary argument x, the

expression y=stepf(x) yields a value y, as follows:

 y = +1 IF x > 0.00001
 y = -1 IF x = 0.0
 y = -1 IF x < 0.0

This is illustrated by the dialog below.

 x = -10
 y = stepf(x)
 WRITE y
 -1

 x = +10
 y = stepf(x)
 WRITE y
 1

2. Consider the arbitrary function shown below.

Promula Application Development System User's Manual

141

-4 -2 0 2 4

-30

-20

-10

0

10

20

30

40

An Arbitrary Function

X

Y

What are the values of y when x is -4, 1.5, or 2.6? What are the values of x when y is 18.2, 22, or 34? The dialog below

shows how to answer these questions.

 DEFINE SET
 dpnt(7) "Points Defining Function"
 xpnt(3) "Arbitrary Points"
 END SET
 DEFINE VARIABLE
 fx(dpnt) "Function X Values" TYPE=REAL(10,2) VALUE(-3,-2,-1,0,1,2,3)
 fy(dpnt) "Function Y Values" TYPE=REAL(10,2) VALUE(-20,0,10,16,20,24,30)
 x(xpnt) "Arbitrary X Values" TYPE=REAL(10,2)
 y(xpnt) "Arbitrary Y Values" TYPE=REAL(10,2)
 END VARIABLE
 DEFINE FUNCTION
 fun(fx,fy) "An Arbitrary Function"
 ifun(fy,fx) "The Inverse of an Arbitrary Function"
 END

 DEFINE PROCEDURE shofun
 WRITE TABLE(xpnt) TITLE("Function Values, y=fun(x)"),BODY(x,y),FORMAT(20,10)
 END
 READ x
 -4 +1.5 +2.6
 y=fun(x)
 shofun
 Function Values, y=fun(x)
 XPNT(1) XPNT(2) XPNT(3)
 Arbitrary X Values -4.00 1.50 2.60
 Arbitrary Y Values -20.00 22.00 27.60
 READ y
 18.2 22 34
 x=ifun(y)
 shofun
 Function Values, y=fun(x)
 XPNT(1) XPNT(2) XPNT(3)
 Arbitrary X Values 0.55 1.50 3.00
 Arbitrary Y Values 18.20 22.00 34.00

Promula Application Development System User's Manual

142

3.7.27 DEFINE LOOKUP
Purpose:

Defines a functional relationship between two sets of numbers.

Syntax:

DEFINE LOOKUP
 name(np) [xyoption]
END LOOKUP

Remarks:

name is the identifier of the function

np is the number of X-Y pairs that define the function.

xyoption is used to specify values for the ordered pairs in the function and is of the form

[X](X1,X2,...Xnp),Y(Y1,Y2,...,Ynp)

The X-Y option on the DEFINE LOOKUP statement is used to specify the independent, X, and dependent,

Y, values associated with the function.

Each list of values must contain the number of points defined for the function, np. The X- and Y-values that define a

function may also be specified via the READ function statement.

Functions defined by the DEFINE LOOKUP statement behave very much like functions defined by the DEFINE

FUNCTION statement. Both types of functions are used primarily on the right-hand-side of equations or in conditional

expressions. They yield, by linear interpolation or extrapolation, the Y-value corresponding to the specified argument, or X-

value. In this sense, a function is viewed as a set of ordered pairs of numbers that specify the X- and Y-coordinates of the

points defining the function. The argument used in the function call may be a numeric constant, a variable, or an arithmetic

expression.

The important difference between the two types of functions is that functions defined by the DEFINE FUNCTION

statement are related to a set that defines the number of X-Y pairs for the function and may contain descriptive information

for the X-Y pairs, and to a pair of arrays that contain the X-Y values. Changes in the set or in the X or Y arrays changes the

appearance and behavior of the function. Functions defined by the DEFINE LOOKUP statement, on the other hand, are

not related to sets or variables; they contain a fixed set of paired numbers which are identified only as part of the function,

and can only be changed by the READ function statement.

The value of a function for an arbitrary argument is obtained by 2-point linear interpolation between the points defining the

function. For an argument outside its domain, the function returns the y-value of the function's nearest end point.

The argument of a function may be a constant, a scalar, a multidimensional variable, an arithmetic expression of many

variables, or another function.

In addition to their computational use, functions may be displayed in tabular form with the BROWSE function and

WRITE function statements, and may be viewed in plotted form via the PLOT statement.

Examples:

The following example illustrates the DEFINE LOOKUP statement.

 DEFINE LOOKUP

Promula Application Development System User's Manual

143

 f1(10) X(1.0,2.0,3.0,4.0,5.0,6.0,7.0, 8.0, 9.0,10.0),
 Y(1.2,2.3,3.8,4.5,5.5,6.9,9.9,12.0,14.5,15.9)
 f2(10)
 END LOOKUP

Here, the DEFINE LOOKUP statement is used to create two functions. f1, which gets initial values in its definition with an

xyoption; and f2 which has its initial values equal to zero. Both of these functions have 10 ordered X-Y pairs.

See also the READ function, WRITE function, BROWSE function, PLOT and DEFINE FUNCTION statements for

more information on functions.

3.7.28 DEFINE MENU
Purpose:

Defines a screen menu for later use.

A screen menu is a type of program interface designed to help its user either to pick from a list of options or to display

and/or edit data values.

Depending on content, intended use, and appearance, there are two kinds of menus:

1. Pick menus to help the user make a selection from a set of options using the SELECT menu statement. There are

three types of pick menus: (1) Simple, one-window pick menus defined with a basic DEFINE MENU statement, (2)

Popup, two-window pick menus defined with a DEFINE MENU POPUP statement, and (3) Pulldown pick menus

defined with a SELECT PULLDOWN statement

2. Data menus to create screens for data entry or display using the EDIT menu statement

This section describes the DEFINE MENU statement. For additional information and examples of using menus, refer to

the examples at the end of this section and to the sections covering the SELECT menu, EDIT menu, SELECT

PULLDOWN, and SELECT FIELD statements.

Syntax 1: Simple Pick Menu Definition

DEFINE MENU menu [VARIABLE]
text...
 ...
text... \choice1\ \choice2\ text...
text... \choice3\ \choice4\ text...
 ...
END

Remarks:

menu is the menu identifier.

text is arbitrary text that you may enter anywhere in the menu template to describe menu selection fields. To

produce fancy menu displays, you may use any character that you can enter with your text editor including

those that are not shown explicitly on the keyboard.

choicen is the label for the nth selection field in the pick menu. The selection fields are ordered from 1 to n as you go

from left to right and from top to bottom of the menu. Up to 20 selection fields may be defined.

The text and choicen elements may contain any character except:

the backslash character (\), which is reserved to set off the selection fields of the menu

Promula Application Development System User's Manual

144

the at character (@), which is reserved to set off data fields to be edited in data menus

the tilde character (~), which is reserved to set off display-only fields in data menus.

VARIABLE is a keyword labeling the pick menu as a VARIABLE pick menu. This keyword is only required if you intend

to use the SELECT FIELD statement to modify the menu at runtime.

Simple pick menus are much simpler to define than popup pick menus, but are not as flashy or flexible as popup or

pulldown pick menus.

Syntax 2: Popup Pick Menu Definition

DEFINE MENU menu1, POPUP(swind,twind)
[VARIABLE]

 MENU HEADER

text... SELECTION SCREEN
text... \choice1\ \choice2\ text... DEFINITION
text... \choice3\ \choice4\ text...
 ...
END

FIELD n, SELECT=char, HELP=topic, ACTION=code FIELD STATEMENT
desc
 ...
END
 ...
MENU menu2 SUBMENU DEFINITION
text...
text... \choice11\ \choice12\ text...
text... \choice13\ \choice14\ text...
 ...
END
FIELD n, SELECT=char, HELP=topic, ACTION=code
desc
 ...
END
...
END menu1

Remarks:

A popup menu definition consists of a top level menu definition and several optional submenu definitions. Each menu

definition consists of a selection screen and a group of FIELD statements. The keyword POPUP following the identifier

of a menu indicates to PROMULA that the menu is a popup pick menu.

menu1 is the identifier of the menu.

swind is the name of the screen area defined via a DEFINE WINDOW statement that will display the selection

screens when the menu is executed.

twind is the name of the screen area defined via a DEFINE WINDOW statement that will display the description of

each selection field as it is highlighted during menu execution.

Promula Application Development System User's Manual

145

text is arbitrary text that you may enter anywhere in the menu template to describe menu selection fields. To

produce fancy menu displays, you may use any character that you can enter with your text editor including

those that are not shown explicitly on the keyboard.

choicen is the label for the nth selection in the pick menu. The selection fields are ordered from 1 to n as you go from

left to right and from top to bottom of the menu template.

The text and choicen elements may contain any character except:

the backslash character (\), which is reserved to set off the selections in pick menus

the at character (@), which is reserved to set off data fields to be edited in data menus

the tilde character (~), which is reserved to set off data fields to be displayed but not edited in data menus.

n is an integer that indicates to which selection field the FIELD statement corresponds.

char is a character that can be used to select the desired field. Any printable character may be used.

topic is the sequence number, as defined by its place in a dialog file, of a specific topic containing information

relevant to the selection field. The dialog file used is determined by a SELECT HELP statement. Pressing

Alt-H will select this topic from the program's help file and display it in the Help Screen. If no help has been

defined, you can enter a 0 for this parameter.

code is a number between 0 and 255 or the name of a submenu defined in this DEFINE MENU statement. If code

is a number, the value will be returned when the field is selected; if code is a submenu name, the submenu

will be displayed for selection.

desc is text that describes the selection field.

menu2 is the identifier of a submenu. Each submenu is defined in the same way as the top level menu except that the

submenu header only includes the name of the submenu.

VARIABLE is a keyword labeling the pick menu as a VARIABLE pick menu. This keyword is only required if you intend

to use the SELECT FIELD statement to modify the menu at runtime.

Syntax 3: Data Menu Definition

DEFINE MENU menu
text...
 ... ~~~~~ ~~~~~~~
text... @@@@@ @@@@@@@ text...
text... @@@@@ @@@@@@@ text...
 ...
END

Remarks:

menu is the menu identifier.

text is arbitrary text that you may enter anywhere in the menu template to describe menu selection fields. To

produce fancy menu displays, you may use any character that you can enter with your text editor including

those that are not shown explicitly on the keyboard.

This text may contain any character except:

the backslash character (\), which is reserved to set off the selections in pick menus

the at character (@), which is reserved to set off data fields to be edited in data menus

the tilde character (~), which is reserved to set off data fields to be displayed but not edited in data menus.

Promula Application Development System User's Manual

146

@@@@@@@@ marks the space in the template where the value of a program variable will be displayed for editing.


~~~~~~~~ marks the space in the template where the value of a data field will simply be displayed and will not be 

available for editing. 

 

Data menus contain a number of fields to be viewed and/or edited by the user. Each field in the menu is denoted by a series 

of  contiguous "at signs", @, equal in number to the desired number of characters in the data field. The fields are ordered 

from left to right and from top to bottom of the menu template. 

 

Examples: 

 

The following example illustrates the definition and use of one screen pick and data menus; it illustrates the DEFINE 

MENU statement as well as the SELECT menu and the EDIT menu statements.  

 

Define several variables for use with the example. 

 
DEFINE VARIABLE 
  a             "A value" 
  b             "B value" 
  tot           "Sum of A + B" 
  date          "Date"                       TYPE=DATE(8) 
  name          "Name"                       TYPE=STRING(10) 
  option        "Menu selection" 
END VARIABLE 
 

Define a Data Menu. 

 
DEFINE MENU data 
 
   ********************************* A Data Menu ***************************** 
   *                                                                         * 
   *   Enter/Edit Inputs                                                     * 
   *                                                                         * 
   *                                                                         * 
   *   Name   : @@@@@@@@@@                          Date: @@@@@@@@           * 
   *                                                                         * 
   *   A Value: @@@@@@@@                                                     * 
   *                                                                         * 
   *   B Value: @@@@@@@@                                                     * 
   *                                                                         * 
   *************************************************************************** 
END 

 

 

Define a Pick Menu. 

 
DEFINE MENU pick 
 
   ********************************* A Pick Menu ****************************** 
   *                                                                          * 
   *    Main Selection Menu                                                   * 
   *                                                                          * 
   *                                                                          * 
   *                                                                          * 
   *                                   Press the desired Function key         * 
   *      F1 \Return to PROMULA\                                              * 
   *                                   or                                     * 
   *      F2 \Edit Input Values\                                              * 



Promula Application Development System User's Manual 

147 

   *                                 1. Press the UP and DOWN arrow keys      * 
   *      F3 \Calculate Totals\          to move the bounce bar               * 
   *                                                                          * 
   *      F4 \Display Results\       2. Press the Enter key to pick           * 
   *                                                                          * 
   **************************************************************************** 
END 

 

Define a procedure to control the execution of menu "pick" and menu "data" 

 
DEFINE PROCEDURE start 
* Select from Menu "pick" 
SELECT pick(option)          
* Edit a Data Menu 
DO IF option EQ 2            
   EDIT data(name,date,a,b) 
   start 
END option 2 
* Compute Totals 
DO IF option EQ 3 
  tot=a+b 
  start 
END option 3  
* Display Results 
DO IF option EQ 4 
   WRITE ("Name      ","Date      ","A Value   ","B Value   ","Sum of A + B") 
   WRITE (name\1,date\11,a\21,b\31,tot\41) 
   ASK CONTINUE 
   start 
END option 4 
END start 

 

 

The statement SELECT pick(option) in procedure start produces the display below:  

 

 

 

 

 

A bounce bar highlights the first selection Return to PROMULA, which is the text between the first two backslashes in 

the definition of menu pick. You may make a selection by  

 

1. pressing a function key F1, F2, F3, or F4 (or a numeric key 1,2,3,or 4). 

2. using the movement keys and the Enter key to pick a selection. 

3. pointing and clicking in the selection field (between the back slashes) with a mouse or other pointer device.  

 

If you select option 2 — Edit Input Values — PROMULA will execute the statement EDIT data(name,date,a,b) and will 

display the following EDIT menu display: 

 

********************************* A Pick Menu 
********************************* 
*                                                                             * 
*   Main Selection Menu                                                       * 
*                                                                             * 
*                                                                             * 
*                                                                             * 
*                                  Press the desired Function key             * 
*     F1  Return to PROMULA                                                   * 
*                                  or                                         * 
*     F2  Edit Input Values                                                   * 
*                               1. Press the UP and DOWN arrow keys           * 
*     F3  Calculate Totals          to move the bounce bar                    * 
*                                                                             * 
*     F4  Display Results       2. Press the Enter key to pick                * 
*                                                                             * 
**********************************************************************
********* 
 
 
 
 
 
 
 
 



Promula Application Development System User's Manual 

148 

   *                                                                         *

   ********************************* A Data Menu *****************************

   *                                                                         *

   *   Enter/Edit Inputs                                                     *

   *                                                                         *

   *   Name   :                                     Date: 00/00/00           *

   *                                                                         *

   *   A Value:        0                                                     *

   *                                                                         *

   *   B Value:        0                                                     *

   *                                                                         *

   ***************************************************************************

                   End: Exit  Arrows Home: Select    Enter: Edit

 
 

Here, the bounce bar is highlighting the ten spaces following the text "Name   :". By pressing the Enter key, you may 

introduce a particular name for this data field. By using the movement keys, you may edit the rest of the data fields to 

produce the following display:  

 

   ********************************* A Data Menu *****************************

   *                                                                         *

   *   Enter/Edit Inputs                                                     *

   *                                                                         *

   *                                                                         *

   *   Name   :   Mark J.                          Date: 08/21/91            *

   *                                                                         *

   *   A Value:        1                                                     *

   *                                                                         *

   *   B Value:        2                                                     *

   *                                                                         *

   ***************************************************************************     

                   End: Exit  Arrows Home: Select   Enter: Edit

 
 

The following example illustrates the definition and use of Popup pick menus. First, the structural entities of the program: 

variables, windows, and menus are defined. 

 
DEFINE VARIABLE 



Promula Application Development System User's Manual 

149 

  a             "A value" 
  b             "B value" 
  prd           "Product of A * B" 
  date          "Date"                       TYPE=DATE(8) 
  name          "Name"                       TYPE=STRING(10) 
  option        "Menu selection" 
END VARIABLE 
 
DEFINE WINDOW 
  wwind(0,5,79,21,WHITE/BLACK,NONE) 
  swind(1,1,78,3,WHITE/BLACK,FULL/HEAVY) 
  twind(1,23,78,23,WHITE/BLACK,FULL/SINGLE) 
END WINDOW 
 
DEFINE MENU pick, POPUP(swind,twind) 
Main Selection Menu:  R)eturn  E)dit  C)alculate   D)isplay 
END  
FIELD 1, SELECT=R, HELP=0, ACTION=10 
  RETURN -- Return to PROMULA 
END                                           
FIELD 2, SELECT=E, HELP=0, ACTION=20 
  EDIT -- Edit Input Values 
END                                           
FIELD 3, SELECT=C, HELP=0, ACTION=menu2 
  CALCULATE -- Calculate Totals 
END                                           
FIELD 4, SELECT=D, HELP=0, ACTION=40 
  DISPLAY -- Display Results 
END                                           
************** Define of a submenu called menu2 
MENU menu2                   
Calculations Menu: R)eturn C)ompute  
END                                           
FIELD 1, SELECT=R, HELP=0, ACTION=pick 
  RETURN -- Return to Main Selection Menu 
END                                           
FIELD 2, SELECT=C, HELP=0, ACTION=30 
  COMPUTE -- Compute the product of A and B 
END                                           
END pick 

 
 
DEFINE MENU data 
 
   ********************************* A Data Menu ***************************** 
   *                                                                         * 
   *   Enter/Edit Inputs                                                     * 
   *                                                                         * 
   *                                                                         * 
   *   Name   : @@@@@@@@@@                          Date: @@@@@@@@           * 
   *                                                                         * 
   *   A Value: @@@@@@@@                                                     * 
   *                                                                         * 
   *   B Value: @@@@@@@@                                                     * 
   *                                                                         * 
   *************************************************************************** 
END 

 

Next, a procedure to control the program is defined. 

 
DEFINE PROCEDURE ctrl 



Promula Application Development System User's Manual 

150 

SELECT pick(option)          
DO IF option EQ 10           
* Exit procedure 
  BREAK ctrl 
ELSE  option EQ 20           
* Edit a Data Menu 
  EDIT data(name,date,a,b) 
ELSE  option EQ 30 
* Compute Product 
  prd = a * b 
ELSE  option EQ 40 
* Display Results 
  WRITE ("Name      ","Date      ","A Value   ","B Value   ","Product of A * B") 
  WRITE (name\1,date\11,a\21,b\31,prd\41) 
  WRITE (/"Press any key to continue.") CLEAR(-1) 
END option 
ctrl 
END ctrl 
 

Before using the menu, you must open up a window to the main screen using the statement OPEN wwind MAIN. Executing 

procedure ctrl produces the display below:  

 

    RETURN -- Return to PROMULA

  Main Selection Menu:   R)eturn    E)dit    C)alculate     D)isplay

 
 

A bounce bar highlights the 1st selection R)eturn, which is the text between the two backslashes in the definition of menu 

pick. The descriptions of the selection fields appear in the screen area, twind. You may press the selection characters R, E, C, 

or D to make a selection, or use the movement keys and the Enter key to pick a selection.  

 

Pressing the E key will execute the statement EDIT data(name,date,a,b) which produces the following screen:  

 



Promula Application Development System User's Manual 

151 

   ********************************* A Data Menu *****************************

   *                                                                         *

   *   Enter/Edit Inputs                                                     *

   *                                                                         *

   *                                                                         *

   *   Name   :                                     Date: 00/00/00           *

   *                                                                         *

   *   A Value:        0                                                     *

   *                                                                         *

   *   B Value:        0                                                     *

   *                                                                         *

   ***************************************************************************

                   End: Exit  Arrows Home: Select   Enter: Edit

  Main Selection Menu:   R)eturn    E)dit    C)alculate     D)isplay

    EDIT -- Edit Input Values

 
 

Here, the bounce bar is highlighting the ten spaces following the text "Name   :". By pressing the Enter key, you may 

introduce a particular name for this data field. By using the movement keys, you may edit the rest of the data fields to 

produce the following display:  

 

After editing, you will return to the menu below, from which you can calculate the product of A and B, and display results in 

the Main Screen. 

 

3.7.29  DEFINE PARAMETER 
Purpose: 

 

Defines numeric parameters for procedures. Parameters are used to transfer data values to and from procedures. 

 

Syntax: 

 
DEFINE PARAMETER 
  param[(sets)]["desc"][TYPE=type] 
  ... 
END 

 

Remarks: 

 

param is the parameter identifier.  

 

sets is a list of sets that define the structure of the parameter.  

 

desc is a parameter descriptor.  

 

type is the type of the parameter and may be one of the following:  

 

REAL to specify real values  



Promula Application Development System User's Manual 

152 

INTEGER to specify integer values 

MONEY to specify money values. 

 

Other types of parameters are allowed, but they are of limited use because their values cannot be passed to or from 

the actual arguments of the procedure. 

 

A parameter is a numeric variable which is used locally within a procedure. Parameters may be scalars or multidimensional 

arrays. A parameter identifier cannot be defined or referenced outside a procedure.  

 

A procedure proc with parameters a, b, c,... may be called into execution by simply entering its name and specifying an 

ordered list of variables (often referred to as the actual arguments of the procedure) corresponding to the parameter list. 

The type and order of variables in the variable list must agree with the type and order of the parameters as defined in 

procedure proc. 

 
proc(x,y,z,...) 

 

If the parameters are multidimensional arrays, the variable arguments of the procedure must be followed by the identifiers 

of the sets that dimension them. 

 
proc(x(set1,set2,...),y(set1,set2,...),z(set1,set2,...),...) 
 

NOTE:  The values of parameters do not use any storage, nor do they retain their values between procedure calls. 

Examples: 

 

The procedure minx defined below has three parameters:  

 
  DEFINE PROCEDURE minx 
    DEFINE PARAMETER 
      a     "Value to be compared with b" 
      b     "Value to be compared with a" 
      c     "Min of (a,b)" 
    END PARAMETER 
    c = a 
    DO IF b LT c 
      c = b 
    END IF 
  END PROCEDURE minx 
 

The purpose of this procedure is to compare the value of b with the value of a and to return the minimum of the two values 

in parameter c. 

 

This procedure, when called by another procedure cmin, compares two variables, x and y, and returns the minimum of the 

two in variable z, as shown in the dialog below:  

 
  DEFINE VARIABLE 
    x 
    y 
    z 
  END VARIABLE 
 
  DEFINE PROCEDURE cmin 
    minx(x,y,z) 
    WRITE ("x=",x,"  ","y=",y,"  ","MIN(x,y)=",z) 
  END PROCEDURE cmin 
 
  x = 3 
  y = 4 
  cmin 



Promula Application Development System User's Manual 

153 

  x=3  y=4  MIN(x,y)=3 
 

Procedure cmin calls into execution procedure minx. The calling statement is:  

 
minx(x,y,z) 

 

From this, you can see that variable x corresponds to parameter a, variable y corresponds to parameter b, and variable z 

corresponds to parameter c. 

 

Procedure stats takes as its argument a two-dimensional array of values. It displays the values of each column of the array 

in ascending order and computes and displays the number of values, the total, and the mean of each column.  

 
DEFINE SET 
pnt(5) 
col(2) 
END SET 
 
DEFINE VARIABLE 
xval(pnt,col) TYPE=REAL(10,2) "X VALUES" 
END VARIABLE 
 
DEFINE PROCEDURE stats 
DEFINE PARAMETER 
  vec(pnt,col)  "Input Table" 
  n             "Number of Values" 
  tot           "Total of Input Vector" 
  ave           "Average of Input Vector" 
END PARAMETER 
DO col 
  SORT pnt USING vec 
  n=col:s 
  WRITE CENTER("INPUT VECTOR #"n:-2/"------------------") 
  DO pnt  
     WRITE CENTER(vec:6:2) 
  END 
  SELECT pnt* 
  tot = SUM(i) vec(i) 
  n   = pnt:N 
  ave = tot/n 
  WRITE CENTER("    n = "n:-5,"TOTAL = "tot:-10:2,"MEAN = "ave:-10:3/) 
END col 
END PROCEDURE stats 
 
READ xval(col,pnt) 
31 11 21 91 41  
32 42 52 12 12 

 

Given the defintions above, the statement  
 

stats( xval(pnt,col) ) 

 

produces the report below. 

 
                                INPUT VECTOR #1  
                               ------------------ 
                                      11.00 
                                      21.00 
                                      31.00 
                                      41.00 
                                      91.00 



Promula Application Development System User's Manual 

154 

                    n = 5    TOTAL = 195.00    MEAN = 39.000     
                                         
                                INPUT VECTOR #2  
                               ------------------ 
                                      12.00 
                                      12.00 
                                      32.00 
                                      42.00 
                                      52.00 
                    n = 5    TOTAL = 150.00    MEAN = 30.000  

 

 
 

3.7.30  DEFINE PROCEDURE 
Purpose: 

 

Defines a group of statements for later execution as a single unit. 

 

Syntax: 

 
DEFINE PROCEDURE proc [comment] 
  statement 
 ... 
END comment 

 

Remarks: 

 

proc is the procedure identifier.  

 

statement is any executable statement.  

 

comment is optional text you wish to enter as an in-line comment.  

 

Definitions are not allowed within procedures, except for the DEFINE PARAMETER statement, which defines procedure 

parameters. Similarly, data for a READ statement is not allowed in a procedure.   

 

A procedure is executed by the [DO] procedure statement, i.e., by simply entering its name.   

 

PROMULA supports recursive procedures, i.e., a procedure can call itself into execution. A procedure can call other 

defined procedures into execution.  

 

Examples: 

 

1. The following statements  

 
DEFINE PROCEDURE hello -- write a greeting 
  WRITE "Hello there!" 
END PROCEDURE hello 

 

 define the procedure hello whose sole purpose is to issue the message Hello there!, as shown in the dialog below  

 
  DO hello 
  Hello there! 

 

 

2. The following procedures rdsales and tsales  



Promula Application Development System User's Manual 

155 

 
DEFINE PROCEDURE rdsales 
  WRITE "Enter Monthly Sales" 
  READ sales 
END PROCEDURE rdsales 
 
DEFINE PROCEDURE tsales 
  rdsales 
  total = SUM(month)( sales(month) ) 
  WRITE ("Total Annual Sales  ",total) 
END PROCEDURE tsales 

 

 execute as follows:  

 
  tsales 
  Enter Monthly Sales 
  1000 1100 1200 1150 1300 1350 
  1400 1600 1000 1100 1570 1600 
  Total Annual Sales  15,370 

 

Above, procedure tsales calls procedure rdsales into execution to produce the same results as those of Example 2. 

 

3. The following is a procedure with parameters  

 
DEFINE PROCEDURE xmax 
  DEFINE PARAMETER 
    a 
    b 
    c "Max of (a,b)" 
  END PARAMETER 
  DO IF a GE b 
    c = a 
  ELSE 
    c = b 
  END IF 
END PROCEDURE xmax 

 

 The purpose of this procedure, xmax, is to compare two values and return the larger of the two, as shown in the dialog 

below:  

 
  DEFINE PROCEDURE callxmax 
    xmax(x,y,z) 
  END PROCEDURE callxmax  
 
  x = 2 
  y = 3 
  callxmax 
  WRITE z 

  3 

 

3.7.30.1  Dynamic Procedures 

Dynamic procedures are used in dynamic simulations. In dynamic simulations modeling, variables interact with each other 

and change over time. PROMULA has several features that facilitate the development of dynamic models:  these include 

time series sets, system Time parameters, the TIME, RATE, and LEVEL statements, and dynamic procedures. 

 

Dynamic procedures contain RATE and LEVEL statements which divide the procedure into three separate sections. 

 



Promula Application Development System User's Manual 

156 

1. The Initial section.    Here, all time parameters have the values that were assigned by the last TIME statement. The 

variables DT, BEGINNING, and ENDING maintain these original values throughout the run of the dynamic 

procedure. The Initial section includes all the statements in the procedure preceding the RATE section and its 

equations are evaluated once — at the beginning time point (or interval) of the simulation period.  

 

2. The RATE section.    The start of the RATE section is indicated by the RATE statement. The RATE section is the 

second section of a dynamic procedure and its equations are evaluated at each time point (or interval) of the simulation 

run. In contrast to LEVEL equations, both sides of RATE equations are evaluated at the same time point (or interval). 

At the end of the RATE section, the value of  the time parameter TIME is examined. If TIME+DT exceeds the value 

of ENDING, the execution of the procedure ends. If TIME+DT does not exceed the value of ENDING, then TIME is 

incremented by DT, and the execution of the procedure proceeds to the LEVEL section. 

 

3. The LEVEL section.    The start of the LEVEL section is indicated by the LEVEL statement. The LEVEL section 

follows the RATE section and its equations are also evaluated at each time point (or interval) of the simulation. The 

lefthand side of each LEVEL equation, however, is evaluated at TIME+DT in terms of the time variables on the 

righthand side which are evaluated at TIME — the previous time point (or interval). It is the equations of the LEVEL 

section which move the dynamic variables through time. After execution of the statements in the LEVEL section, 

execution returns to the beginning of the RATE section. 

 

 

Examples: 

 

An example of a dynamic procedure is shown below:  

 
DEFINE PROCEDURE DYNAM1 
** Begin Initial Section 
  WRITE CENTER("Initial Section. Time=",TIME) 
  POPT=100000 
** End Initial Section / Begin Rate Section 
RATE (BRTYR=BRTV, MRTYR=MRTV) 
  WRITE CENTER(/"Rate Section. Time=",TIME) 
  DRGV  = DRG(TIME) 
  BTHS  = POPT * BR * BRTV 
  MGNTS = POPT * MR * MRTV 
  DTHS  = POPT * DR * DRGV 
  WRITE POPT 
  WRITE BTHS 
  WRITE MGNTS 
  WRITE DTHS 
  WRITE BRTV::4 
  WRITE MRTV::4 
  WRITE DRGV::4 
** End Rate Section / Begin Level Section 
LEVEL ( POPYR=POPT, BTHYR=BTHS, DTHYR=DTHS, MGTYR=MGNTS) 
  WRITE CENTER (/"Level Section, Time=", TIME) 
  POPT = POPT + (DT * BTHS) + (DT * MGNTS) - (DT * DTHS) 
  WRITE POPT 
END PROCEDURE DYNAM1 

 

In procedure DYNAM1, the population size is set to 100,000 in the initial section. The RATE section computes local variables 

BRTV, and MRTV by linear interpolation of the values of the exogenous time series variables BRTYR and MRTYR and uses these 

values to compute time-specific values for BTHS, and MGNTS. The value of DRGV is computed via function DRG then used in 

computing DTHS. In the LEVEL section, the results are transferred from the endogenous scalar variables, POPT, BTHS, DTHS, 

and MGNTS to the output time series variables, POPYR, BTHYR, DTHYR, MGTYR as specified in the LEVEL statement; and the 

value of POPT is computed to reflect the changes that occurred during the last time interval. 

 

The code required to implement the procedure above to model population values over time is displayed below.  

 



Promula Application Development System User's Manual 

157 

DEFINE SET 
  timeb(3) "Set of Years for Birth Rate Trend"     TIME(1990,1995,2000) 
  timem(4) "Set of Years for Migration Rate Trend" TIME(1990,1993) 
  year(16) "Set of Years to Be Modeled"            TIME(1990,2005) 
END SET 
 
DEFINE VARIABLE 
  BR           "Annual Birth Rate          " VALUE = 0.0065   
  DR           "Annual Death Rate          " VALUE = 0.05     
  MR           "Annual Migration Rate      " VALUE = 0.001    
  BRTV         "Birth Rate Trend Value     " 
  MRTV         "Migration Rate Trend Value "  
  DRGV         "Death Rate Graph Value     " 
  BRTYR(timeb) "Birth Rate Trend"            VALUE(1,0.8,0.8) 
  MRTYR(timem) "Migration Rate Trend"        VALUE(1,1,-1,-1) 
  POPT         "Total Population           " 
  BTHS         "Births per Year            " 
  DTHS         "Deaths per Year            " 
  MGNTS        "Net Migrants per Year      " 
  POPYR(year)  "Total Population" 
  BTHYR(year)  "Births" 
  DTHYR(year)  "Deaths" 
  MGTYR(year)  "Net Migrants" 
END VARIABLE 
 
DEFINE LOOKUP 
  DRG(3),X(1990,1995,2005), Y(1,0.8,0.7) 
END LOOKUP 
 
DEFINE TABLE 
  tab(year), FORMAT(20,10), BODY(POPYR,BTHYR,DTHYR,MGTYR) 
END REPORT 
 
DEFINE PROCEDURE dynam1 
  WRITE CENTER("Initial Section. Time=",TIME) 
  POPT=100000 
RATE (BRTYR=BRTV,MRTYR=MRTV) 
  WRITE CENTER(/"Rate Section. Time=",TIME) 
  DRGV  = DRG(TIME) 
  BTHS  = POPT * BR * BRTV 
  MGNTS = POPT * MR * MRTV 
  DTHS  = POPT * DR * DRGV 
  WRITE POPT 
  WRITE BTHS 
  WRITE MGNTS 
  WRITE DTHS 
  WRITE BRTV::4 
  WRITE MRTV::4 
  WRITE DRGV::4 
LEVEL ( POPYR=POPT,BTHYR=BTHS, DTHYR=DTHS, MGTYR=MGNTS) 
  WRITE CENTER (/"Level Section, Time=", TIME) 
  POPT = POPT + (DT * BTHS) + (DT * MGNTS) - (DT * DTHS) 
  WRITE POPT 
END PROCEDURE dynam1 

 
 

 

Given the definitions above, the statements  

 
TIME(1, 1990, 1993),SIZE(5,0) 
dynam1 



Promula Application Development System User's Manual 

158 

SELECT year(1-4) 
tab TITLE "Results for Dynamic Simulation (DT = 1 Year)" 

 

generate the following report as the population simulation procedure DYNAM1 "moves through time".  
                            Initial Section. Time= 1990 
                                           
                              Rate Section. Time=1,990 
  Total Population           (1990) 100,000 
  Births per Year            (1990) 650 
  Net Migrants per Year      (1990) 100 
  Deaths per Year            (1990) 5,000 
  Birth Rate Trend Value     (1990) 1.0000 
  Migration Rate Trend Value (1990) 1.0000 
  Death Rate Graph Value     (1990) 1.0000 
                                           
                             Level Section, Time=1,991 
  Total Population           (1991) 95,750 
                                           
                              Rate Section. Time=1,991 
  Total Population           (1991) 95,750 
  Births per Year            (1991) 597 
  Net Migrants per Year      (1991) 96 
  Deaths per Year            (1991) 4,596 
  Birth Rate Trend Value     (1991) 0.9600 
  Migration Rate Trend Value (1991) 1.0000 
  Death Rate Graph Value     (1991) 0.9600 
                                           
                             Level Section, Time=1,992 
  Total Population           (1992) 91,847 
                                           
                              Rate Section. Time=1,992 
  Total Population           (1992) 91,847 
  Births per Year            (1992) 549 
  Net Migrants per Year      (1992) -92 
  Deaths per Year            (1992) 4,225 
  Birth Rate Trend Value     (1992) 0.9200 
  Migration Rate Trend Value (1992) -1.0000 
  Death Rate Graph Value     (1992) 0.9200 
                                           
                             Level Section, Time=1,993 
  Total Population           (1993) 88,080 
                                           
  
 
 
                           Rate Section. Time=1,993 
  Total Population           (1993) 88,080 
  Births per Year            (1993) 504 
  Net Migrants per Year      (1993) -88 
  Deaths per Year            (1993) 3,876 
  Birth Rate Trend Value     (1993) 0.8800 
  Migration Rate Trend Value (1993) -1.0000 
  Death Rate Graph Value     (1993) 0.8800 
   
           Results for Dynamic Simulation (DT = 1 Year), 1990 to 1993 
                                         
                                    1990      1991      1992      1993 
          Total Population       100,000    95,750    91,847    88,080 
          Births                     650       597       549       504 
          Deaths                   5,000     4,596     4,225     3,876 
          Net Migrants               100        96       -92       -88 



Promula Application Development System User's Manual 

159 

 

 

 

3.7.31  DEFINE PROGRAM 
Purpose: 

 

Defines the beginning of a program and an optional program descriptor. Physically, it clears working space and is the first 

instruction of the default executable program segment called MAIN. 

 

Syntax: 

 
DEFINE PROGRAM ["desc"] 
  statement 
  ... 
[END PROGRAM] [DO proc] 
STOP 

 

Remarks: 

 

desc is a descriptor for the program. Tabular reports produced by the program have desc as part of their page heading. 

The SELECT HEADING statement turns the heading on and off. 

 

proc is the identifier of a procedure that should be executed at startup of the program — when the program segment is 

loaded. 

 

The DEFINE PROGRAM statement is optional, i.e., you do not have to use it; if you do use it, however, it must be the 

first statement of your program. 

 

If you plan to save the program on disk for later execution, then you must use the DEFINE PROGRAM statement to 

specify the beginning of the executable program, and the OPEN SEGMENT statement to open a file on disk in which to 

store the program. 

 

The END PROGRAM statement specifies the end of an executable program and writes it to a previously opened segment 

file. The default segment identifier of a saved executable program is MAIN.   

 

The STOP statement simply stops execution of a program and returns control to the PROMULA Main Menu or to 

command mode depending on how the program was started. 

 

 

Examples: 
OPEN SEGMENT "sample.xeq" STATUS=NEW 
DEFINE PROGRAM "A Sample Program" 
DEFINE PROCEDURE start 
  WRITE CENTER(/////"Hello World!") 
END PROCEDURE start 
END PROGRAM, DO start 
STOP 

 

 

 

The code above defines a short "hello world" program. The program will be saved on disk as the file sample.xeq. The title, A 

Sample Program, will appear with the current date and a page number at the upper right-hand corner of all subsequent 

displays produced by the WRITE variable statement, unless you turn it off with the SELECT HEADING = OFF 

statement. 

 



Promula Application Development System User's Manual 

160 

3.7.32  DEFINE RELATION 
Purpose: 

 

Defines a relation between the elements of a set and the contents of a vector variable structured by that set. 

 

Syntax: 
DEFINE RELATION [file] 
  type (set,vec) 
  ... 
END 

 

 

 

Remarks: 

 

file is the identifier of an array file that has been opened to a location on disk with the OPEN file statement. If file is 

specified, the relation will become part of the array file structure. 

 

set is the identifier of the set whose elements are to be related to the values of the vector vec. 

 

vec is the identifier of the vector variable whose values are to be related to the elements of the set. 

 

type is the type of relation between set and vec and may be one of the following:  

 

ROW specifies the variable whose values will serve as the primary descriptor for a set's elements. The 

primary descriptor values are used to label rows of values classified by the set in WRITE, 

BROWSE, and EDIT statements. They are also used in bar plots, page headings, and displays of 

the set itself. 

 

COLUMN specifies the variable whose values will serve as the column descriptor for a set's elements. The 

column descriptor values are used to label columns of values classified by the set in WRITE, 

BROWSE, and EDIT statements. 

 

KEY specifies the variable whose values will serve as the codes for a set's elements. If no ROW relation 

for the set is specified, the code values, also referred to as keys, are used as the primary descriptors 

for the set. If no COLUMN relation for the set is specified, the code values are used as column 

descriptors. In addition, set codes may function as set element identifiers in displays of the set and 

in coded set selections. 

 

TIME specifies the variable whose values will serve as the time values for a set's elements. If no ROW 

relation for the set is specified, the time values, also referred to as keys, are used as the primary 

descriptors for the set. If no COLUMN relation for the set is specified, the time values are used as 

column descriptors. In addition, time values may function as set element identifiers in displays of 

the set and in coded set selections. If a set has a TIME relation, it becomes a Time Series Set. 

 

A relation is not valid unless vec is an array variable having set as its first dimension. 

 

The SELECT RELATION statement may also be used to define relations between sets and variables. 

 

Examples: 

 

The following example illustrates using variables and relations to create descriptors for sets and array variables: 

 
DEFINE SET 
  row(3) 



Promula Application Development System User's Manual 

161 

  col(2) 
  state(2) 
  year(2) 
END SET 
 
DEFINE VARIABLE 
  rows(row)                "Row Descriptors"            TYPE=STRING(20) 
  cols(col)                "Column Headings"            TYPE=STRING(8) 
  stcode(state)            "State Codes"                TYPE=CODE(5)  
  yearv(year)              "Year Values"                TYPE=INTEGER(5) 
  vara(row,col,state,year) "A 4-Dimensional Array"      VALUE(1) 
END VARIABLE 

 
 
 

Given these definitions, the statement WRITE vara produces the display below. 

 
 
                        A 4-Dimensional Array 
                           
                          STATE(1), YEAR(1) 
 
                                    COL(1)  COL(2) 
 
                  ROW(1)                 1       1 
                  ROW(2)                 1       1 
                  ROW(3)                 1       1  
 
                          STATE(1), YEAR(2) 
 
                                    COL(1)  COL(2) 
 
                  ROW(1)                 1       1 
                  ROW(2)                 1       1 
                  ROW(3)                 1       1  
 
                          STATE(2), YEAR(1) 
 
                                    COL(1)  COL(2) 
 
                  ROW(1)                 1       1 
                  ROW(2)                 1       1 
                  ROW(3)                 1       1  
 
                          STATE(2), YEAR(2) 
 
                                    COL(1)  COL(2) 
 
                  ROW(1)                 1       1 
                  ROW(2)                 1       1 
                  ROW(3)                 1       1 
 

 

 

 

Note here that the row, column, and page descriptors of vara are the default descriptors of the sets row, column, state, and 

year. In order to replace these labels with more meaningful ones, the DEFINE RELATION statement may be used as 

shown below. 
 
DEFINE RELATION 
  ROW(row,rows) 



Promula Application Development System User's Manual 

162 

  COLUMN(col,cols) 
  KEY(state,stcode) 
  TIME(year,yearv) 
END RELATION 
 
rows(i) = "This is Row " + i 
 
cols(i) = "Column " + i 
 
READ stcode 
NY CA 
 
READ yearv 
1981 1982 

 

After defining the relations and initializing the label variables, the WRITE vara report is more meaningful. 

 
                        A 4-Dimensional Array 
                           
                              NY, 1981 
 
                                   Column 1 Column 2    
 
                  This is Row 1           1        1 
                  This is Row 2           1        1 
                  This is Row 3           1        1  
 
                              CA, 1981 
                                
                                   Column 1 Column 2    
                  This is Row 1           1        1 
                  This is Row 2           1        1 
                  This is Row 3           1        1  
 
                        A 4-Dimensional Array 
                           
                              NY, 1982 
 
                                   Column 1 Column 2    
                  This is Row 1           1        1 
                  This is Row 2           1        1 
                  This is Row 3           1        1  
 
                              CA, 1982 
 
                                  Column  1 Column 2    
                  This is Row 1           1        1 
                  This is Row 2           1        1 
                  This is Row 3           1        1  
 

 

 

 

Note here that the contents of the variables rows, cols, stcode, and yearv have now become the row, column, and page 

descriptors of the multidimensional array vara. 

 

Set descriptors and keys may also be specified by the READ set statement, and changed by the SELECT relation 

statement. 

 



Promula Application Development System User's Manual 

163 

3.7.33  DEFINE SEGMENT 
Purpose: 

 

Defines a program segment as part of a hierarchical tree structure of segments. 

 

Syntax: 

 
DEFINE SEGMENT seg ["desc"] 
  statement 
  ... 
END SEGMENT seg [DO(proc)] 

 

Remarks: 

 

seg is the identifier of the segment. 

 

desc is an optional descriptor for the segment. 

 

statement is any PROMULA statement including other segment definitions. Segments may be nested to any desired 

level of nesting. 

 

proc is a procedure defined within the segment. This procedure is automatically called into execution when the 

segment is read into your working space.   

 

Segments are the components into which a large program is organized in order to fit within a limited amount of working 

space. The segments of a program are stored on disk. Together with array database files, program segmentation provides 

the means for constructing large programs that are not limited by the size of your working space. 

 

A segment contains both executable code and data. The data is stored in the variables of the segment. The code of the 

segment stores the equations and procedures that act on the segment variables. 

 

The END SEGMENT statement serves three purposes: 

 

1. It marks the end of the segment started with a previous DEFINE SEGMENT statement. 

 

2. It writes the segment onto the disk file specified previously by an appropriate OPEN SEGMENT or DEFINE 

PROGRAM statement. 

 

3. It specifies the identifier of a procedure that will be executed by default when the segment is read in. 

 

To bring a segment into your working space from disk, use the OPEN SEGMENT and READ SEGMENT statements. 

This brings in both the executable code and the data values stored in the variables of the segment. If the segment you wish 

to bring in is part of the currently open segment file, only a READ SEGMENT statement is needed. 

 

To bring only the data values of a segment into your working space, use the READ VALUE segment statement. 

 

To write to disk the data values of a segment, use the WRITE VALUE segment statement. 

 

Examples: 

 

The following program skeleton  

 
DEFINE PROGRAM "A Segmented Program" 
OPEN SEGMENT "prog.xeq", STATUS=NEW 
  statements of MAIN 



Promula Application Development System User's Manual 

164 

  ... 
  DEFINE SEGMENT seg1 
    statements of seg1 
    ... 
    DEFINE PROCEDURE one 
      statements of one 
      ... 
    END one 
  END SEGMENT seg1, DO(one) 
  DEFINE SEGMENT seg2 
    statements of seg2 
    ... 
  END SEGMENT seg2 
END PROGRAM 
STOP 

 

defines a program with the following segment structure: 

 

 Main 

Seg1 Seg2 
 

 

This program is physically stored on a disk file whose file name is prog.xeq. The program is entitled A Segmented Program 

and has three components:  the top segment MAIN and the two segments seg1 and seg2 that are subordinate to MAIN. That 

is, whereas MAIN can call into execution seg1 and seg2, seg1 and seg2 cannot call into execution MAIN. Neither can the 

segments seg1 and seg2 be in your working space simultaneously. When seg1 is in working space with MAIN, seg2 remains 

on disk in the segment file prog.xeq, and vice versa. 

 

When seg1 is read into working space by MAIN the procedure one is automatically called into execution. 

 

A more detailed example of program segmentation is given in Chapter 4. See also DEFINE PROGRAM, END 

PROGRAM, OPEN SEGMENT, READ SEGMENT, and END SEGMENT. 

 

3.7.34  DEFINE SET 
Purpose: 

 

Defines an enumerated set of elements. 

 

Syntax:  

 
DEFINE SET [file] 
  set(n)[,"desc"][option] 
  ... 
END 

 

Remarks: 

 

file is the identifier of an array file that has been physically opened to a location on disk with the OPEN file 

statement. If file is specified, the set definition will become part of the array file structure.   

 

set is the set identifier. 

 

n is the number of elements in the set. 

 



Promula Application Development System User's Manual 

165 

desc is a descriptor for the set. 

 

option is used to associate information with the set elements and is one of the following: 

 

TIME(a,b) or TIME(m1,m2,...,mn) 

 

Where  

 

a is a positive number specifying the beginning point of the time series. 
 

b is a positive number greater than a specifying the ending point of the time series. 
 

m1,m2,...,mn are increasing positive values for the time series. 

 

The TIME option on the DEFINE SET statement is used to create time series sets. The values specified in the 

TIME option define values which are set in one-to-one correspondence with the set elements. The list of values 

associated with the TIME option is processed as though it were fixed length; therefore, if the values' points are 

evenly spaced, they may be specified via the beginning and ending values a and b; the system will calculate the 

remaining values via interpolation. 

 

The time values serve two very important functions. 

 

1. They facilitate communication with program users. In the SELECT VARIABLE and ASK...ELSE 

SET=set statements, the user may enter the time values to specify set elements rather than using the 

element sequence numbers. Time values are also used in forming titles, subheadings, row labels, and 

column labels for displays of variables subscripted by time series sets and in displays of the sets generated 

by the WRITE set, BROWSE set, SELECT ENTRY, SELECT SET, and SELECT VARIABLE 

statements. The time values may also be used to make set selections in the SELECT set statement and to 

indicate subscript values in array expressions.   

 

2. They are used in calculations involving time-series variables. Several PROMULA statements use the 

arithmetic values of the time points in performing their functions. The RATE and LEVEL statements use 

the time values to interpolate time series data for each time point within a dynamic simulation, or to save 

time series data at the time points during the simulation. The BROWSE and WRITE variable statements 

use the time point values to calculate growth rates, percent change, and moving averages for time series 

data. The REGRESS and CORRELATE statements use the time values when time series are being 

analyzed as a function of TIME. 

 

Time series sets have a special PROMULA notation associated with them, set:V. This notation refers to the 

vector of values subscripted by set which contain the time series values. 

 

KEY(w[,diskopt]) 

 

Where  

 

w is the maximum width in characters for codes associated with the set. 
 

diskopt is a reference to a database variable that contains the code values. 

 

The KEY option on the DEFINE SET statement is one way to specify that short keys (codes) are to be 

associated with set elements. 

 

The information supplied with the KEY option specifies the maximum width in characters of each code and, 

optionally, the location of those codes on a database. 

 



Promula Application Development System User's Manual 

166 

Codes may get their values from a diskopt parameter, a READ set statement, or a relation to a variable on disk 

or in the program via the SELECT RELATION or DEFINE RELATION statements. 

 

The set element codes are used in several ways. In the ASK...ELSE, SET=set and SELECT VARIABLE 

statements the user may enter the set codes to specify their selections rather than entry sequence numbers. 

Another use of set codes is displays of set elements by the SELECT ENTRY, SELECT SET, WRITE set and 

BROWSE set statements. The code values may also be used to make set selections in the SELECT set 

statement and to indicate subscript values in array expressions. 

 

ROW(w[,diskopt]) 

 

Where  

 

w is the maximum width in characters for codes associated with the set. 
 

diskopt is a reference to a database variable that contains the code values. 

 

The ROW option on the DEFINE SET statement is one way to specify that row labels (stubs) are to be 

associated with set elements. 

 

The information supplied with the ROW option specifies the maximum width in characters of each stub and, 

optionally, the location of those stubs on a database. 

 

Stubs may get their values from a diskopt parameter, a READ set statement, or a relation to a variable on disk or 

in the program via the SELECT RELATION or DEFINE RELATION statements. 

 

Set stubs are the primary labels for set elements. They are used by the BROWSE, EDIT and WRITE variable 

statements to form titles, subheadings, and row labels for the various reports. They also appear in BAR and 

PIECHART plots, plots of multi-dimensional variables, and in displays of sets generated by the SELECT 

ENTRY, SELECT SET, WRITE set, and BROWSE set statements.  

 

COLUMN(w,l[,diskopt]) 
 

Where  

 

w is the maximum width in characters for column headings associated with the set. 

l is the number of lines in each column heading associated with the set. 

diskopt is a reference to a database variable containing the set column heading values. 

 

The COLUMN option on the DEFINE SET statement is one way to specify that column headings (spanners) 

are to be associated with set elements. 

 

The information supplied with the COLUMN option specifies the width in characters, the number of lines for 

each spanner and, optionally, the location of those spanners on disk. 

 

Spanners may get their values from a diskopt parameter, a READ set statement, or a relation to a variable on 

disk or in the program via the SELECT RELATION or DEFINE RELATION statements. 

 

The set column headings are used by the BROWSE, EDIT, and WRITE statements to label the columns of 

multidimensional arrays  

 

diskopt — The DISK Suboption 

 

As discussed above, the user has the option to specify a DISK suboption for the KEY, ROW, or COLUMN 

options associated with a set definition. This suboption is used when the values to be used for the option are 

located in an array file on disk. The syntax of the disk option is  



Promula Application Development System User's Manual 

167 

 
DISK(filid,varid) 

 

Where  

 

filid is the identifier of an array file. 

 

varid is the identifier of the vector variable whose values will be used for the stubs, spanners, or codes 

for set. 

 

At run time, filid is opened to the array file which contains the variable varid that contains the values to be used 

for the KEY, ROW, or COLUMN option. 

 

Examples: 
 
DEFINE SET 
  product(6) "6 products" 
  month(12)  "12 Months" 
END SET 

 

The set product has six elements and is used to classify the product dimension of data. The set month has twelve elements 

and classifies monthly data. The sets product and month classify arrays of data organized by product and/or by month. For 

example, the statements  

 
DEFINE VARIABLE 
  sales(product,month)  "Monthly Sales by Product" 
  msales(month)         "Total Monthly Sales" 
END VARIABLE 

 

define two variables, sales and msales. Variable sales is a two-dimensional array that has six rows classified by the product 

set, and 12 columns classified by the month set. Variable msales is a vector variable of 12 monthly values. 

 

The file option of the DEFINE SET statement is used to put set definitions into the structure of an array file. 

 
DEFINE FILE 
  fil1  TYPE=ARRAY 
END FILE 
 
OPEN fil1 "array.dba" STATUS=NEW 
© 
DEFINE SET fil1 
  row(10) "SET ROW" 
  col(10) "SET COL" 
END SET 
 
DEFINE VARIABLE fil1 
  a(row,col) TYPE=REAL(10,3) "THE A MATRIX" 
  b(row,col) TYPE=REAL(10,3) "THE B MATRIX" 
END VARIABLE 
 
CLEAR fil1 
 

Given the array file definition above, the statement 

 
COPY fil1 

 

produces the following report. 

 



Promula Application Development System User's Manual 

168 

  DEFINE FILE 
  FIL1, TYPE=ARRAY 
  END 
  OPEN FIL1"FIL1.dba", STATUS=NEW 
  DEFINE SET FIL1 
  ROW(10), "SET ROW" 
  COL(10), "SET COL" 
  END 
  DEFINE VARIABLE FIL1 
  A(ROW,COL), TYPE=REAL(10,3), "THE A MATRIX" 
  B(ROW,COL), TYPE=REAL(10,3), "THE B MATRIX" 
  END 

 

 

 

 

Note that the sets row and col are on file fil1 along with the variables they subscript. 

 

3.7.35  DEFINE SYSTEM 
Purpose: 

 

Defines a system of n equations and n unknowns for later solution, where n can be as large as you can fit in your working 

space. 

 

Syntax: 

 
DEFINE SYSTEM sys 
DEFINE PARAMETER 
 x1[,"desc1"]  
 x2[,"desc2"] 
 ... 
 xN[,"descn"] 
END  
 eqn1 
 eqn2 
 ... 
 eqnN 
END [sys] 

 

Remarks: 

 

sys is the system identifier.  

 

x1 is the identifier of the 1st unknown.  

 

x2 is the identifier of the 2nd unknown.  

 

xN is the identifier of the Nth unknown.  

 

desc1 is a descriptor for the 1st unknown.  

 

desc2 is a descriptor for the 2nd unknown.  

 

eqn1 is the 1st equation of the system.  

 

eqn2 is the 2nd equation of the system.  



Promula Application Development System User's Manual 

169 

 

equN is the Nth equation of the system. 

 

Equations are written in the usual algebraic notation: 

 
f(x1,x2,...) = g(x1,x2,...) 

 

where f() and g() are arbitrary real, continuous functions of x1, x2,... 

 

A system sys with parameters x1, x2,... may be solved by simply entering its name and specifying an ordered list of scalar 

variables a1, a2,... containing guesses for the unknowns. 

 
sys(a1,a2,...) 

 

The number and order of variables in the variable list must agree with the number and order of the parameters as defined in 

system sys. 

 

The solution of a system is obtained by an iterative process base. If it exists, the solution of system sys, will be returned as 

the values of the variables a1, a2,....  If the attempt to solve system sys does not converge after a reasonable number of 

iterations, then an error message is displayed and you may try another starting guess for the unknowns. A diagnostic is also 

given if the system does not have a real solution. 

 

Examples: 

 

The following program demonstrates how to define and solve a system of 3 equations and 3 unknowns. 

 

Define a system of 3 equations with 3 unknowns. 

 
  DEFINE SYSTEM sys1 
    DEFINE PARAMETER 
      x, "1st unknown" 
      y, "2nd unknown" 
      z, "3rd unknown"  
    END 
    1*x + y*y = 1/z 
    x*y - y/z = -8 
    5*z - x*1 = y - 2 
  END sys1 

 

Make an initial guess for the solution of system sys1 and solve. 
 
  DEFINE VARIABLE 
    a1   "  1st Unknown"  TYPE=REAL(10,5) 
    a2   "  2nd Unknown"  TYPE=REAL(10,5) 
    a3   "  3rd Unknown"  TYPE=REAL(10,5) 
  END VARIABLE 
 
  a1 = 1 
  a2 = 1 
  a3 = 1 
  sys1(a1,a2,a3) 
 

Write the solution values for system sys1. 

 
  WRITE a1 
    1st Unknown -5.00000 
  WRITE a2 
    2nd Unknown 2.00000 



Promula Application Development System User's Manual 

170 

  WRITE a3 
    3rd Unknown -1.00000 

 

 

Procedure solv1 solves system sys1 and displays the solutions repeatedly by trying different initial guesses. 

 
  DEFINE VARIABLE 
    iter "Iteration Counter" 
  END VARIABLE 
 
  DEFINE PROCEDURE solv1 
    WRITE "Enter 3 values as your initial guess for the solution of 'sys1'" 
    READ (a1,a2,a3) 
    iter = 1 
    DO WHILE iter LE 3 
      sys1(a1,a2,a3) 
      WRITE(/, "A solution for 'sys1' is:") 
      WRITE a1 
      WRITE a2 
      WRITE a3 
      a1 = a1+1 
      a2 = a2+1 
      a3 = a3+1 
      iter = iter+1 
    END WHILE 
  END solv1 

 

Running the solv1 procedure produced the following dialog. 

 
  solv1 
  Enter 3 values as your initial guess for the solution of 'sys1' 
  1 1 1 
   
  A solution for 'sys1' is: 
  1st Unknown -5.00000 
  2nd Unknown 2.00000 
  3rd Unknown -1.00000 
   
  A solution for 'sys1' is: 
  1st Unknown 1.00000 
  2nd Unknown 2.00000 
  3rd Unknown 0.20000 
   
  A solution for 'sys1' is: 
  1st Unknown -5.00000 
  2nd Unknown 2.00000 
  3rd Unknown -1.00000 
 

 

 

 

3.7.36  DEFINE TABLE 
Purpose: 

 

Defines a multi-variable tabular report for the program. 

 

Syntax: 

 



Promula Application Development System User's Manual 

171 

DEFINE TABLE 
  tabl(sets) [,TITLE(text)][,FORMAT(rw,cw)], 
  BODY(["text1",] var1[fmt1] [,"text2",] var2[fmt2],...) 
  ... 
END 

 

Remarks: 

 

tabl is the identifier of the table. 

 

sets is a list of the identifiers of the sets dimensioning the variables in the table. Upon display, the descriptors of 

the first set become the column headings of the table; the descriptors of the other sets, if any, classify the 

pages of the table. The descriptors of all sets missing from the list become the row descriptors of the table. 

This list must contain at least one set.   

 

text is any text you wish to show as a title for the table. The title may include variables and other format characters 

according to the rules defined in the WRITE text statement. 

 

text1 is any text that you wish to use as a subtitle for the values of var1. This text may not contain variables. 

 

var1 is the identifier of the first variable in the table. 

 

fmt1 is the desired format for the values of var1. Usually, this is used to specify the number of decimal digits for 

var1. 

 

text2 is any text that you wish to use as a subtitle for the values of var2. This text may not contain variables. 

 

var2 is the identifier of the second variable in the table. 

 

fmt2 is the desired format for the values of var2. 

 

rw  is the width in characters for row descriptors. 

 

cw  is the width in characters for table columns. 

 

A table definition includes a structure specification, in terms of sets, a body, and an optional title and format. The body of 

the table contains the names of the variables whose values will be displayed as the 'body' of the table. You may include as 

many variables as you wish in the body of a table. The format specifies the width of the row descriptors and columns of the 

table. 

 

Typically, the values of the variables in a table are classified by a common set which will classify the columns of the table. 

To define a table of scalars, let sets equal 1. 

 

To display a table, use the table's identifier as a program statement. 

 

By default, tables defined by the DEFINE TABLE statement are written to the output device (screen, or printer) when they 

are called (i.e., they behave like a WRITE table statement.) You may override this default and use the same table for 

interactive data browsing or data entry by executing a SELECT BROWSE statement. See the SELECT option statement 

for details. 

 

Tables may be written in a disk file by using a SELECT OUTPUT statement. 

 

The title defined for a table may be locally overridden with a custom title by including a title specification with the call to 

the table. For example, when displaying a table called tabl, the statement  

 
tabl TITLE(newtext) 



Promula Application Development System User's Manual 

172 

 

will display tabl with the title specified by newtext instead of the title specified in the definition of tabl. 

 

Examples: 

 

The following example illustrates use of the DEFINE TABLE statement. 

 

First, a group of financial variables and several other variables that will be used to construct a financial summary report are 

defined and initialized. The data for the financial variables were obtained from a database (not shown).  See the 

FPLAN.PRM example on the PROMULA Demo Disk for details. 

 

 
DEFINE SET 
  col(13) 
END SET 
 
DEFINE VARIABLE 
* 
* TABLE DATA VARIABLES 
* 
  netsal(col) "Net Sales"                                 TYPE=REAL(8,1) 
  empcos(col) "Employment Costs"                          TYPE=REAL(8,1) 
  msrvce(col) "Materials and Service"                     TYPE=REAL(8,1) 
  dep(col)    "Depreciation"                              TYPE=REAL(8,1) 
  taxes(col)  "Income Taxes"                              TYPE=REAL(8,1) 
  tcosts(col) "Total Costs"                               TYPE=REAL(8,1) 
  opinc(col)  "Operating Income"                          TYPE=REAL(8,1) 
  intinc(col) "Interest, Dividends and Other Income"      TYPE=REAL(8,1) 
  intexp(col) "Interest and Other Debt Charges"           TYPE=REAL(8,1) 
  clcost(col) "Estimated Plant Closedown Costs"           TYPE=REAL(8,1) 
  othexp(col) "Other Expenses"                            TYPE=REAL(8,1) 
  ibtax(col)  "Income (Loss) Before Income Taxes"         TYPE=REAL(8,1) 
  itax(col)   "Income Taxes"                              TYPE=REAL(8,1) 
  netinc(col) "Net Income (Loss)"                         TYPE=REAL(8,1) 
* 
* TABLE SUPPORT VARIABLES 
* 
  cdesc(col)  "The Column Descriptions"                   TYPE=STRING(7) 
  sub1(col)  
  dash(col) TYPE=STRING(10) 
  eqls(col) TYPE=STRING(10) 
END VARIABLE 
 
SELECT KEY(col,cdesc) 
dash="  --------" 
eqls="  ========" 
cdesc(i)=1977+i 
cdesc(11)="1978-82" 
cdesc(12)="1983-87" 
cdesc(13)="1978-87" 

 

 

The code below defines a table called report and a procedure that computes and displays the table. 

 
DEFINE TABLE 
  report(col), 
  FORMAT(40,10), 
  TITLE("ACME Corporation"/, 
        "Ten-Year Financial Summary"/, 



Promula Application Development System User's Manual 

173 

        "(Million Dollars)"/), 
  BODY(eqls / netsal /, 
      "Costs and Expenses:", 
      empcos msrvce dep taxes dash sub1 dash opinc/, 
      "Other Income (Expense):", 
      intinc intexp clcost othexp dash ibtax itax dash netinc eqls) 
END TABLE 
 
DEFINE PROCEDURE wrrep 
  SELECT col(11-13) 
  sub1=empcos+msrvce+dep+taxes 
  SELECT LINES=60,ZERO=DASHES,HEADING=OFF,COMMA=ON,MINUS=PARENTHESES 
  report 
  SELECT col*  
  SELECT LINES=25,ZERO=ON,HEADING=ON,COMMA=OFF,MINUS=LEADING 
END PROCEDURE wrrep 

 

 

The report produced by running procedure wrrep is shown below. 

 
                              ACME Corporation 
                         Ten-Year Financial Summary 
                             (Million Dollars) 
                                       
                                       
                                              1978-82   1983-87   1978-87 
                                             ========  ========  ======== 
                                                                          
   Net Sales                                 18,334.7  28,795.2  47,129.9 
                                                                          
   Costs and Expenses:                                                    
   Employment Costs                           7,864.1  12,208.4  20,072.5 
   Materials and Service                      7,740.1  13,476.9  21,217.0 
   Depreciation                                 902.1   1,483.1   2,385.2 
   Income Taxes                                 298.6     371.7     670.3 
                                             --------  --------  -------- 
                                             16,804.9  27,540.1  44,345.0 
                                             --------  --------  -------- 
   Operating Income                           1,529.8   1,255.1   2,784.9 
   
   Other Income (Expense):                                                
   Interest, Dividends and Other Income         195.9     276.4     472.3 
   Interest and Other Debt Charges            (199.0)   (389.0)   (588.0) 
   Estimated Plant Closedown Costs              --      (650.0)   (650.0) 
   Other Expenses                               --       (51.0)    (51.0) 
                                             --------  --------  -------- 
   Income (Loss) Before Income Taxes          1,526.7     441.5   1,968.2 
   Income Taxes                                 630.8    (86.2)     544.6 
                                             --------  --------  -------- 
   Net Income (Loss)                            895.9     527.7   1,423.6 
                                             ========  ========  ======== 

 

 

 

See the WRITE table, BROWSE table, and EDIT table statements for more details on the use of multi-variable reports. 

 

3.7.37  DEFINE VARIABLE 
Purpose:  

 



Promula Application Development System User's Manual 

174 

Defines a local variable. 

 

Syntax  

 
DEFINE VARIABLE [SCRATCH] [file] 
  var[(sets)][,"desc"][,TYPE=type] [values] [diskrel] 
  ... 
END 

 

Remarks: 

 

var is the identifier of the variable. This is the name by which you refer to the variable in your programs. var may 

contain letters and numbers, but the first character must be a letter. Each variable identifier must be different 

from all other identifiers in a given program segment. Only the first six characters of the identifier are 

significant. If the identifier is followed by an asterisk (*), the variable may be used as an indirect for general 

purpose input/output operations.   

 

SCRATCH is a keyword indicating that the variable is to reside in scratch storage.   

 

file is the identifier of an arrray or random file. If file is specified, var will be treated as a disk variable and its 

values will be contained in the disk file that file is physically opened to.  See the SELECT file statement for a 

discussion of random files, and Chapter 4 for a discussion of array files. 

 

NOTE:  If file is specified, the SCRATCH, values, and diskrel options are not allowed. 

 

sets is a list of set identifiers or numeric constants specifying the dimensions of the variable. If omitted, the 

variable is a scalar, i.e., it has a single value. 

 

In default input and output operations, the first set will classify the rows of values, the second set will classify 

the columns of values, the third set will clasify the two-dimensional blocks of values, etc. 

 

desc is a descriptor for the variable. It shows up as the title of subsequent displays of the variable produced by the 

report generation statements WRITE, BROWSE, EDIT, PLOT. 

 

type is the type format specification of the variable and may be one of the following: 

 

REAL(w,d) contains real numbers in the ranges: 

  

 (-3.37E+38,-8.43E-37) 

 0 

 (+8.43E-37,+3.37E+38)  

  

 Reals outside these ranges are not valid and cause underflows or overflows in 

calculations, which result in errors. 

  

INTEGER(w) contains integer numbers in the range: 

  

 (-231–3,+231–3) about ± 2.1 billion 

  

 Integers outside this range cause overflows and cannot be processed by the system.  

  

STRING(w) contains character values, i.e., strings of characters. 

  

CODE(w) 

 

contains codes. Codes are short character strings that are used for set selections. For 

example, JAN and FEB may be used to select the months of January and February.  

  



Promula Application Development System User's Manual 

175 

MONEY(w)  

 

contains money values (dollars and cents). This type is useful for accounting arithmetic 

where one-cent accuracy is important.  Money variables maintain ten significant digits 

of accuracy. The range of MONEY type variables is 

 

(-2**31-3,+2**31-3) 

 

 about ± 2.1 billion cents or 21 million dollars. 

  

DATE(w) 

 

contains date values. Dates are values of the form mm/dd/yy, where mm is a month 

number, dd is a day number, and yy is a year number.  Internally, the date value is 

stored as a numeric quantity equal to yymmdd. Alternative date formats (e.g., 

dd/mm/yy or mm/dd/yyyy) are available by executing a SELECT DATE statement. 

  

UPPERCASE(w)  

 

contains string values that are automatically converted to uppercase when they are input 

from the keyboard. 

  

set(w)  

 

 

contains integers from 0 to N. If the values of the set type variable are within the range 

of set, the descriptors of set are displayed, otherwise, the variable is assigned and 

displays the value 0. This type of variable is useful for helping the user enter or verify 

categorical data. 

 

Where 

 

w is an integer denoting the width (in characters) of subsequent displays of the values of var. The maximum 

width for a code type variable is 6 characters.  

 

d is an integer denoting the number of decimal digits in subsequent displays of the values of real variables. 

If d is 10 or greater, the number will be shown in exponential notation — base 10. The value will show 

six decimal places. 

 

If type is omitted, the variable will have type REAL(8,0) 

 

values is a value specification defining initial values for var. Use of this option is restricted to local, REAL type 

variables. values may take one of four different forms: 

 

VALUE(a) or 

VALUE=a 

assigns the value a to all the cells of the variable. 

  

VALUE(a,b) assigns the first value to a, the last value to b, and interpolates the remaining cells of 

the variable. 

  

VALUE(a,b,c...)  assigns the values a,b,c... in order. If too many values are specified, the extra values 

are ignored. If too few are specified, the remaining values are set to zero. In order to 

simplify the specification of multiple values, the N*VALUE notation may be used.  

Thus, 

 
VALUE(50*99.9, 30*99.0, 10*95.0, 5*90.0, 5*80.0) 

 

would be a quick way to specify 100 values. 

 

If values is omitted, the variable will be initialized by PROMULA:  numeric variables are initialized with the 

value zero, and string type variables are initialized with "empty strings". 
 

diskrel is a disk relation indicating that the variable is to be used for virtual or dynamic access of a disk variable.   

 



Promula Application Development System User's Manual 

176 

Variables are storage places for information. Depending on how their values are stored, variables are of three types:  fixed, 

scratch, and disk. 

 

Fixed Fixed variables are accessed from a fixed space in primary memory (RAM). They are defined with a DEFINE 

VARIABLE statement. 

 

The values of fixed variables may be saved in a segment file on disk by the END SEGMENT, END 

PROGRAM, and WRITE VALUE segment statements.   

 

Using fixed variables in calculations will result in the fastest execution speed.  

 

Fixed variables are sometimes referred to as local variables. 

 

Scratch Scratch variables are accessed from a scratch space in primary memory. They are defined with a DEFINE 

VARIABLE SCRATCH statement. 

 

Their values can be cleared from memory with a CLEAR statement to make room for other scratch variables. 

The values of scratch variables cannot be saved in a segment file on disk.  

 

Computations using scratch variables will be slower than using fixed variables because PROMULA must do 

more internal calculations to access their values. 

 

Scratch variables are sometimes referred to as local variables. 

 

Disk Disk variables are stored on disk in an array file. They are defined with a DEFINE VARIABLE file 

statement. Disk variables are also referred to as database variables. 

 

The values of disk variables may be accessed directly on disk and they may be accessed dynamically or 

virtually in memory via scratch or fixed variables which are related to them. 

 

See Chapter 4 for a discussion of relating local and disk variables. 

 

 

Example:  The set type variable 
 

When displayed, a set(w) type variable will show the contents of the set element whose index value it contains. This 

correspondence is only valid for index values between 1 and the size of the set, all other values are converted to 0. The 

following example illustrates the TYPE=set(w) option.  
 

DEFINE SET 
 emp(4) 
END SET 
 
DEFINE VARIABLE 
  empn(emp) "Employee Names" TYPE=STRING(10) 
  emps(emp) "Employee List"  TYPE=emp(40) 
  empc      "An Employee"    TYPE=emp(10) 
END VARIABLE   
 
DEFINE RELATION 
   row(emp,empn) 
END RELATION 
 
READ empn 
George 
Fred 
Lois 
Mark 



Promula Application Development System User's Manual 

177 

 

Given the above defintions, the set type variable may be used for displaying categorical data as illustrated in the dialog 

below. 

 
WRITE emps 
                                   Employee List 
                                           
                 George                                           0 
                 Fred                                             0 
                 Lois                                             0 
                 Mark                                             0 
   
  emps(i) = i 
  WRITE emps 
                                   Employee List 
                                           
                 George                                      George 
                 Fred                                          Fred 
                 Lois                                          Lois 
                 Mark                                          Mark 
 
  WRITE empc 
  An Employee          0 
 
  empc = 4 
  WRITE empc 
  An Employee       Mark 

 

 

 

3.7.38  DEFINE WINDOW 
 

Purpose: 

 

Define a window. 

 

Syntax: 

 
DEFINE WINDOW 
  name(area[,text][,border][,bar]) [POPUP] 
  ... 
END 

 

Remarks: 

 

name is the logical identifier of the window.  

 

area is a list of four numbers defining the location and size of the window. The syntax of this list is 

 
X1,Y1,X2,Y2 

 

where 

 

X1 defines the leftmost column of the window 

Y1 defines the topmost row of the window 

X2 defines the rightmost column of the window 

Y2 defines the bottom-most row of the window 



Promula Application Development System User's Manual 

178 

 

For a 25 row by 80 column text screen, row values must be in the range 0 to 24 and column values must be in 

the range 0 to 79.  Any window area that is off the screen or is overlapped by another window will not be 

visible. 

 

text is a list of up to four keywords separated by slashes that define the appearance of normal text in the window. 

The syntax of this list is  

 
foregr/backgr[/BRIGHT][/BLINK] 

 

where 

 

foregr defines the foreground color 

backgr defines the background color 

BRIGHT causes the foreground to be bright 

BLINK causes the text to blink 

 

Valid colors are BLACK, WHITE, GREEN, RED, YELLOW, BLUE/CYAN, PURPLE/MAGENTA, 

NAVY/DARK BLUE. 

 

border is a list of up to six keywords separated by slashes that define the appearance of a border for the window. The 

syntax of this list is 

 
type/style/foregr/backgr[/BRIGHT][/BLINK] 

 

where 

 

type defines the location of a border for the window and may be one of the following: 

 

NONE for no border 

TOP for a top border 

BOTTOM for a bottom border 

BANDED for a top and bottom border 

FULL for a complete border 

HEADER for a header border 

FOOTER for a footer border 

 

style defines the style of the border and may be one of the following: 

 

SINGLE for a single line border 

DOUBLE for a double line border 

HEAVY for a heavy line border 

 

foregr defines the foreground color 

backgr defines the background color 

BRIGHT causes the foreground to be bright 

BLINK causes the text to blink 

 

Valid colors are BLACK, WHITE, GREEN, RED, YELLOW, BLUE/CYAN, PURPLE/MAGENTA, 

NAVY/DARK BLUE. 

 

The border is displayed one character outside of the area defined by the area parameter of the window 

definition. 

 



Promula Application Development System User's Manual 

179 

bar is a list of up to three sets of up to four keywords separated by slashes that define the appearance of 

highlighting in highlighted prompts, pick and popup menus, EDIT statements, and the list selection 

statements SELECT indirect, SELECT ENTRY, and SELECT SET, and the GETDIR function. 

 

The syntax of the bar specification is  

 
colors1,colors2,colors3 

 

where  

 

colors1 defines the colors of standard highlighting in the window. 

 

These colors will be used for highlighting and prompts generated by various PROMULA 

statements and for the currently highlighted but not selected elements in selection lists. The 

default colors are black on cyan. 

 

colors2 defines the colors of a selected but not currently highlighted element in the SELECT SET 

statement. The default colors are black on green.   

 

colors3 defines the colors of a currently highlighted and selected element in the SELECT SET 

statement. The default colors are black on red. 

 

Each color specification has the following form: 

 
foregr/backgr[/BRIGHT][/BLINK] 

 

where 

 

foregr defines the foreground color 

backgr defines the background color 

BRIGHT causes the foreground to be bright 

BLINK causes the text to blink 

 

Valid colors are BLACK, WHITE, GREEN, RED, YELLOW, BLUE/CYAN, PURPLE/MAGENTA, 

NAVY/DARK BLUE. 

 

POPUP is the optional keyword POPUP. When present, the window will behave as a "popup" window; i.e., when the 

window is closed, the contents of the screen that was on the screen in the window area before the popup 

window was opened will be redrawn. Popup windows are often used to provide on-line help or warning 

messages. 

 

Examples: 

 

The following example illustrates how to use header and footer style windows. A static "frame" window is needed to make 

the sides of the box that will contain the Main Screen. This frame will be opened first, then the static header and footer 

windows will be opened on top of it. Finally, the window to be used as the Main Screen that fits inside the "box" created by 

the first three windows is opened. 

 
DEFINE WINDOW 
   head(01,01,78,03,WHITE/BLACK,HEADER/SINGLE) 
   fram(01,01,78,24,WHITE/BLACK,FULL/SINGLE) 
   foot(01,23,78,23,WHITE/BLACK,FOOTER/SINGLE) 
   work(02,05,77,21,WHITE/BLACK,NONE) 
END WINDOW 
 
OPEN fram MAIN 
OPEN head MAIN 



Promula Application Development System User's Manual 

180 

WRITE CENTER(/"This WRITE statement appears in the window called 'head'") 
OPEN foot MAIN 
WRITE CENTER(/"This WRITE statement appears in the window called 'foot'") 
OPEN work MAIN 
WRITE CENTER(/"This WRITE statement appears in the window called 'work'") 
ASK CONTINUE 

 

The code above produces the following display: 

 

 This WRITE statement appears in the window called 'head'

 This WRITE statement appears in the window called 'work'

                Press any key to continue

 This WRITE statement appears in the window called 'foot'

 
 

See also the OPEN WINDOW and CLEAR WINDOW statements as well as Advanced Windows in Chapter 1 for more 

information on the use of windows. See also the sample applications distributed on the PROMULA Demo Disk.  

3.7.39  DO CORRELATE 
Purpose: 

 

Produces a report of one or more correlation matrices for all pairings of specified variables. The correlation coefficients (R) 

are computed by the following formula: 
 

R = 

i(xi – x )(yi – y )

i(xi – x )2 i(yi – y )2

  

 

where xi and yi are the variables to be correlated and  x   and y   are their respective means. 

 

Syntax: 

 
DO CORRELATE [(sets)] (vars) 

 

Remarks: 



Promula Application Development System User's Manual 

181 

 

sets is a list of set identifiers subscripting the arrays to be correlated. 

 

The specification of sets defines the index of the observations and the order of report pages produced. The last set 

in sets specifies the index of the observations to be correlated, any preceding sets specify the order in which pages 

of the report are displayed. The generation of report pages corresponds to the specification of the sets in sets from 

left to right — left varying the fastest. 

 

The default value for sets is the reverse of the set specification used in defining the highest dimensional variable 

(i.e., the variable having the greatest number of dimensions) in vars with the first set in this definition indexing the 

observations, and the remaining sets heading report pages. 

 

vars is a list of variable identifiers specifying the arrays to be correlated. The list may also contain the time parameter 

TIME if all the variables in vars share a time series set as one of their indexes (a time series set is a set which has a 

TIME specification in its definition or which shares a TIME relation with a variable.) This list must contain at 

least two variables. Inclusion of TIME will include the time series value vector as one of the variables in the 

correlation matrix. 

 

One-dimensional arrays (vectors), are used in correlation calculations directly. Two- and higher-dimensional 

arrays are partitioned into sets of observations, and a separate matrix is generated for each active "page" and 

"column" of the highest dimensional array in vars. The variables specified in vars should have at least one set in 

common. 

 

A title — Correlation Matrix — is printed at the top of each page. Subtitles including the row descriptors for sets 

specified in sets appear when more than one report page is generated. 

 

Examples: 

 

The following code illustrates the DO CORRELATE statement. 

 
DEFINE SET 
  grp(2)   "Test Groups" 
  tim(10)  "Time Points" TIME(0,9) 
END SET 
 
DEFINE VARIABLE 
  rspv(tim,grp) "Response by Group and Time" 
  dosv(tim,grp) "Dose at Each Time Point" 
END VARIABLE 
 
READ dosv(grp,tim) 
0.5   1.0   1.5   2.0   2.5  15.0  17.5  20.0  22.5  25.0 
0.5   1.0   1.5   2.0   2.5  15.0  17.5  20.0  22.5  25.0 
READ rspv(grp,tim) 
1.3   2.1   3.5   6.0   6.6   6.1   6.0  11.2   5.7   5.7 
0.3   1.9   3.6   6.2   5.3   3.3   2.7  10.7   5.5   9.7 

 

Given the definitions above, the statement 

 
DO CORRELATE(grp,tim) (dosv,rspv,TIME) 

 

 

produces the display below. 

 
                           Correlation Matrix, 0 to 9 
                                         
                                     GRP(1) 



Promula Application Development System User's Manual 

182 

                                         
                                   DOSV    RSPV    TIME 
                        DOSV      1.000   0.581   0.948 
                        RSPV      0.581   1.000   0.687 
                        TIME      0.948   0.687   1.000 
                                         
                                         
                                     GRP(2) 
                                         
                                   DOSV    RSPV    TIME 
                        DOSV      1.000   0.603   0.948 
                        RSPV      0.603   1.000   0.738 
                        TIME      0.948   0.738   1.000 

 

 

 

3.7.40  DO DESCRIBE 
Purpose:  

 

Produces a report of one or more tables of 12 descriptive statistics for specified variables. The statistics are as follows: 

 

1. Number of observations 7. Standard deviation  

2. Number of excluded observations 8. Skewness 

3. Number of valid observations 9. Kurtosis 

4. Arithmetic mean 10. Range 

5. Variance 11. Minimum value, and  

6. Standard error 12. Maximum value.  

 

Syntax: 

 
DO DESCRIBE [(sets)] (vars[::fmt]) 
 

Remarks: 

 

sets is a list of set identifiers subscripting the array(s) to be described. 

 

The specification of sets controls the analysis of the variables specified in vars by defining the index of the 

observations and the order of report pages produced. The last set in sets specifies the index of the observations, any 

preceding sets specify the order in which pages of the report are written. The ordering of report pages corresponds 

to the specification of the sets in sets from left to right — left varying the fastest. 

 

The default value for sets is the reverse of the set specification used in defining each variable in vars with the first 

set in this definition indexing the observations, and the remaining sets heading report pages. 

 

vars is a list of variable identifiers specifying the arrays to be described. 

 

One-dimensional arrays (vectors), are treated as a single set of observations. Two- and higher-dimensional arrays 

are partitioned into sets of observations. 

 

fmt is an integer specifying the number of decimal digits for the reported statistics. The default fmt is the number of 

decimals specified by the TYPE specification in the definition of the variable(s) specified in vars. The report 

generator uses the following number of decimal digits for each statistic: 

 

 

Format of reports produced by the DO DESCRIBE statement 

   



Promula Application Development System User's Manual 

183 

STATISTIC  NUMBER OF 

DECIMALS DIGITS 

1. Number of observations  0 

2. Number of excluded observations  0 

3. Number of valid observations  0 

4. Arithmetic mean   fmt 

5. Variance  fmt 

6. Standard error  fmt+1 

7. Standard deviation   fmt+1 

8. Skewness  fmt+2 

9. Kurtosis  fmt+2 

10. Range  fmt 

11. Minimum value  fmt 

12. Maximum value  fmt 

 

A title — Descriptive Statistics for vardesc — is printed at the top of each page (vardesc is the descriptor of the array being 

described). Subtitles that consist of the row descriptors for sets specified in sets appear when more than one report page is 

produced. 

 

Examples: 

 

The following code illustrates the DO DESCRIBE statement. First, a three-dimensional variable, a, is defined and 

displayed: 

 
DEFINE SET 
  row(4) 
  col(2) 
  pag(2) 
END SET 
 
DEFINE VARIABLE 
  a(row,col,pag) "VALUES BY ROW AND COL" 
END VARIABLE 
 
a=RANDOM(5000,9999) 

 

 

The values of variable a may be displayed by the statement, WRITE a. 

 
                             VALUES BY ROW AND COL 
                                         
                                     PAG(1) 
                                         
                                         COL(1)  COL(2) 
                        ROW(1)            6,079   6,825 
                        ROW(2)            8,046   5,052 
                        ROW(3)            8,567   8,882 
                        ROW(4)            8,988   7,825 
                                         
                                     PAG(2) 
                                         
                                         COL(1)  COL(2) 
                        ROW(1)            7,007   6,409 
                        ROW(2)            6,613   7,083 
                        ROW(3)            6,611   9,819 
                        ROW(4)            5,152   5,168 

 

 



Promula Application Development System User's Manual 

184 

 

The report produced by the statement  

 
DO DESCRIBE(col,row) (a::2) 

 

is shown below.  Set row is the last set in sets so it indexes the observations, set col is used to partition the data for each 

table. Set pag is not specified in sets so its descriptors do not appear in the titles of the tables and the statistics reported 

correspond to the first level of pag. 

 
              Descriptive Statistics for VALUES BY ROW AND COL 
                                       
                                   COL(1) 
                                       
                  No of Observations                     4 
                  Number Excluded                        0 
                  Valid Observations                     4 
                  Arithmetic Mean                 7,919.92 
                  Variance                    1,241,510.00 
                  Standard Error                 1,286.603 
                  Standard Deviation             1,114.231 
                  Skewness                         -0.8583 
                  Kurtosis                         -0.8961 
                  Total Range                     2,909.62 
                  Minimum Value                   6,078.70 
                  Maximum Value                   8,988.32 
                                                                
              Descriptive Statistics for VALUES BY ROW AND COL 
                                       
                                   COL(2) 
                                       
                  No of Observations                     4 
                  Number Excluded                        0 
                  Valid Observations                     4 
                  Arithmetic Mean                 7,146.30 
                  Variance                    1,990,345.00 
                  Standard Error                 1,629.047 
                  Standard Deviation             1,410.796 
                  Skewness                         -0.3267 
                  Kurtosis                         -1.1999 
                  Total Range                     3,935.86 
                  Minimum Value                   5,052.46 
                  Maximum Value                   8,988.32 

 

 

 

The statement DO DESCRIBE(a::2) would use the default value for sets (i.e., (pag,col,row)) and would produce tables of 

statistics for variable a indexed by row for all combinations of pag and col in the following order: 

 
PAG(1), COL(1) 
PAG(2), COL(1) 
PAG(1), COL(2) 
PAG(2), COL(2) 

 

The statement DO DESCRIBE(row) (a::2) would produce a table of statistics for variable a indexed by row for the first active 

elements of sets of pag and col. No pag or col descriptor subtitle would appear in the report title. 

 

The statement DO DESCRIBE(col,row) (a::2) would produce a table of statistics for variable a indexed by row for each level of 

set col and the first active element of set pag. Set col's row descriptors would be used as a subtitle in the report titles. 

 



Promula Application Development System User's Manual 

185 

COL(1) 
COL(2) 

 

The statement DO DESCRIBE(col,pag,row) (a::2) would produce tables of statistics for variable a indexed by row for all 

combinations of pag and col in the following order: 

 
COL(1), PAG(1) 
COL(2), PAG(1) 
COL(1), PAG(2) 
COL(2), PAG(2) 

 

3.7.41  DO DIRECTORY 
Purpose: 
 

Executes a group of statements once for each file in the current directory that matches a given file specification. 
 

Syntax: 
 

DO DIRECTORY filespec INTO fname 
  statement 
  ... 
END 

 

Remarks: 
 

filespec is a string variable or a quoted string containing the file specification that you wish to search for; wild card 

characters are allowed.   
 

fname is the name of the string variable that will be assigned each file name that matches the file specification. 
 

statement is any executable statement, including other DO statements, except definitions. 
 

The statements from DO DIRECTORY statement is an example of a "DO loop." 
 

Examples: 
 

The following example demonstrates the DO DIRECTORY statement. 
 

* Create three files on disk 
DEFINE FILE 
  file1 
  file2 
  file3 
END 
 
OPEN file1 "file1.fil" STATUS = NEW 
OPEN file2 "file2.fil" STATUS = NEW 
OPEN file3 "file3.fil" STATUS = NEW 
CLEAR file1 
CLEAR file2 
CLEAR file3 
 
DEFINE VARIABLE 
  fname      "File Name"  TYPE=STRING(15) 
END VARIABLE 

 

The DO DIRECTORY loop below finds all files that match the specification *.fil, passes each one to the string variable 

fname, and writes the value of fname. 

 



Promula Application Development System User's Manual 

186 

DO DIRECTORY "*.fil" INTO fname 
  WRITE fname 
END DO DIRECTORY 

 

The output of the loop above was 

 
  File Name       FILE1.FIL 
  File Name       FILE2.FIL 

  File Name       FILE3.FIL 

 

 

3.7.42  DO file 
Purpose: 

 

Accesses sequentially all the records of a text file or a random file. 

 

Syntax: 

 
DO file 
  statement 
  ... 
END 

 

Remarks: 

 

file is the identifier of a text or random file. 

 

statement is any executable statement, including other DO statements, except definitions. 

 

The statements from DO file to END are an example of a "DO loop." 

 

The statements of the DO file loop are executed repeatedly as many times as there are records in the file. The order of 

iterations through the DO loop is 1,2,...N, where N is the number of the last record in the file. At each iteration a new record 

in the file is accessed, and the statements within the DO loop are executed.   

 

If file is type TEXT, an explicit READ file(variables) statement is required to transfer data from the text file to program 

variables. If file is type RANDOM, the data in the record is automatically passed to the variables of the random file as each 

record is accessed. 

 

 

Examples:  

 

1. Copy a text file to a random file  

 
DEFINE FILE 
  txt1 TYPE=TEXT 
  ran1 TYPE=RANDOM 
  arr1 TYPE=ARRAY 
END FILE 
 
OPEN ran1 "ran1.ran", STATUS=NEW 
DEFINE VARIABLE ran1 
  item1 "Item 1"   TYPE=REAL(8,0) 
  item2 "Item 2"   TYPE=STRING(8) 
  item3 "Item 3"   TYPE=DATE(8) 
END VARIABLE 



Promula Application Development System User's Manual 

187 

 
OPEN txt1 "txt1.txt", STATUS=OLD 
DO txt1 
  READ txt1(item1:8,item2:8,item3:8) 
  WRITE ran1 
END txt1 

 

2. Copy a text file to an array file  

 
OPEN arr1 "arr1.arr", STATUS=NEW 
 
DEFINE SET 
  rec(100)  "Records" 
END SET 
 
DEFINE VARIABLE arr1 
  var1(rec) "Variable 1"         TYPE=REAL(8,0) 
  var2(rec) "Variable 2"         TYPE=STRING(8) 
  var3(rec) "Variable 3"         TYPE=DATE(8) 
END VARIABLE 
 
DEFINE VARIABLE 
  rn        "Record Number"  
END VARIABLE 
 
rn=1 
DO txt1 
  READ txt1(var1(rn),var2(rn),var3(rn)) 
  rn=rn+1 
END txt1 

 

 

3. Copy a random file to an array file 
 

rn=1 
DO ran1 
  var1(rn) = item1 
  var2(rn) = item2 
  var3(rn) = item3 
  rn=rn+1 
END ran1 

 

4. Copy an array file to a random file 
 

rn = 1 
DO rec 
  SELECT ran1(rn) 
  item1 = var1 
  item2 = var2 
  item3 = var3 
  WRITE ran1 
  rn=rn+1 
END rec 

 

5. List a random file 
 

DO ran1 
  WRITE(item1:8,item2:8,item3:8) 
END ran1 

 



Promula Application Development System User's Manual 

188 

3.7.43  DO  IF 
Purpose: 

 

Executes a group of statements once if a condition is met. 

 

Syntax: 

 
DO IF condition 
  statement 
  ... 
[ELSE [condition] 
  statement 
  ...] 
END 

 

Remarks: 

 

condition is any Boolean expression, i.e., an expression that is either true or false. If true, the statements immediately 

following are executed until the next END or ELSE statement, whichever is first. If false, the statements 

immediately following are not executed and execution proceeds to the next ELSE or END statement, 

whichever is first. 

 

statement is any executable statement (no definitions), including another DO statement. The group of executable 

statements between the DO IF and the next ELSE (or END) statement, or between an ELSE and the next 

ELSE (or END) statement, is called a branch of the DO IF statement. 

 

A branch is executed only if all previous conditions are false and the condition of the branch is true; otherwise, execution 

proceeds to the evaluation of the condition of the next branch. 

 

DO IF statements may be nested to any depth. 

 

DO IF statements may have multiple ELSE statements. In a DO IF with multiple ELSE statements, the conditions of the 

ELSE statements are evaluated sequentially from top to bottom:  if the first condition is false the second condition is 

evaluated, and so forth, until a true condition is found or the END is encountered. 

 

If an ELSE statement has no condition specified, it is assumed to be the complement of all previous conditions. That is, if 

all the previous conditions are false, the null ELSE statement is true. For this reason, a null ELSE statement, if desired, 

should always be specified last. 

 

Examples: 

 
DEFINE VARIABLE 
  x 
  y 
END VARIABLE 
 
DEFINE PROCEDURE doif 
  DO IF x GT y 
    WRITE("x=  ",x:5:2,", y=  ",y:5:2/"x is greater than y") 
  ELSE x EQ y 
    WRITE("x=  ",x:5:2,", y=  ",y:5:2/"x is equal to y") 
  ELSE 
    WRITE("x=  ",x:5:2,", y=  ",y:5:2/"x is less than y") 
  END IF 
END PROCEDURE doif 
 

A dialog with procedure doif is displayed below.  



Promula Application Development System User's Manual 

189 

 
  x = 1.2 
  y = 3.4 
  doif 
  x=  1.20, y=  3.40 
  x is less than y 
 
  x = 4.5 
  doif 
  x=  4.50, y=  3.40 
  x is greater than y 
 
  x = 3.4 
  doif 
  x=  3.40, y=  3.40 
  x is equal to y 

 

 

 

In this example, the procedure doif checks whether the variable x is less than, equal to, or greater than the variable y, and 

issues a message appropriately. 

 

3.7.44  DO IF END 
Purpose: 

 

Executes a group of statements once if the user presses the END key in response to a prompt or pick menu. 

 

Syntax: 

 
DO IF END 
  statement 
  ... 
END 

 

Remarks: 

 

statement is any executable statement (no definitions), including another DO statement. 

 

The group of executable statements between the DO IF END and the END statement are executed if the user presses the 

END key in response to a prompt or menu, typically from a SELECT SET, SELECT ENTRY, SELECT indirect, 

SELECT variable or SELECT menu statement that uses the End key as an escape. This test can help you avoid 

complications that may come up when the user ends from a selection statement without making a valid selection. After 

these statements are executed, PROMULA automatically re-executes the statement preceding the DO IF END block. 

 

 

Examples:  

 

1. The procedure below uses a DO IF END statement to force the user to make a set selection via the SELECT ENTRY 

statement. 

 
DEFINE SET 
  yrs(5) 
END SET 
 
DEFINE WINDOW 
 cwind(1,22,78,23,white/black/bright,full/single,yellow/black),POPUP 
 mwind(0,0,79,20,green/black,none,white/black,yellow/red/bright) 



Promula Application Development System User's Manual 

190 

END WINDOW 
 
DEFINE VARIABLE 
  yrsn(yrs) "Year Names"  TYPE=STRING(10) 
  yrsv(yrs) "Year Values" 
END VARIABLE 
 
yrsv(i) = i 
yrsn(i) = yrsv+" yrs." 
SELECT ROW(yrs,yrsn) 
 
DEFINE PROCEDURE getyrs 
  OPEN cwind, COMMENT 
  OPEN mwind, MAIN 
  WRITE COMMENT 
                 Please select the number of years you will serve. 
                        YOU MUST SERVE AT LEAST 1 YEAR! 
END 
  SELECT ENTRY(yrs) 
  DO IF END 
    getyrs 
  END IF END 
  yrsv = yrs:S 
  WRITE ("Your must serve ",yrsv:-2,"years!  THANK YOU!") 
END PROCEDURE getyrs 
 

 Identifier Description

 1          1 yrs.

 2          2 yrs.

 3          3 yrs.

 4          4 yrs.

 5          5 yrs.

                   End: Exit  Arrows PgUp PgDn Home: Move  Enter: Select

                   Please select the number of years you will serve.

                          YOU MUST SERVE AT LEAST 1 YEAR!

 
 

2. The DO IF END statement may also be used to detect a null set selection. This usage is obsolete; it is available only to 

keep PROMULA compatible with previous versions. Use the DO IF NULL statement instead. 

 
DEFINE SET 
  mn (12)  "12 Months" 
END SET 



Promula Application Development System User's Manual 

191 

 
DEFINE VARIABLE 
  lmt    "Lower Limit value" 
  mv(mn) "Monthly values" 
END VARIABLE 
 
mv(i) = i*10 
 
DEFINE PROCEDURE null 
  WRITE ("Enter the Lower Limit.") 
  READ lmt 
  SELECT mn IF mv GT lmt 
  DO IF END 
    WRITE("There are no months with value greater than"lmt) 
    WRITE("Try again.") 
    null 
  END IF END 
  WRITE mv:40 
END PROCEDURE null 

 

A dialog with procedure null is shown below. 

 
  null 
  Enter the Lower Limit. 
          ? 200 
   
  There are no months with value greater than     200 
  Try again. 
   
  Enter the Lower Limit. 
          ? 100 
   
                        
                                Monthly values 
   
                MN(11)                                       110 
                MN(12)                                       120 

 

 

 

3.7.45  DO IF ERROR 
Purpose: 

 

Executes a group of statements if a specific error is generated by the previous statement. 

 

Syntax: 

 
DO IF ERROR n 
  statement 
  ... 
END  

 

Remarks: 

 

n is the number of the error. The error messages and their numbers are listed in Chapter 6 of this manual. 

 

statement is any executable statement (no definitions), including another DO statement. 

 



Promula Application Development System User's Manual 

192 

If the specified error occurs during execution of the statement immediately preceding the DO IF ERROR statement, 

PROMULA will execute the group of executable statements between the DO IF ERROR and the END then re-execute the 

statement immediately preceding the DO IF ERROR statement. 

 

Example: 

 

Procedure chkval uses the DO IF ERROR statement to detect an arithmetic overflow or underflow. 

 
DEFINE PROCEDURE chkval 
  WRITE "Please enter a value." 
  READ val                         
  ans = 100/val 
  DO IF ERROR 538                               

    WRITE ("Please enter a nonzero value.")      Error 538 is caused by an  
    READ val                                    arithmetic overflow or underflow. 
  END IF ERROR                                   
  WRITE ("The answer is ",ans:-8:3) 
END PROCEDURE chkval 

 

 

A dialog with procedure chkval is shown below. 

 
  DO chkval 
  Please enter a value. 
         ? 0 
  Please enter a nonzero value. 
         ? 10 
  The answer is 10.000 

 

 

 

3.7.46  DO IF ESCAPE 
Purpose: 

 

Executes a group of statements if the user pressed the Esc key in response to a prompt generated by the previous statement. 

 

Syntax: 

 
DO IF ESCAPE 
  statement 
  ... 
END 

 

Remarks: 

 

statement is any executable statement (no definitions), including another DO statement. 

 

If the user presses Esc in response to a prompt (or selection menu), PROMULA will execute the group of executable 

statements between the DO IF ESCAPE and the END statement then re-execute the statement immediately preceding the 

DO IF ESCAPE statement. 

 

This statement is usually used to help prevent complications that can result if the user escapes from an application instead 

of giving a valid response to a prompt. 

 

Example: 

 



Promula Application Development System User's Manual 

193 

Procedure noesc uses the DO IF ESCAPE statement to trap and escape. 

 
DEFINE PROCEDURE noesc 
  WRITE "Please enter the value." 
  READ val 
  DO IF ESCAPE 
    WRITE ("There is no escape!") 
  END IF ESCAPE   
  WRITE ("The value is ",val:-8:3) 
END PROCEDURE noesc 

 

 

A dialog with procedure noesc is shown below. 

 
  DO noesc 
  Please enter the value. 
         ? [Esc] 
  There is no escape! 
         ? 100 
  The value is 100.000 

 

 

 

3.7.47  DO IF HELP 
Purpose: 

 

Executes a group of statements if the user presses the Alt and H keys simultaneously in response to a prompt. 

 

Syntax: 

 
DO IF HELP 
  statement 
  ... 
END 

 

Remarks: 

 

statement is any executable statement (no definitions), including another DO statement. 

 

When the user enters Alt-H in response to a prompt, PROMULA executes the group of executable statements between the 

DO IF HELP and the END statement then re-executes the statement immediately preceding the DO IF HELP statement. 

 

This statement is usually used to provide the user with information relating to a Data menu or a Pick menu. 

 

This statement and the SELECT HELP statement are useful for customizing on-line help for your applications. 

 

Pressing Alt-H in response to a Popup pick menu will cause PROMULA to display a specific topic of a dialog file as 

indicated in the definition of the pick menu. 

 

Examples: 

 

In the example shown on the next page the dialog file dohelp1.hlp provides context-specific help for the user editing the data 

menu data. 

 

The DO IF ERRORVALUE statement is used to branch according to location of the currently highlighted field on the data 

menu. 



Promula Application Development System User's Manual 

194 

 

If you press Alt-H when the cursor is on the field wt — which is the 3rd field in the data menu — you will get the message 

"Please enter your weight in kilograms." — which is the 3rd topic in the dialog file dohelp1.hlp. 

 

ERRORVALUE is an internal PROMULA variable that contains the sequence number of the currently highlighted field in 

data and pick menus. 

 

Define a dialog file with help messages. 

 
DEFINE DIALOG "dohelp1.hlp" 
 

Data Entry Help Messages 

 
Select the desired message by using the movement keys. 
  Press [ENTER] to access the desired (highlighted) message. 
  Press [END] to return to the previous menu. 
  Press [ESC] to exit to the PROMULA Main Menu. 
 
END 
TOPIC "NAME" 
  Please enter your last name in all CAPITAL letters. 
END 
TOPIC "AGE" 
  Please enter your age in years. 
END 
TOPIC "WEIGHT" 
  Please enter your weight in kilograms. 
END 
END 

 

Define a procedure for editing a data menu and providing field-specific help for the data variables in the data menu. 

 
DEFINE VARIABLE 
  name "User Name" TYPE=STRING(12) 
  age "User Age (years)" 
  wt "User Weight (Kilograms)" 
END VARIABLE 
 
DEFINE MENU data 
 

Data Entry Menu 

   
Name :  @@@@@@@@@@ Please enter the information. 
Age :  @@@@@@@@@@  
Weight :  @@@@@@@@@@ Press Alt-H if you have any questions. 

   

END 
 
 
DEFINE PROCEDURE getdata 
  EDIT data(name,age,wt) 
  DO IF HELP 
     DO IF ERRORVALUE EQ 1 
       BROWSE TOPIC "DOHELP1.HLP", 1 
     ELSE ERRORVALUE EQ 2 
       BROWSE TOPIC "DOHELP1.HLP", 2 
     ELSE ERRORVALUE EQ 3 
       BROWSE TOPIC "DOHELP1.HLP", 3 
     END IF ERRORVALUE 



Promula Application Development System User's Manual 

195 

  END DO IF HELP 
END PROCEDURE getdata 

 

3.7.48  DO IF KEYPRESS 
Purpose: 

 

Executes one or more statements if the user presses a prespecified key in response to a prompt. 

 

Syntax: 

 
stat1 
DO IF KEYPRESS(keyid) 
  statement 
  ... 
END 

 

Remarks: 

 

stat1 is an interactive statement; for example, an ASK, SELECT, BROWSE or EDIT statement. 

 

keyid is a keypress name (See Appendix C).   

 

statement is any executable statement (no definitions), including another DO statement. 

 

The DO IF KEYPRESS statement is an extension of the DO IF ESCAPE capability and behaves in the same manner. If 

the user presses the key named by keyid in response to an interactive statement, PROMULA will execute the group of 

executable statements between the DO IF KEYPRESS and the END statement then re-execute stat1. 

 

There are two limitations of this capability: 

 

1. No more than five DO IF KEYPRESS blocks may follow a single statement. 

 

2. The keypress identified by keyid must be available and defined for the current keyboard  (See Appendix C). 

 

Be warned that use of the DO IF KEYPRESS statement is inherently nonportable, and your application will require source 

code changes if it is moved across the various platforms on which PROMULA runs. 

 

Example: 

 

Procedure test uses the DO IF KEYPRESS statement to trap keypresses during an EDIT variable statement. 
 

DEFINE SET 
  row(20) 
  col(10) 
END 
 
DEFINE VARIABLE 
  var(row,col) "A variable matrix" 
  dvar(row,col) "Difference in variable matrix" 
  filen,  TYPE=STRING(20) 
END 
 
var(r,c) = r + c * 100 
 
DEFINE PROCEDURE prt 
  filen = "var.out" 
  SELECT OUTPUT filen LINES=100 width=132 PRINTER=ON 



Promula Application Development System User's Manual 

196 

  WRITE var 
  SELECT LINES=25 WIDTH=80 PRINTER=OFF 
END 
 
DEFINE PROCEDURE dif 
  dvar(y,c) = var(y,c) - var(y,1) 
  BROWSE dvar  TITLE(var:D, "Differences from base case") 
END 
 
DEFINE PROCEDURE test 
EDIT var TITLE(var:D//, 
"Press ALT-P to save    ",/. 
:Atd-D to see difference") 
DO IF KEYPRESS(ALTP) 
  prt 
END 
DO IF KEYPRESS(ALTD) 
  dif 
END 
END 
 

3.7.49  DO IF NULL 
Purpose: 

 

Executes a group of statements once if a null condition occurs. 

 

Syntax:  

 
DO IF NULL 
  statement 
  ... 
END 

 

Remarks:  

 

statement  is any executable statement (no definitions), including another DO statement. 

 

The DO IF NULL statement, can be used to detect a null set selection resulting from a SELECT set IF statement. It may 

also be used to detect if the GETDIR function did not find any files matching the search specification.  

 

A SELECT set IF condition statement results in a null condition if the selection condition is false for all elements of the 

set. When this occurs, PROMULA does not select a null set; it selects the complete set. The DO IF NULL statement 

allows you to detect the null selection and take appropriate action and prevent subsequent abnormal calculations, or other 

undesirable effects. 

 

A GETDIR function results in a null condition if no files matching the search specification are found. 

 

After the statements in the DO IF NULL block are executed, the SELECT set IF or GETDIR statement that caused the 

null selection is re-executed. 

 

Examples: 

 

The following example illustrates the use of the DO IF NULL statement to detect a null set selection. 

 
DEFINE SET 
  mn (12)  "12 Months" 
END SET 



Promula Application Development System User's Manual 

197 

 
DEFINE VARIABLE 
  lmt    "Lower Limit value" 
  mv(mn) "Monthly values" 
END VARIABLE 
 
mv(i) = i*10 
 
DEFINE PROCEDURE null 
  WRITE ("Enter the Lower Limit.") 
  READ lmt 
  SELECT mn IF mv GT lmt 
  DO IF NULL 
    WRITE("There are no months with value greater than"lmt) 
    WRITE("Try again.") 
    null 
  END IF NULL 
  WRITE mv:40 
END PROCEDURE null\ 

 

A dialog with procedure null is shown below. 

 
  null 
  Enter the Lower Limit. 
          ? 200 
   
  There are no months with value greater than     200 
  Try again. 
   
  Enter the Lower Limit. 
          ? 100 
   
                        
                                Monthly values 
   
                MN(11)                                       110 
                MN(12)                                       120 

 

 

See the section on file management functions for an example of how to use the DO IF NULL statement to detect a "no 

match" condition from the GETDIR function. 

 

3.7.50  DO INVERT 
Purpose: 

 

Compute the inverse of a matrix. 

 

Syntax: 

 
DO INVERT(row,col) arr 

 

Remarks: 

 

row is the identifier of a set dimensioning the matrix to be inverted. 

 

col is the identifier of a set dimensioning the matrix to be inverted. 

 



Promula Application Development System User's Manual 

198 

arr is the square subarray to be inverted. arr must be dimensioned by the sets row and col. The results of the inversion 

will overwrite arr. 

 

The ranges of row and col must be equal in size when DO INVERT is called, and the solution process will be restricted to 

the first selected entry of the remaining sets subscripting arr. 

 

 

Example: 

 
DEFINE SET 
  arow(3) 
  acol(3) 
  brow(3) 
  bcol(3) 
  page(2) 
END SET 
 
DEFINE VARIABLE 
  a (page,arow,acol)   "A matrix"     TYPE=REAL(10,6) 
  ia(page,arow,acol)   "INVERT(A)"    TYPE=REAL(10,6) 
  um(page,brow,bcol)   "UNIT MATRIX"  TYPE=REAL(10,6) 
END VARIABLE 
 
SELECT page(1) 
READ a(arow,acol,page) 
1 2 3 
2 2 3 
3 3 3 
a(2,arow,acol) = a(1,arow,acol) * 2 
SELECT page* 
 
DEFINE PROCEDURE test 
DO page 
* 
* Set IA equal to A 
* 
  ia = a 
* 
* Invert IA and display the result. 
* 
  DO INVERT (arow,acol) ia 
  WRITE ia(arow,acol,page) TITLE(/"INVERT (arow,acol) a") 
 
* 
* Verify result by computing and displaying the matrix product of A and IA. 
* 
  um(p,i,k) = SUM(j) ( a(p,i,j) * ia(p,j,k) ) 
  WRITE um(brow,bcol,page) TITLE(/"VERIFY:  UNIT MATRIX?") 
END page 
END PROCEDURE test 
 
SELECT HEADING=OFF 
 

 

The results of procedure test are displayed in the dialog below. 

 
test 
 
                              INVERT (arow,acol) a 
                                         



Promula Application Development System User's Manual 

199 

                                    PAGE(1) 
                                         
                                   ACOL(1)   ACOL(2)   ACOL(3) 
                 AROW(1)         -1.000000  1.000000  0.000000 
                 AROW(2)          1.000000 -2.000000  1.000000 
                 AROW(3)          0.000000  1.000000 -0.666667 
                  
                             VERIFY:  UNIT MATRIX? 
                                         
                                    PAGE(1) 
                                         
                                   BCOL(1)   BCOL(2)   BCOL(3) 
                 BROW(1)          1.000000  0.000000  0.000000 
                 BROW(2)          0.000000  1.000000  0.000000 
                 BROW(3)          0.000000  0.000000  1.000000 
                  
                              INVERT (arow,acol) a 
                                         
                                    PAGE(2) 
                                         
                                   ACOL(1)   ACOL(2)   ACOL(3) 
                 AROW(1)         -0.500000  0.500000  0.000000 
                 AROW(2)          0.500000 -1.000000  0.500000 
                 AROW(3)          0.000000  0.500000 -0.333333 
                  
                             VERIFY:  UNIT MATRIX? 
                                         
                                    PAGE(2) 
                                         
                                   BCOL(1)   BCOL(2)   BCOL(3) 
                 BROW(1)          1.000000  0.000000  0.000000 
                 BROW(2)          0.000000  1.000000  0.000000 
                 BROW(3)          0.000000  0.000000  1.000000 
 

 

 

3.7.51  DO LSOLVE 
Purpose: 

 

Solve one or more systems of linear equations. 

 

Syntax: 

 
DO LSOLVE(row,col [,pag1,pag2,...]) (amat, bmat) 

 

Remarks: 

 

row is the identifier of a set dimensioning both amat and bmat. 

 

col is the identifier of a set dimensioning amat. 

 

pag1,pag2,... are the identifiers of sets subscriprting bmat. 

 

amat is the identifier of the coefficient matrix. 

 

bmat is the identifier of the result matrix. 

 



Promula Application Development System User's Manual 

200 

The statement 

 
DO LSOLVE (i,j,p) (A,B) 

 

will compute the solution vectors X(j,p) for the system of linear equations  

 
A11 * X1p + a12*X2p + ... + a1j * Xjp = b1p 
A21 * X1p + a22*X2p + ... + a2j * Xjp = b2p 
... 

 
Ai1 * X1p + ai2*X2p + ... + aij * Xjp = bip 

 

The solution vectors X(j,p) will overwrite the B(i,p) values. 

 

The ranges of i and j must be equal in size when DO LSOLVE is called, and the solution process will be restricted to the 

active range of the sets subscripting the arguments. 

 

 

Example: 

 
DEFINE SET 
  arow(3) "Linear Equation" 
  acol(3) "Product Term" 
  page(2) "Page of System" 
END SET 
 
DEFINE VARIABLE 
  a(arow,acol) "Coefficient Matrix" 
  b(arow,page) "Result Vectors" 
  x(arow,page) "Solution Vectors" 
  y(arow,page) "Test Result Vectors" 
END VARIABLE 
 
READ a 
1 2 3 
2 2 3 
3 3 3 
READ b 
6 14 
7 15 
9 18 
 
DEFINE PROCEDURE test 
* 
* Copy the result vectors B(i,page) into the vectors X(i,page). 
* 
  x = b 
* 
* Solve system of linear equations for each page. 
* 
  DO LSOLVE(arow,acol,page) (a, x) 
* 
* Verify the Results.  A(i,j) . X(i,p) = should equal B(i,p). 
* 
  y(i,p) = SUM(j) ( a(i,j) * x(j,p) ) 
   
  WRITE a::2 
  WRITE b::2 
  WRITE x::2 
  WRITE y::2 



Promula Application Development System User's Manual 

201 

END PROCEDURE test 
 

 

The results of procedure test are displayed in the dialog below. 

 
test 
                               Coefficient Matrix 
                                         
                                    ACOL(1) ACOL(2) ACOL(3) 
                    AROW(1)            1.00    2.00    3.00 
                    AROW(2)            2.00    2.00    3.00 
                    AROW(3)            3.00    3.00    3.00 
                                                                                 
                                 Result Vectors 
                                         
                                        PAGE(1) PAGE(2) 
                        AROW(1)            6.00   14.00 
                        AROW(2)            7.00   15.00 
                        AROW(3)            9.00   18.00 
 
                                Solution Vectors 
                                         
                                        PAGE(1) PAGE(2) 
                        AROW(1)            1.00    1.00 
                        AROW(2)            1.00    2.00 
                        AROW(3)            1.00    3.00 
 
                              Test Result Vectors 
                                         
                                        PAGE(1) PAGE(2) 
                        AROW(1)            6.00   14.00 
                        AROW(2)            7.00   15.00 
                        AROW(3)            9.00   18.00 
 

 

 

.7.52  [DO] procedure 
Purpose: 

 

Executes a procedure. 

 

Syntax: 

 
[DO] proc [,SUBTITLE "text"] 

 

Remarks: 

 

proc is the identifier of a procedure. 

 

text is a string of characters that will be appended to the titles of reports produced by procedure proc. 

 

Example: 

 

This example illustrates several title modification options and the variable:L notation. Notice that the displayed title TITLE 

parameter first, followed by the scenario name, the run identifier, the subtitle, and finally, the time interval.   

 
DEFINE SET 



Promula Application Development System User's Manual 

202 

  row(2) 
  run(2) 
  tim(10) TIME(1990,1999) 
END SET 
DEFINE VARIABLE 
  a(row,tim) TYPE=REAL(5,1)   "THE A MATRIX"  
  sname      TYPE=STRING(12) 
END VARIABLE 
a(i,j)=i*j 
sname="SCENARIO x" 
 
READ row 
row 1 
row 2 
READ run 
RUN 1 
RUN 2 
 
DEFINE PROCEDURE proc 
  SELECT run(2) 
  SELECT RUNID=run SCENARIO=sname 
  WRITE a\7:7 TITLE(a:L) 
END PROCEDURE proc 

 

The statement 

 
DO proc SUBTITLE "This is the subtitle" 

 

produces the display below 

 
THE A MATRIX 

SCENARIO x, RUN 2, This is the subtitle, 1990 to 1999 
                                           
             1990   1991   1992   1993   1994   1995   1996   1997   1998   1999 
   row 1      1.0    2.0    3.0    4.0    5.0    6.0    7.0    8.0    9.0   10.0 
   row 2      2.0    4.0    6.0    8.0   10.0   12.0   14.0   16.0   18.0   20.0 

 

 

 

3.7.53  DO REGRESS 
Purpose: 

 

Produces a report of one or more pages of the results of multivariate least-squares regression for specified variables by 

finding the best fit for the following model:  

 

Y = o + 1*X1 + 2X2 + , ... , + nXn 
 

Y is the dependent variable, the Xi are the independent predictor variables, and the i are the regression coefficients. 

 

Syntax: 

 
DO REGRESS [(sets)] (vars) [output] 

 

Remarks: 

 

sets is a list of set identifiers subscripting the array(s) to be regressed. 

 



Promula Application Development System User's Manual 

203 

The specification of sets controls the analysis of the variables specified in vars by defining the index of the 

observations and the order of pages produced. The last set in sets specifies the index of the observations, the 

preceding sets specify the order in which pages of the report are displayed. The ordering of report pages 

corresponds to the specification of the sets in sets from left to right — left varying the fastest. The default value 

for sets is the reverse of the set specification used in defining the highest dimensional variable in vars with the 

first set in the definition indexing the observations, and the remaining sets heading report pages. 

 

vars is a list of variable identifiers specifying the arrays to be regressed. The list may also contain the time parameter 

TIME if all the variables in vars have a time series set as one of their indexes. The first variable specified in vars 

will be treated as the dependent variable (Y), the remaining variables will be treated as the independent 

regressors (Xi). vars must contain at least two variables. One-dimensional arrays (vectors), are used in 

regression calculations directly. Two- and higher-dimensional arrays are partitioned into sets of observations, 

and a separate report is generated for each page and column of the highest dimensional array in vars.   
 

 

output is a list of output specifiers that allow the storage of regression results in program variables. If any output is 

stored in variables, no report is displayed. output may consist of one or more of the following: 

 

COEFF  = cf to store the regression coefficients in variable cf 

TVALUE = tv to store the Student's t statistic for the regression coefficients in variable tv 

STDERR = se to store the standard errors of regression coefficients in array variable se 

STDDEV = sd to store the standard deviation(s) of regression model(s) in variable sd 

RSQUAR = rs to store the R-Square(s) of regression model(s) in variable rs 

 

The output variables should be dimensioned so that they can pick up the desired regression results;  see the 

example below.   

 

The following values may be reported/stored: 

 

1. The regression coefficient (i), Student's t statistic, and standard error, for each independent variable in the model and 

for the intercept, o (referred to as CONS in the report). 

 

2. The overall variance and standard deviation of the regression model. 

 

3. The adjusted coefficient of correlation between the observed and predicted values of the dependent variable. 

 

A title — Regression Analysis Results — is printed at the top of each page.  Subtitles consisting of the row descriptors for 

sets specified in sets appear when more than one report page is produced. 

 

Examples: 

 
DEFINE SET 
  grp(2)   "Test Groups" 
  tim(12)  "Time Points" TIME(1,12) 
  trm(3)  "Regression Terms (Independent Variables + CONSTANT)" 
END SET 
 
DEFINE VARIABLE 
* 
* REGRESSEION INPUTS 
* 
  rsp(tim,grp) "Response Variable By Group and And Time" 
  iv1(tim,grp)  "Independent Variable 1 by Group and Time" 
  iv2(tim,grp)  "Independent Variable 2 by Group and Time" 
 
* 



Promula Application Development System User's Manual 

204 

* REGRESSION OUTPUTS 
* 
  cf(trm,grp)    "Coefficients of the Regression Terms" 
  tv(trm,grp)    "T-Value for the Coefficients of the Regression Terms" 
  se(trm,grp)    "Stderr Errror for the Coefficients of the Regression Terms" 
  sd(grp)        "Standard Deviation of Regression Model" 
  rs(grp)        "R-Square of Regression Model" 
END VARIABLE 
 
SELECT grp(1) 
READ iv1(grp,tim) 
16.7 17.4 18.4 16.8 18.9 17.1 17.3 18.2 21.3 21.2 20.7 18.5 
READ iv2(grp,tim) 
30.0 42.0 47.0 47.0 43.0 41.0 48.0 44.0 43.0 50.0 56.0 60.0 
READ rsp(grp,tim) 
210  110  103  103  91   76   73   70   68   53   45   31 
iv1(t,2) = iv1(t,1) 
iv2(t,2) = iv2(t,1) 
rsp(t,2) = rsp(t,1) 
SELECT grp* 
 
READ TRMS ROW(1,6) 
IV1 
IV2 
CONS 
 
DEFINE PROCEDURE doregr 
* 
* Regression -- Report 
* 
DO REGRESS(grp,tim) (rsp,iv1,iv2) 
* 
* Regression -- Save Output 
* 
DO REGRESS(grp,tim) (rsp,iv1,iv2), 
  COEFF  = cf, 
  TVALUE = tv, 
  STDERR = se, 
  STDDEV = sd, 
  RSQUAR = rs 
WRITE TABLE(grp,trm) TITLE(///"Regression Results") FORMAT(50,10), 
BODY(cf::4 tv::4 se::4 sd::4 rs::4) 
END PROCEDURE doregr 

 

The output of procedure doregr is displayed below 

 
                    Regression Analysis Results, 1 to 12 
                                       
                                   GRP(1) 
                                       
               Term       Coefficient   T-Value          S.E. 
               IV1          -6.592777    -1.357      4.859254 
               IV2          -4.503562    -4.204      1.071156 
               CONS        415.113000     5.031     82.517400 
                             Variance=598.0237 
                        Standard Deviation=24.45452 
                          Adjusted R-Square=0.7164 
                                       
                                   GRP(2) 
                                       
               Term       Coefficient   T-Value          S.E. 



Promula Application Development System User's Manual 

205 

               IV1          -6.592777    -1.357      4.859254 
               IV2          -4.503562    -4.204      1.071156 
               CONS        415.113000     5.031     82.517400 
                             Variance=598.0237 
                        Standard Deviation=24.45452 
                          Adjusted R-Square=0.7164 
                                       
 
                             Regression Results 
                                       
                                    IV1 
                                       
                                                         GRP(1)    GRP(2) 
   Coefficients of the Regression Terms                 -6.5928   -6.5928 
   T-Value for the Coefficients of the Regression Ter   -1.3567   -1.3567 
   Stderr Errror for the Coefficients of the Regressi    4.8593    4.8593 
   Standard Deviation of Regression Model               24.4545   24.4545 
   R-Square of Regression Model                          0.7164    0.7164 
                                       
                                    IV2 
                                       
                                                         GRP(1)    GRP(2) 
   Coefficients of the Regression Terms                 -4.5036   -4.5036 
   T-Value for the Coefficients of the Regression Ter   -4.2044   -4.2044 
   Stderr Errror for the Coefficients of the Regressi    1.0712    1.0712 
   Standard Deviation of Regression Model               24.4545   24.4545 
   R-Square of Regression Model                          0.7164    0.7164 
                                       
                                    CONS 
                                       
                                                         GRP(1)    GRP(2) 
   Coefficients of the Regression Terms                415.1130  415.1130 
   T-Value for the Coefficients of the Regression Ter    5.0306    5.0306 
   Stderr Errror for the Coefficients of the Regressi   82.5174   82.5174 
   Standard Deviation of Regression Model               24.4545   24.4545 
   R-Square of Regression Model                          0.7164    0.7164 

 

 

 

3.7.54  DO set 
Purpose: 

 

Executes repeatedly a group of statements. The number and order of iterations is determined by the number and order of the 

elements of the set, as defined by the set’s current selection vector. 

 

Syntax: 

 
DO set 
  statement 
  ... 
END 

 

Remarks: 

 

set is the identifier of a set.  

 

statement is any executable statement (no definitions), including other DO statements. 

 



Promula Application Development System User's Manual 

206 

The statements from DO set to END are usually called a "DO set loop". 

 

The statements between the DO set and END statements are executed once for each element in the current set selection 

vector for set. By default, the set selection vector contains N elements ordered from 1 to N; where N is the size of set as 

specified in its definition. The order and range of the elements of the selection vector may be modified by the various set 

selection statements and the SORT statement.  

 

Within an iteration of the DO set loop, the range of set is fixed to a single element, and vectors subscripted by set are 

treated as scalars in calculations and other expressions; multidimensional array variables subscripted by set are evaluated at 

the current value of the subscript set. 

 

If a DO set loop executes properly for each active element in set, the range and order of set after the loop will be the same 

as before the loop started. However, if execution of the loop aborts abnormally, the range of set will be fixed at the element 

that was active when the abort occurred. 

 

Examples: 

 

In this example, the procedure doset contains a DO set loop. The statements between the DO month statement and the END 

DO month statement are executed once for each active element in the selection vector for set month. 

 

The variable month:S has the value of the current selection of the month set. Similarly, the variable mv has the value mv(m), 

where m is a scalar subscript which will be assigned the current value of the month subscript. 

 
DEFINE SET 
  month(12) 
END SET 
 
DEFINE VARIABLE 
  m         "Month Number" 
  mv(month) "Monthly Value" 
END VARIABLE 
 
DEFINE PROCEDURE doset 
  DO month 
    m  = month:S 
    mv = m * 10 
    WRITE CENTER("The current month number is " m:-5 " The monthly value is " mv:-5) 
  END month 
END PROCEDURE doset 
 

Executing procedure doset produces the output below. 

 
            The current month number is 1     The monthly value is 10    
            The current month number is 2     The monthly value is 20    
            The current month number is 3     The monthly value is 30    
            The current month number is 4     The monthly value is 40    
            The current month number is 5     The monthly value is 50    
            The current month number is 6     The monthly value is 60    
            The current month number is 7     The monthly value is 70    
            The current month number is 8     The monthly value is 80    
            The current month number is 9     The monthly value is 90    
            The current month number is 10    The monthly value is 100   
            The current month number is 11    The monthly value is 110   
            The current month number is 12    The monthly value is 120   

 

 
 



Promula Application Development System User's Manual 

207 

The number of iterations as well as the order of execution is dictated by the current selection vector of the set controlling 

the DO set loop.  For example the statements 

 
SELECT month(1,12,6) 
doset 

 

produce the output below 

 
            The current month number is 1     The monthly value is 10    
            The current month number is 12    The monthly value is 120   
            The current month number is 6     The monthly value is 60    

 

 

3.7.55  DO UNTIL 
Purpose: 

 

Executes repeatedly a group of statements until a given condition is met. 

 

Syntax: 

 
DO UNTIL condition 
  statement 
  ... 
END 

 

Remarks: 

 

condition is any Boolean expression, i.e., an expression that is either true or false. If false, the statements between the 

DO UNTIL and the END statement are executed; if true, the statements between the DO and END are not 

executed. 

 

statement is any executable statement (no definitions), including a DO statement. 

 

The group of statements together with the DO and END statements is called a DO UNTIL loop. DO loops may be nested 

to any depth. 

 

The value of condition is computed before each iteration of the DO loop. 

 

 

Examples: 

 

The following dialog demonstrates the execution of a DO UNTIL loop: 

 
DEFINE VARIABLE 
    x 
  END VARIABLE 
 
  x = 0 
  DO UNTIL x GT 3 
    WRITE (x,"Top of the loop") 
    x = x+1 
    WRITE (x,"Bottom of the loop") 
  END UNTIL 
  0  Top of the loop 
  1  Bottom of the loop 
  1  Top of the loop 



Promula Application Development System User's Manual 

208 

  2  Bottom of the loop 
  2  Top of the loop 
  3  Bottom of the loop 
  3  Top of the loop 
  4  Bottom of the loop 

 

 

 

From this example, you can see how easy it is to construct infinite loops — simply remove the equation x = x+1. 

 

3.7.56  DO WHILE 
Purpose: 

 

Executes repeatedly a group of statements while a given condition is met. 

 

Syntax: 

 
DO WHILE condition 
  statement 
  ... 
END 

 

Remarks: 

 

condition is any Boolean expression, i.e., an expression that is either true or false. If true, the statements between 

the DO WHILE and the END statement are executed; if false, the statements between the DO and END 

are not executed. 

 

statement is any executable statement (no definitions), including a DO statement. 

 

The group of statements together with the DO WHILE and END statements is called a DO WHILE loop. DO loops may 

be nested to any depth. 

 

The value of condition is computed before each iteration of the DO loop. 

 

Examples: 

 

The following dialog demonstrates the execution of a DO WHILE loop: 

 
DEFINE VARIABLE 
    x 
  END VARIABLE 
 
  x = 0 
  DO WHILE x LT 3 
    WRITE (x,"Top of the loop") 
    x = x+1 
    WRITE (x,"Bottom of the loop") 
  END WHILE 
  0  Top of the loop 
  1  Bottom of the loop 
  1  Top of the loop 
  2  Bottom of the loop 
  2  Top of the loop 
  3  Bottom of the loop 

 

 



Promula Application Development System User's Manual 

209 

 

3.7.57  EDIT menu 
Purpose: 

 

Displays a data menu for editing. 

 

Syntax: 

 
EDIT menu(vars)  

 

Remarks: 

 

menu is the identifier of a data menu. 

 

vars is a list of variable identifiers that contain the values of the data fields being edited. The variables in the list must 

be arranged in the same order as the menu data fields to which they correspond. 

 

Data menus contain a number of data fields to be edited by the user. In the DEFINE MENU statement, each data field is 

denoted by a series of contiguous 'at' (@) or 'tilde' (~) characters, equal in number to the width of the data field. The data 

fields are ordered from left to right and from top to bottom of the menu. 

 

Upon execution, the data menu becomes a screen display that has the first data field highlighted. Use the movement keys to 

highlight the desired data field. To edit the highlighted data field, press the Enter key and enter the new value, as prompted 

at the bottom of the screen. 

 

Data fields may also be selected by "point and click" operations with a mouse. 

 

The menu display will be clipped by the boundaries of the window opened to the Main Screen. 

 

Examples: 

 

The use of the EDIT menu statement is illustrated in the context of the example given in the DEFINE MENU statement. 

 

3.7.58  EDIT TABLE 
Purpose: 

 

Displays a table of several variables on the screen to let you interactively edit their values. 

 

Syntax: 

 
EDIT TABLE(sets)[,TITLE(title)][,FORMAT(rw,cw)], 
BODY(["text1",] var1[fmt1] [,"text2",] var2[fmt2],...), option 

 

Remarks: 

 

sets is a list of the identifiers of the sets classifying columns and pages of the variables in the table. The first set 

will classify the columns of the table; the other sets, if any, will classify the pages of the table. Sets 

dimensioning table variables which are missing from the list will classify the rows of the table. The sets list 

sets must contain at least one set (or the number 1 for browsing a group of scalar variables) and must be 

missing those set identifiers which will classify the rows of the multidimensional table variables. 

 

title is any text you wish to show as a title for the table. The title may include variables and other format characters 

according to the rules defined in the WRITE variables statement. 

 



Promula Application Development System User's Manual 

210 

text1 is any text that you wish to use as a subtitle for the values of var1. This text may not contain variables. 

 

var1 is the identifier of the first variable in the table. 

 

fmt1 is the desired format for the values of var1. Usually, this is used to specify the number of decimal digits for 

var1. 

 

text2 is any text that you wish to use as a subtitle for the values of var2. This text may not contain variables.  

 

var2 is the identifier of the second variable in the table. 

 

fmt2 is the desired format for the values of var2. 

 

rw is the width in characters of row descriptors. 

 

cw is the width in characters of table columns. 

 

option is one of the following: 

 

BY ROW to edit values by row  (entering a value moves the bounce bar to the right)  

BY COLUMN to edit values by column  (entering a value moves the bounce bar down)  

BY VALUE to edit values by single value (bounce bar does not move automatically).  This is the 

default 

 

A table is a display or report of several variables whose values are classified by a common set (or sets). The common sets 

classify the columns and pages of the table.  

 

A table has a body and an optional title and format. The body of the table contains the identifiers of the variables whose 

values will be displayed as the body of the table. 

 

You may include as many variables as you wish in the body of a table. 

 

You may include slash characters "/" between the specifications of variables and descriptive text to insert blank lines in the 

display. 

 

If you wish to 'write' an entire table, instead of 'editing' it by page, use the WRITE TABLE statement. 

 

Upon execution, the EDIT TABLE statement clears the Main Screen, displays the first page of the table and issues the 

following message at the bottom of the display: 

 

  End: Exit  Fn Shift-Fn PgUp PgDn Home Arrows: Select Enter: Edit

 
The highlighted portions of the message represent the following options: 

 

Fn press the Fn function key to browse "up" the nth dimension of the array, where n varies from 1 to 10. The F1 

key browses "up" the 1st dimension, the F2 key browses "up" the 2nd dimension, and so forth. 

  

Shift-Fn press simultaneously the Shift and Fn keys to browse "down" the nth dimension of the array, where n varies 

from 1 to 10. The F1 key browses "up" the 1st dimension, the F2 key browses "up" the 2nd dimension, and so 

forth. The Shift-F1 key browses "down" the 1st dimension, the Shift-F2 key browses "down" the 2nd 

dimension, etc. 

  

Arrows 

PgUp 

PgDn 

The four movement arrows at the right-hand section of the keyboard allow you to move the cursor to the 

desired value. The Page-Up and Page-Down keys may be used to move up and down the pages of the display.  



Promula Application Development System User's Manual 

211 

  

Home  moves the cursor to the "top" of the display, which is the first value on the first page. 

  

Enter press the Enter key to initiate editing mode. This causes the following: 

  

 1.  highlights the value to be edited with a block cursor 

  

 2.  issues the following message at the lower left-hand corner of the Prompt Screen: 

  

  
       Enter value or End? 
 

  

 At this point you may change the marked value by entering a new one and pressing the Enter key.  The cursor 

moves to the next value to edit, and so forth. 

  

End press the End key to exit editing mode or to exit browsing mode. 

 

The WRITE TABLE statement and tables defined by the DEFINE TABLE statement will behave like the EDIT TABLE 

statement if a SELECT BROWSE=VALUES \ ROW \ COLUMN statement has been executed. 

 

Examples: 

 

See the descriptions of the BROWSE TABLE and DEFINE TABLE statements for an example of a table. 

 

3.7.59  EDIT variable 
Purpose: 

 

Displays a variable on the screen to let you  

 

1. browse the variable by page  

2. change its values in screen-editing mode. 

 

Syntax: 

 
EDIT var[fmt][ORDER(sets)][TITLE(title)][DISPLAY(dvar)][option] 

 

Remarks: 

 

var is the variable identifier. 

 

fmt is a format specification indicating the width of row descriptors, the width of the columns displayed, and the 

number of decimals in real values, as follows: 

 
\p:w:d 

 

where 

 

p is an integer specifying the width in characters for row descriptors. The default width is the width 

specifications of the row descriptors related to the set subscripting the rows of the display. 

 

w is an integer specifying the width in characters for each column of values. The default is the width 

specification in the definition of var. A negative width parameter left justifies the values of var in each 

column. 

 



Promula Application Development System User's Manual 

212 

d is an integer specifying the number of decimals to display for real numeric values. The default is the 

decimal specification (if applicable) in the definition of var. If d is an "E", the values of var will be displayed 

in exponential notation (base-10), and will show seven digits and six decimal places. 

 

If omitted, w and d are the parameters specified in the TYPE specification for var, and p is the width 

specifications of the row descriptors related to the set subscripting the rows of the display. 

 

sets is a list of the sets classifying the values of var. The order of the sets in this list specifies the structure of the 

display:  the first set classifies the rows of the display, the second set classifies the columns, and the third to last 

set classifies the pages of the display. The keyword ORDER is optional; if omitted, sets must immediately 

follow the optional format specification. 

 

title is any text you wish to show as a title for the table. The title may include variables, and other format characters 

according to the rules defined in the WRITE text statement. 

 

dvar is a variable used to control the display of variable var. dvar should be indexed by the set that defines the rows of 

the display. PROMULA will display values of var only for those rows corresponding to elements of dvar that 

contain nonzero values. See Example in the section on the BROWSE variable statement. 

 

option is one of the following: 

 

BY ROW to edit values by row  (entering a value moves the bounce bar to the right).  

BY COLUMN to edit values by column  (entering a value moves the bounce bar down).  

BY VALUE to edit values by single value (bounce bar does not move automatically).  BY VALUE is the 

default. 

 

Upon execution, the EDIT variable statement clears the Main Screen, displays the first page of the array and issues the 

following message at the bottom of the display: 

 

  End: Exit  Fn Shift-Fn PgUp PgDn Home Arrows: Select Enter: Edit

 
 

The highlighted portions of the message represent the following options: 

 

Fn press the Fn function key to browse "up" the nth dimension of the array, where n varies from 1 to 10. 

  

Shift-Fn press simultaneously the Shift and Fn keys to browse "down" the nth dimension of the array, where n varies 

from 1 to 10. The F1 key browses "up" the 1st dimension, the F2 key browses "up" the 2nd dimension, and so 

forth. The Shift-F1 key browses "down" the 1st dimension, the Shift-F2 key browses "down" the 2nd 

dimension, etc. 

  

Arrows 

PgUp 

PgDn 

The four movement arrows at the right-hand section of the keyboard allow you to move the cursor to the 

desired value. The Page-Up and Page-Down keys may be used to move up and down the pages of the display.  

  

Home  moves the cursor to the "top" of the display, which is the first value on the first page. 

  

Enter press the Enter key to initiate editing mode. This causes the following: 

  

 1.  highlights the first value to be edited with a block cursor 

  

 2.  issues the following message at the left-hand corner of the Prompt Screen: 

  



Promula Application Development System User's Manual 

213 

 
       Enter value or End? 
 

  

 At this point you may change the marked value by entering a new one and pressing the 

Enter key.  The cursor moves to the next value to edit, and so forth. 

  

End press the End key to exit editing mode or to exit browsing mode. 

 

Examples: 

 

Given the following definitions: 

 
DEFINE SET 
  row(3) 
  col(2) 
  page(2) 
END SET 
 
DEFINE VARIABLE 
  a(row,col,page) "A 3-Dimensional Array" 
END VARIABLE 

 

the statement  

 
EDIT a 

 

clears the screen and produces the following display: 

 

                              A 3-Dimensional Array

                                     PAGE(1)

                                          COL(1)  COL(2)

                         ROW(1)                    0       0

                         ROW(2)                    0       0

                         ROW(3)                    0       0

          End: Exit  Fn Shift-Fn PgUp PgDn Home Arrows: Select Enter: Edit

 
 

 

To browse "up" the pages or third dimension, press the F3 key to get the following display:  



Promula Application Development System User's Manual 

214 

 

                              A 3-Dimensional Array

                                     PAGE(2)

                                          COL(1)  COL(2)

                         ROW(1)                    0       0

                         ROW(2)                    0       0

                         ROW(3)                    0       0

          End: Exit  Fn Shift-Fn PgUp PgDn Home Arrows: Select Enter: Edit

 
 

 

You may now begin editing the array. The value in cell ROW(1), COL(1) is highlighted. Press the Enter key to change the 

value in this cell. The following display results:  

 

                                  PAGE(2)

                                       COL(1)  COL(2)

                         ROW(1)                0       0

                         ROW(2)                0       0

                         ROW(3)                0       0

   Enter value or End: 1

 
 



Promula Application Development System User's Manual 

215 

 

Enter the value 1 and press the Enter key.  The following display results: 

 

                         ROW(1)                1       0

                            A 3-Dimensional Array

                                  PAGE(2)

                                       COL(1)  COL(2)

                         ROW(2)                0       0

                         ROW(3)                0       0

 Enter value or End: 2.6

 
 

The cursor now highlights the value in the ROW(1), COL(2) cell. Type the value 2.6 and press the Enter key.  The following 

display results: 

 

                              A 3-Dimensional Array

                                     PAGE(1)

                                       COL(1)  COL(2)

                         ROW(1)                1       3

                         ROW(2)                0       0

                         ROW(3)                0       0

 Enter value or End:

 



Promula Application Development System User's Manual 

216 

 

The value 2.6 is rounded up to 3 because variable a was defined with the default type, REAL(8,0). Internally, however, the 

value is stored correctly as 2.6.  This is verified below.  

 

 

Press the End key.  The following display results:  
 

                             A 3-Dimensional Array

                                   PAGE(2)

                                       COL(1)  COL(2)

                         ROW(1)                1       3

                         ROW(2)                0       0

                         ROW(3)                0       0

         End: Exit  Fn Shift-Fn PgUp PgDn Home Arrows: Select Enter: Edit

 
Press the End key again. This gets you out of editing mode. 

 

To verify the above editing, the following dialog shows the values of a by column, row and page, with two decimal digits: 

 

WRITE a(col,row,page):10:2 
 
                       A 3-Dimensional Array 
                             
                             PAGE(1) 
   
                              ROW(1)  ROW(2)  ROW(3) 
   
            COL(1)              0.00    0.00    0.00 
            COL(2)              0.00    0.00    0.00 
   
                             PAGE(2) 
   
                              ROW(1)  ROW(2)  ROW(3) 
   
            COL(1)              1.00    0.00    0.00 
            COL(2)              2.60    0.00    0.00 

 

3.7.60  END 



Promula Application Development System User's Manual 

217 

Purpose: 

 

Ends a structured group of statements. 

 

Syntax:  

 
END [comment] 

 

Remarks:  

 

comment is an optional comment that you may wish to use in order to distinguish one END statement from another. 

 

The following statements require an END statement: 

 

 ASK...ELSE 

* BROWSE COMMENT 

* BROWSE TEXT 

 DEFINE DIALOG 

 DEFINE FILE 

 DEFINE FUNCTION 

* DEFINE MENU 

 DEFINE PARAMETER 

 DEFINE PROCEDURE 

 DEFINE RELATION 

 DEFINE SET 

 DEFINE SYSTEM 

 DEFINE VARIABLE 

 DEFINE WINDOW 

 DO DIRECTORY 

 DO FILE 

 DO IF...ELSE 

 DO IF END 

 DO IF ERROR 

 DO IF ESCAPE 

 DO IF HELP 

 DO IF KEYPRESS 

 DO IF NULL 

 DO set 

 DO UNTIL 

 DO WHILE 

* FIELD (in Popup Menu definitions) 

* TOPIC (In Dialog files) 

* WRITE COMMENT  

* WRITE TEXT 

 

* These structured statements contain free form text; therefore, the END statement must be capitalized and start in 

column 1, to distinguish it from other occurrences of the word "end" in the text. No comment is allowed after these 

END statements. 

 

The END SEGMENT and END PROGRAM statements are special cases of the END and are discussed in the following 

two sections. 

 

3.7.61  END PROGRAM 
Purpose: 

 



Promula Application Development System User's Manual 

218 

Ends a program and writes the executable code and data to the currently open segment file on disk. The logical identifier of 

the segment is "MAIN". Both the program code and the data values of its variables are saved on disk. 

 

Syntax: 

 
END PROGRAM [MAIN] [,DO(proc)] 

 

Remarks: 

 

MAIN is the default identifier of any executable program module.   

 

proc is the identifier of a procedure in segment MAIN. When the program is read in, this procedure is executed 

automatically. 

 

Upon compilation, this statement terminates the program and writes on a disk file the information of the program. The start 

of the program is the DEFINE PROGRAM statement. The program is written on the disk file specified on the last OPEN 

SEGMENT statement. To execute the program, use the OPEN SEGMENT and READ SEGMENT statements. 

 

Examples: 

 

The statements below define a program, named by default MAIN, and write the executable program code on a disk file 

named hello.xeq:  

 
OPEN SEGMENT "hello.xeq", STATUS=NEW 
DEFINE PROGRAM "A Program" 
 
DEFINE PROCEDURE proc 
  WRITE("Hello, World!") 
END proc 
 
END PROGRAM, DO(proc) 

 

To read this program for execution, use the statements 

 
OPEN SEGMENT "hello.xeq" 
READ SEGMENT MAIN 
 

 

or the statement 
 

RUN PROGRAM "hello.xeq" 

 

The procedure proc is executed automatically at program startup. 

 

This program could also be started by selecting option 6 from the PROMULA Main Menu and specifying "hello" as the 

name of the program to be executed.   

 

3.7.62  END SEGMENT 
Purpose: 

 

Ends the definition of a program segment and writes the segment code and data to the currently open segment file.   

 

Syntax: 

 
END SEGMENT seg [,DO(proc)] 

 



Promula Application Development System User's Manual 

219 

Remarks: 

 

seg is the identifier of a segment as it appeared on the DEFINE SEGMENT statement that began the segment. 

 

proc is the identifier of a procedure in segment seg. When the segment is loaded, this procedure is executed 

automatically. 

 

Upon compilation, this statement writes on a disk file the information of the segment. The start of the segment is the 

DEFINE SEGMENT seg statement. The segment is written in the disk file specified on the last OPEN SEGMENT 

statement. 

 

To load the segment for execution, use the READ SEGMENT statement. 

 

Examples: 

 

The statements below define a two segmented program, the program contains the top-level segment, MAIN, and two level-

one segments named seg1 and seg2. The code and data of all three segments are saved on a disk file named program.xeq:  

 
 
OPEN SEGMENT "program.xeq", STATUS=NEW 
DEFINE PROGRAM "MAIN" 
 
  DEFINE PROCEDURE start 
    READ SEGMENT seg1 
    READ SEGMENT seg2 
  END PROCEDURE start 
 
  DEFINE SEGMENT seg1 
    DEFINE PROCEDURE proc 
      WRITE ("Hello from seg1") 
    END proc 
  END SEGMENT seg1, DO(proc) 
   
  DEFINE SEGMENT seg2 
    DEFINE PROCEDURE proc 
      WRITE ("Hello from seg2") 
    END proc 
  END SEGMENT seg2, DO(proc) 
 
END PROGRAM DO start 

 

To read this program for execution, use the statement  

 
RUN PROGRAM program.xeq  

 

The procedure named start in segment MAIN executes automatically because it is indicated in the DO clause of the END 

PROGRAM statement. Procedure start then uses the READ SEGMENT statement to load seg1 and seg2 in sequence. 

When each segment is loaded, the procedure proc, defined in the segment executes automatically. 

 

3.7.63  LEVEL 
Purpose: 

 

Is used in dynamic simulation procedures and has two functions. 

 

1. It signals the start of the LEVEL section of a dynamic procedure.  

 



Promula Application Development System User's Manual 

220 

2. It declares the endogenous time series variables to be computed and stored at the fixed time points of the time series 

sets classifying the output time series. 

 

Syntax: 

 
LEVEL (ots1 = ev1 [, ots2 = ev2, ...] ) 

 

Remarks: 

 

ots1 is an output time series (i.e., an array variable that is indexed by a time series set.) 

 

ev1 is an endogenous variable that is used explicitly in the LEVEL (and/or RATE) sections of a dynamic procedure. 

 

ots2 is an output time series variable for a second LEVEL statement equation. 

 

ev2 is an endogenous variable for a second LEVEL statement equation. 

 

The equations of the LEVEL statement form a list of correspondence between output time series and endogenous variables 

that are used locally in the equations of the LEVEL (and/or RATE) section of a dynamic procedure. Based on this 

equivalence, the values of the output time series will be computed and stored at the fixed time points of the time index 

classifying the series. 

 

Only those endogenous variables that are intended to be saved for later use as a time series need to be included in the 

endogenous variables list of the LEVEL statement. 

 

The values of an output time series at each time point of the time series set are set equal to the values of the local 

endogenous variable corresponding to the nearest simulation time point plus or minus DT/2, where DT is the time 

parameter DT. The value of an output series at a time point t is set equal to the computed value of the corresponding 

endogenous variable that is associated with the interval (t−DT/2, t+DT/2). This interval is closed at −DT/2 and open at 

t+DT/2. If t is the exact midpoint of the interval, then the t−DT/2 value applies. 

 

Execution of a LEVEL statement causes the TIME parameter to be incremented by DT units from its value in the 

preceding RATE section. 

 

The LEVEL statement may only be used inside a procedure; it cannot be used in command mode. 

 

Examples: 

 

For more information on dynamic simulation with PROMULA, see the discussion of Dynamic Procedures in the 

DEFINE PROCEDURE section of this chapter and the discussion of the RATE statement. 

 

3.7.64  OPEN file 
Purpose: 

 

Opens a disk file for physical write/read operations of data to/from disk. 

 

Syntax: 

 
OPEN file filespec [STATUS=status] [READONLY] 

 

Remarks:  

 

file is the identifier of a file in your program.   

 



Promula Application Development System User's Manual 

221 

filespec is a quoted string or string variable containing the name of the disk file to be opened. filespec may contain any 

filename that is valid for your operating system. 

 

status is one of the following options: 

 

NEW to open a new file of any type. When using the OPEN file statement with STATUS=NEW,  

any file with the same name as filespec will be deleted before the new file is opened. 

 

OLD to open an existing file of any type. Attempting to open a non-existing file with 

STATUS=OLD will cause an execution error. You may use the FILEEXIST function to test 

if a file exists. OLD is the default status. 

 

DYNAMIC to open an existing array file for automatic dynamic access. When an array file is opened with 

DYNAMIC status, PROMULA attempts to read the entire contents of the file into memory. If 

there is enough memory, the variables in the file may be accessed from memory — with a 

significant reduction in access time. If there is not enough memory to load the file, 

PROMULA will report an execution error. When the file is closed, its entire contents will be 

written out to disk. Automatic dynamic access is generally limited to small databases or 

machines with large and/or virtual memory. 

 

 

VIRTUAL to open an existing array file for paged virtual access. When an array file is opened with 

VIRTUAL status, PROMULA attempts to read/write large sections of the data. If there is 

enough memory, the variables in the file may be accessed from memory — with a significant 

reduction in access time. If there is not enough memory to "page-in" the file, PROMULA will 

report an execution error. When the file is closed, its entire contents will be written out to disk. 

The VIRTUAL status requires less memory than DYNAMIC status, but it is generally 

limited to small databases or machines with large and/or virtual memory. 

 

If the keyword READONLY is included with the OPEN file statement, the file is given read only status by the operating 

system; it may be read from but not modified, and it may be accessed by more than one user at the same time. 

 

Examples: 

 

1. In this example, the array file, file1, is created on disk as the file file1.dat. A database of 1000 records each containing 

10 fields of 20 characters of information is built in file1.dat. 

 
DEFINE FILE 
  file1 
END FILE 
 
OPEN file1 "file1.dat", STATUS=NEW 
 
DEFINE SET file1 
  rec(1000) 
  fld(10) 
END SET 
 
DEFINE VARIABLE file1 
  data(rec,fld) TYPE=STRING(20) "A Disk Variable" 
END VARIABLE file1 
 
CLEAR file1 

 

2. To use file1 created in Example 1 you need to enter the following statement:  

 
OPEN file1 "file1.dat" STATUS=OLD 



Promula Application Development System User's Manual 

222 

 

See Chapter 4 for details on database management. 

 

3.7.65  OPEN SEGMENT 
Purpose: 

 

Opens a segment file on disk for physical write/read operations. 

 

Syntax: 

 
OPEN SEGMENT filespec [,STATUS=status] 

 

Remarks: 

 

filespec is a quoted string or string variable containing the name of the segment file to be opened. filespec may contain 

any filename that is valid for your operating system. 

 

status is one of the following options: 

 

NEW to mean a new file. A new file is one which does not yet exist. 

OLD to mean an existing file. 

 

If omitted, the default is STATUS=OLD. 

 

CAUTION! When using the OPEN file statement with STATUS=NEW, any file on the current directory with the 

same name as filespec will be deleted before the new file is opened. 

 

An old file is one which already exists. You may read from an old segment file and modify existing data values, but you 

cannot add new data to it. 

 

Once opened under the STATUS=NEW option, you may write to a new file using the DEFINE PROGRAM and 

DEFINE SEGMENT statements. The actual write operation is done at the conclusion of the segment definition, i.e., it is 

initiated by the END SEGMENT or END PROGRAM statement. 

 

Once opened, you may load program segments into your working space with the READ SEGMENT statements. 

 

 

Examples: 

 

1.  Define a segmented program. 

 
OPEN SEGMENT "program.xeq", STATUS=NEW 
DEFINE PROGRAM  "Segmented Program" 

statements of MAIN 
... 
DEFINE SEGMENT seg1 

statements of seg1 
... 
DEFINE SEGMENT seg11 

statements of seg11 
... 

END SEGMENT seg11 
END SEGMENT seg1 
DEFINE SEGMENT seg2 

statements of seg2 
... 



Promula Application Development System User's Manual 

223 

END SEGMENT seg2 
END PROGRAM 
 

In the above code, the file program.xeq was opened on disk and a number of program segments were written in it. These 

segments are organized into the following hierarchical tree structure:  

 

Main

Seg1

Seg11

Seg2

 
 

 

The DEFINE PROGRAM and END PROGRAM statements define the beginning and end, respectively, of the 

MAIN segment of the tree. 

 

The DEFINE SEGMENT and END SEGMENT statements define the beginning and end, respectively, of the other 

segments in the above tree. 

 

Note that segments seg1 and seg2 are subordinate to MAIN at level 1. Segment seg11, at level 2, is subordinate to 

segment seg1. 

 

 

2. The statements 

 
OPEN SEGMENT "program.xeq" ,STATUS=OLD 
READ SEGMENT MAIN 

 

 allow you to use the segment file created in Example 1. 

 

3.7.66  OPEN WINDOW 
Purpose: 

 

Tells PROMULA to associate a user-defined window with a specific type of functional screen. 

 

Syntax: 

 
OPEN wind TYPE 

 

Remarks: 

 

wind is the identifier of the window that you wish to open. This window must be previously defined in a DEFINE 

WINDOW statement. 

 

TYPE is the type of functional screen that will be shown in the window, and can be one of the following:  

 

MAIN the Main Screen 

PROMPT the Prompt Screen 

COMMENT the Comment Screen  

ERROR the Error Screen  

HELP the Help Screen 

 



Promula Application Development System User's Manual 

224 

Upon execution, the OPEN WINDOW statement will open the window called name to serve as the display area for the 

logical screen TYPE. 

 

If wind is a static window, it will be drawn on the screen upon execution of the OPEN. If wind is a popup window, it will 

not be displayed until an operation requiring a screen of type TYPE is executed. 

 

See also DEFINE WINDOW and CLEAR window statements as well as the discussion of Advanced Windows in this 

chapter. 

 

3.7.67  PLOT 
Purpose: 

 

Produces graphic displays of program variables and functions. 

 

Syntax 1: 

 
PLOT [type](varx,vary1[,vary2,...]) [,option]  

 

Remarks: 

 

There are five different syntaxes for the PLOT statement, depending on what type of information you want to plot. 

 

Syntax 1 produces X-Y line plots in which one or more Y variables are plotted against an X variable. The maximum 

number of varys that can be plotted simultaneously is six. 

 

type is the type of line plot desired and may be one of the following: 

 

LINE for a line plot 

POINTS for a scatter point plot 

VALUES for a line plot with only those X-Y points marked that coincide with the intersections of the vertical 

and horizontal tic mark/coordinates  

 

If type is omitted, the result is a line plot with the points marked. If you have configured PROMULA's graphics to 

do so, each line in LINE and VALUES plots will be shown in a different color, so that the lines may be 

distinguished from one another. If only black and white graphics are available, the lines will have different 

patterns. See Chapter 5, for a discussion of specifying line colors and patterns and other aspects of configuring 

PROMULA graphics. 

 

varx is the identifier of the variable whose values are the x-coordinates of the points being plotted. 

 

vary1 is the identifier of the variable whose values are the y-coordinates of the points on the first curve being plotted. 

 

vary2 is the identifier of the variable whose values are the y-coordinates of the points on the second curve being plotted.  
 

varx and the vary's must be subscripted by the same set 

 

Syntax 2: 

 
PLOT btype(vary1[,vary2,...]) [,option] 

 

Remarks: 

 

Syntax 2 produces bar plots in which one or more variables are used to form a display of bars whose lengths are 

proportional to the magnitude of the variables' values. The maximum number of variables that can be plotted 



Promula Application Development System User's Manual 

225 

simultaneously is six. The number of bars displayed depends on the resolution of the monitor. The ROW descriptors of the 

set that subscripts the first variable being plotted will appear as labels for the x-axis tic marks. 

 

btype is the type of bar plot desired and may be one of the following: 

 

BAR for a parallel bar plot 

STACK for a stacked bar plot  

 

vary1 is the identifier of the variable whose values define the lengths of the first set of bars plotted. 

 

vary2 is the identifier of the variable whose values define the lengths of the second set of bars plotted. 

 

Syntax 3: 

 
PLOT [type or btype]([set:V,]tvar) [,option] 

 

Remarks:  

 

Syntax 3 produces plots of variables which are subscripted by a time series set. Both line and bar plots can be specified by 

Syntax 3. The difference is that line plots can be generated without specifying a variable to scale the x-axis; the values of 

the time-series set will be used to define the x-coordinates of the points being plotted. 

 

type specifies the type of line plot and is described above in Syntax 1. 

 

btype specifies the type of bar plot and is described above in Syntax 2. 

 

set:V is a special notation for the vector of values associated with the time series set, set. 

 

tvar is the identifier of a variable subscripted by a time series set. 

 

 

Syntax 4: 

 
PLOT [type or btype](func) [,option] 

 

Remarks: 

 

Syntax 4 produces plotted displays of PROMULA functions. Both line and bar plots can be specified by Syntax 4. In line 

plots, the X values of the function will be the x-coordinates of the points being plotted, and the Y values of the function will 

be the y-coordinates. In bar plots, the X and Y values will be plotted on the same graph. 

 

type specifies the type of line plot and is described above with Syntax 1. 

 

btype specifies the type of bar plot and is described above with Syntax 2. 

 

func is the identifier of a function defined by the DEFINE FUNCTION or DEFINE LOOKUP statement. 

 

Syntax 5: 

 
PLOT PIECHART (vary) [,TITLE(text)] 

 

Remarks: 

 

Syntax 5 produces pie charts. 

 



Promula Application Development System User's Manual 

226 

vary is the identifier of the array variable whose values define the size of the sectors of the pie chart.  Up to nine sectors 

may be displayed on a given pie chart. The row descriptors of the set that subscripts vary will appear in a legend 

for the chart, the percent of the pie for each sector will also be computed and displayed in the legend. 

 

NOTE: Printing pie charts on some high resolution laser printers may not work because the image is too complex and 

may overload the printer's memory. 

 

 

PLOT Statement Options 

 

Syntaxes 1 through 4 above, have an option parameter associated with them which allows you to customize the appearance 

of the plot. The option parameter is a list of additional specifications for the plot and may be one or all of the following:  

 

BROWSE(set1, set2,...) to allow the user to browse the "pages" of a plot of one or more multidimensional 

arrays. If applicable, set1 will be incremented/decremented by pressing F1/Shift-F1;  

set2 will be incremented/decremented by pressing F2/Shift-F2; and so on. A prompt 

describing how to browse the plots will appear at the bottom of the screen. 

 

GRID=type to define a grid for the plot. Here, type is one of the following:  

 

HORIZONTAL for horizontal lines between the tic marks on the Y-axis 

VERTICAL for vertical lines between the tic marks on the X-axis  

BOTH for horizontal and vertical lines  

 

LEGEND(leg1,leg2,...) to define a legend for the plot. Here, leg1 is a string variable or quoted string containing 

a short legend for vary1, the first variable of the plot. leg2 is a legend for vary2, the 

second variable of the plot, and so forth. 

 

LINE(pat1,pat2,...) to define alternative line patterns for unmarked line plots. Here, pat1 is a string variable 

or quoted string containing 16 characters which defines a repeating pattern for the vary1 

line; pat2 defines a repeating pattern for the vary2 line, and so forth. The defaults are 

defined by PROMULA's graphics configuration program. 
 

OVER(set) to automatically create a multi-line or multi-bar plot for a y-variable dimensioned by 

set. Up to six lines or bars, one for each dataset corresponding to an active element of 

set, will be displayed. 

 

 

POINT(pnt1,pnt2,...) to define alternative line patterns for marked-point plots. Here, pnt1 is a string variable 

or quoted string containing 1 character which defines the character to use for marking 

points of vary1; pnt2 defines a point character vary2, and so forth. The default characters 

are *, +, &, @, $, and #. 

 

TITLE(text) to display a title for the plot. This title may include variables, text, and other formatting 

characters according to the rules described in the WRITE text statement. The default 

title is the descriptor of vary1. For plots of two or higher dimensional arrays, the 

descriptors of all sets (except the set classifying the x-axis) dimensioning the variables 

plotted are also part of the title. For plots of time series variables, the beginning and 

ending values of the time interval associated with the time series are appended to the 

title of the plot.  

 

XLABEL(xlabel) to display a label for the x-axis. xlabel may include variables and/or quoted text. The 

default is no x-label.  

 



Promula Application Development System User's Manual 

227 

YLABEL(ylabel) to display a label for the y-axis. ylabel may include variables and/or quoted text. The 

default is no y-label.  

 

XRANGE(xrange) to define a scale for the x-axis. Here xrange is one of the following:  

 
xmin,xmax,xtics 
xmin,xmax 
xtics 

 

The XRANGE option will scale the x-axis from a minimum of xmin to a maximum of 

xmax. xtics is the number of tic-marks for the x-axis. The default values for xmin, xmax, 

and xtics are computed by PROMULA using the extremes of the variables scaling the 

x-axis. The values may be literal numeric constants or numeric variables.   

 

YRANGE(yrange) to define a scale for the y-axis. The specification of yrange is analogous to the 

specification of xrange. 

 

 

The values labeling the tic marks or legends of the plot may be formatted according to the syntax: 

 
var:w:d 

 

where w is width and d is the number of decimal digits. 

 

PROMULA supports four Graphics Modes. 

 

CHARACTER The default for CHARACTER mode is an 80 column by 25 row monochrome plot that is composed 

entirely of standard ASCII characters. The width and height of CHARACTER plots can be modified 

by the SELECT WIDTH and the SELECT LINES statements. They can be sent to a disk file with 

the SELECT OUTPUT statement. 

 

MEDIUM The default for MEDIUM mode is CGA medium resolution three-color pixel graphics. 

 

HIGH The default for HIGH mode is CGA high resolution monochrome pixel graphics. 

 

PLOTTER The PLOTTER mode is intended to be used to define the manner in which graphics are plotted. The 

default for PLOTTER mode is an IBM/Epson dot matrix printer, high resolution, landscape mode. 

 

To specify the desired graphics mode, use the SELECT GRAPHICS statement. 

 

You may change the default configuration for MEDIUM, HIGH, and PLOTTER graphics modes for your system, and 

PROMULA even lets you create your own graphics configurations. See Chapter 5, for a discussion of configuring 

PROMULA graphics. 

 

To print medium- and high-resolution plots, execute the SELECT PRINTER=ON statement before you generate the plot; 

the graphic will appear on the screen while it is being printed. 

 

Examples: 

 

In the code below, the procedure plotdemo, when executed, produces plots of the following four types:  

 

1. A point plot 

2. A line plot with its points marked 

3. A parallel bar plot 

4. A stacked bar plot  

 



Promula Application Development System User's Manual 

228 

These four high-resolution plots are shown on the following pages. 

 
DEFINE SET 
  year(10) 
END SET 
 
DEFINE VARIABLE 
  yv(year)     "Year Values" 
  ts(year)     "Time Series Values"      TYPE=REAL(8,1) 
  tl(year)     "Log of the Time Series"  TYPE=REAL(8,1) 
  name         "Run name"                TYPE=STRING(40) 
END VARIABLE 
 
DEFINE RELATION 
  time(year,yv) 
END RELATION 
 
READ yv 
70 72 74 76 78 80 82 84 86 88 
READ ts 
3.1 3.2 3.9 4.5 5.1 4.9 4.5 4.1 4.0 3.5 
tl = LN(ts) 
 
DEFINE PROCEDURE plotdemo 
 
   PLOT POINTS(yv,ts,tl), 
              XLABEL"T i m e", 
              YLABEL"Time Series Values", 
              TITLE"A Scatter Plot of Actual and Log Values", 
              LEGEND("Absolutes","Log of Absolute") 
  
   PLOT(yv,ts,tl), 
        XLABEL"T i m e", 
        YLABEL"Time Series Values", 
        TITLE"An XY Plot with Marked Observations Of the Absolute and Log", 
        LEGEND("Actual value","Log of Value") 
  
   PLOT BAR (ts,tl), 
          XLABEL"T i m e", 
          TITLE"A Parallel Bar Chart of Actual and Log Values of a Time Series", 
          LEGEND("Actual","Log") 
  
   PLOT STACK(ts,tl), 
          XLABEL"T i m e", 
          TITLE"A Stacked Bar Chart of Actual and Log Values of a Time Series" 
          LEGEND("Actual","Log") 
 
END PROCEDURE plotdemo 

 

 

 

 

A Point Plot  

 

A Line Plot With Its Points Marked  

 

 

 

 

A Parallel Bar Plot  



Promula Application Development System User's Manual 

229 

 

A Stacked Bar Plot  

 

 

The code below generates a pie chart of variable y. PROMULA pie charts can have up to nine sectors. The variable that has 

a ROW relation to the set subscripting the variable being plotted will be used for the legend. The percentage of each sector 

is automatically calculated and displayed. 

 
  DEFINE SET 
    pnt(9) 
  END SET 
   
  DEFINE VARIABLE 
    x(pnt)    "X Values"     
    y(pnt)    "Y Values"     TYPE=REAL(8,2) 
    pntn(pnt) "Point Names"  TYPE=STRING(15) 
    pntl(pnt) "Point Legend" TYPE=STRING(15) 
  END VARIABLE 
   
  x(i) = i 
  y(i) = i * 10 
  READ pntn:4 
  GEJ FKG MEJ LCC DLY USA IOU PRM XEQ 
   
  DEFINE PROCEDURE test 
    pntl=pntn+" = "+y 
    SELECT ROW(pnt,pntl) 
    PLOT PIECHART(y) TITLE("PIE CHART OF VARIABLE Y") 
    SELECT ROW(pnt,pntn) 
  END PROCEDURE test 
 

A Pie Chart  

 

PROMULA supports two-dimensional graphics, and variables specified in the plot will usually be one-dimensional vectors. 

If you want to plot two- or higher-dimensional arrays, you should follow these guidelines: 

 

1. Reduce two- or higher-dimensional variables to a one-dimensional form by selecting a single value for all the sets 

structuring the variables being plotted except the one you wish to use as the x-axis of the plot. 

 

PROMULA can determine which sets have been restricted and which have more than one active element. When the 

variables are plotted, the values of variable varx across the set with more than one active element will be used to scale 

the x-axis and the descriptors of the other sets will appear in a subtitle for the plot. 

 

2. For X-Y plots (Syntax 1), the Y variables should all be structured by the set that will scale the X axis. 

 

The following example illustrates how PROMULA handles array variables with more than one dimension in plots. 

 
DEFINE SET  
  row(10)  "10 row" 
  col(6)   "06 col" 
  pag(2)   "04 pag" 
END SET  
 
DEFINE VARIABLE  
  x(row,col,pag) TYPE=REAL(10,0) "X MATRIX" 
  y(row,col,pag) TYPE=REAL(10,0) "Y MATRIX" 
END VARIABLE  
 
x(i,j,k)=(i+10*j+100*k)/10 



Promula Application Development System User's Manual 

230 

y(i,j,k)=(i*j*k)  
 
DEFINE PROCEDURE plotarr 
SELECT GRAPHICS=HIGH 
SELECT row* col(3) pag(2) 
  PLOT LINE(x,y) TITLE("PLOT OF X=(i+10*j+100*k)/10 versus Y=(i*j*k)") 
  PLOT BAR (x,y) TITLE("BAR PLOT OF X=(i+10*j+100*k)/10 and Y=(i*j*k)") 
SELECT row(2) col* pag(2) 
  PLOT LINE(x,y) TITLE("PLOT OF X=(i+10*j+100*k)/10 versus Y=(i*j*k)") 
  PLOT BAR (x,y) TITLE("BAR PLOT OF X=(i+10*j+100*k)/10 and Y=(i*j*k)") 
END PROCEDURE plotarr 

 

The resultant plots are shown on the following pages. 

 

In the first two plots, the ranges of sets col and pag are restricted to single values, so the values of variable x as subscripted 

by set row are used to scale the x-axis. 

 

 

In the next two plots, the ranges of sets row and pag are restricted to single values, so the values of variable x as subscripted 

by set col are used to scale the x-axis. 

 

3.7.68  RATE 
Purpose: 

 

Is used in dynamic simulation procedures and has two functions. 

 

1. It signals the start of the RATE section of a dynamic procedure. 

 

2. It declares the time dependent variables to be computed at each time point of the simulation by linear interpolation or 

extrapolation from specified exogenous time series variables. 

 

Syntax: 

 
RATE (ets1 = lv1 [, ets2 = lv2, ...] ) 

 

Remarks: 

 

ets1 is an exogenous time series variable (i.e., an array variable indexed by a time series set.) 

 

lv1 is a local variable that is used explicitly in the RATE section of a dynamic procedure model and is computed at 

every time point of the simulation. 

 

ets2 is the exogenous time series variable for a second RATE statement equation. 

 

lv2 is a local variable for a second RATE statement equation. 

 

The equations of the RATE statement form a list of correspondence between previously defined exogenous time series 

variables and time-dependent variables that must be used locally in the RATE section of a dynamic simulation model. 

 

Based on this equivalence, the values of the local variable will be computed at the arbitrary time point of the dynamic 

simulation by linear interpolation or extrapolation that is based on the fixed time points defining the exogenous time series. 

 

The RATE section is the second section of a dynamic model (after the INITIAL section) and its equations are evaluated at 

each time point (or interval) of the simulation run. In contrast to LEVEL equations, both sides of rate equations are 

evaluated at the same time point (or interval). 

 



Promula Application Development System User's Manual 

231 

 

The LEVEL section follows the RATE section and its equations are also evaluated at each time point (or interval) of the 

simulation. The LHS of each LEVEL equation, however, is evaluated at TIME+DT in terms of the time variables on the 

RHS which are evaluated at TIME, the previous time point (or interval). It is the equations of the LEVEL section which 

move the dynamic variables through time. 

 

Only those exogenous time series that are used explicitly in the RATE or LEVEL section need be included in the 

exogenous variables list of the RATE statement. 

 

The RATE statement may only be used inside a procedure. That is, it must not be used in command mode. 

 

For more information on dynamic simulation with PROMULA, see the discussion of Dynamic Procedures in the 

DEFINE PROCEDURE section of this chapter and the discussion of the LEVEL statement. 

3.7.69  READ DISK 
Purpose: 

 

Transfers data from a disk variable in an array file to a local variable in the dynamic access method. 

 

Syntax: 

 
READ DISK(vars) 

 

Remarks:  

 

vars is a list of dynamic variables. 

 

A dynamic variable is a scratch or fixed variable (also called a local variable) that has a dynamic relationship to a disk 

variable. Local variables may be related to disk variables through the DISK option of the DEFINE VARIABLE statement. 

See chapter 4 for a detailed description of disk access methods. 

 

Examples:  

 

The following code  

 
DEFINE FILE 
  filea 
END FILE 
 
OPEN filea "test.dba" STATUS=NEW 
DEFINE SET 
 rec(1000)  "Record" 
END SET 
 
DEFINE VARIABLE filea 
  dsk(pnt), "A Disk Variable on 'filea'" 
END VARIABLE filea 
 
DEFINE VARIABLE 
  pp  "Record Pointer" 
  scr "A dynamic variable for accessing a single element of dsk",DISK(filea,dsk(pp)) 
END VARIABLE 

 

defines two variables:  dsk and scr. The disk variable, dsk, is a vector of 1000 elements on the disk file named test.dba. The 

variable, scr, is a dynamic local variable that is related to dsk. The READ DISK and WRITE DISK statements transfer a 

specific value from and to disk as illustrated in the dialog below. 

 



Promula Application Development System User's Manual 

232 

  scr = 0 
  dsk(i) = i 
  pp = 4 
  READ DISK(scr) 
 
  WRITE scr 
  A Scratch Variable in Memory 4 
  scr = 6 
  WRITE DISK(scr) 
 
  WRITE (dsk:L," ",dsk(pp)) 
  A Disk Variable on 'filea' 6 

 

 

 

3.7.70  READ file 
Purpose:  

 

Read data from a text file or a random file. 

 

Syntax 1:  Read the values of all variables in a record of a random file 

 
READ file 

 

Syntax 2:  Read from a text file 

 
READ file (var1 [,fmt1] [,var2 [,fmt2]] [...] ) 

 

Remarks: 

 

file is the identifier of the file whose records you are reading. 

 

var1 is the identifier of the variable whose data is first on each data record. 

 

fmt1 is the format specification for var1 and has the following syntax: 

 
 \p:w 

 

 where  

 

p is an integer indicating the starting column on each data line where the value for var1 begins. Thus, the 

backslash means:  "start reading in column p". If omitted, the reading begins in column 1. 

 

w is an integer indicating the width of the value and it means "read the next w columns". If omitted, the default 

width is the width specified in the definition of var1. 

 

The format specification may be omitted, in which case the data may be entered in free form. In free form, the 

values of variables may be entered anywhere on an input line provided they are separated by commas or blanks. 

 

var2 is the identifier of the variable whose data is second on each data record. 

 

fmt2 is the format specification for var2 and may have the same form as fmt1 above. If p is omitted from fmt2, reading 

begins in the column following the last character of the last value read. 

 

Examples: 

 



Promula Application Development System User's Manual 

233 

1. Read from a text file and write to a random file  

 
DEFINE FILE 
  txt1 TYPE=TEXT 
  ran1 TYPE=RANDOM 
  arr1 TYPE=ARRAY 
END FILE 
 
OPEN ran1 "ran1.ran", STATUS=NEW 
DEFINE VARIABLE ran1 
  item1 "Item 1"   TYPE=REAL(8,0) 
  item2 "Item 2"   TYPE=STRING(8) 
  item3 "Item 3"   TYPE=DATE(8) 
END VARIABLE ran1 
 
OPEN txt1 "txt1.txt", STATUS=OLD 
DO txt1 
  READ txt1(item1:8,item2:8,item3:8) 
  WRITE ran1 
END txt1 

 

2. Read from a text file and write to an array file 

 
DEFINE SET 
  rec(100)  "Records" 
END SET 
 
OPEN arr1 "arr1.arr", STATUS=NEW 
DEFINE VARIABLE arr1 
  var1(rec) "Variable 1"         TYPE=REAL(8,0) 
  var2(rec) "Variable 2"         TYPE=STRING(8) 
  var3(rec) "Variable 3"         TYPE=DATE(8) 
END VARIABLE arr1 
 
DEFINE VARIABLE 
  rn        "Record Number"  
END VARIABLE 
 
rn = 1 
DO txt1 
  READ txt1(var1(rn):8,var2(rn):8,var3(rn):8) 
  rn = rn+1 
END txt1 

 

3. Read from a random file and write to a text file  

 
DO ran1 
  WRITE txt1(item1:8,item2:8,item3:8) 
END ran1 

 

4. Read from a random file and write to an array file  

 
rn = 1 
DO ran1 
  var1(rn) = item1 
  var2(rn) = item2 
  var3(rn) = item3 
  rn = rn+1 
END ran1 

 



Promula Application Development System User's Manual 

234 

5. Read a two-dimensional array from a text file using a DO set loop to drive the row dimension and a set identifier in the 

read statement to drive the column dimension. Given the following data file (with physical file name smn.txt): 

 
    11    15    11    17    10    12    10    14    20    25    27    28 
    22    31    50    32    41    19    21    17    19    38    56    67 
    47    57    73    55    72    38    27    19    35    51    79    76 
   156   211   267   203   273   155   109    89   142   230   286   264 
   494   620   730   646   775   504   433   402   525   760   817   734 
   478   496   468   539   499   521   493   481   592   623   618   584 

 

 
 

 The following code will read the two dimensional data set. 

 
DEFINE FILE 
  inpt         "Data Input File"       TYPE=TEXT 
END FILE 
 
DEFINE SET 
  stratum(6)   "6 Usage Strata" 
  month(12)    "12 Months" 
END SET 
 
DEFINE VARIABLE 
  smn(stratum,month) "Customers by Stratum and Month"  TYPE=REAL(12,0)  
END VARIABLE 
 
OPEN inpt "smn.txt" STATUS=OLD  
 
DO stratum 
   READ inpt( (month) (smn:6:0(stratum,month))) 
END stratum 
 
CLEAR inpt 
 

3.7.71  READ function 
Purpose: 

 

Reads values into a function. 

 

Syntax: 

 
READ func 
x1 x2 ... xn 
y1 y2 ... yn 

 

Remarks: 

 

func is the identifier of a function defined by a DEFINE FUNCTION or DEFINE LOOKUP statement. 

 

x1 x2 ... xn are values to be read into the X variable of the function.  

 

y1 y2 ... yn are values to be read into the Y variable of the function.  

 

Examples: 

 
DEFINE SET 



Promula Application Development System User's Manual 

235 

  pnt(4) 
END SET 
 
DEFINE VARIABLE 
  x(pnt) "The X values" 
  y(pnt) "The Y values" 
END VARIABLE 
 
DEFINE FUNCTION 
  fx(x,y) "Y=f(x)" 
END FUNCTION 
 
READ fx 
10 20 30 40 50 60 
101 202 303 404 505 606 

   

Given the above definitions, the value of the function and its X and Y value vectors may be displayed via WRITE 

statements as shown in the dialog below. 

 
  WRITE fx 
                                           
                                          (1)     (2) 
                               PNT(1)      10     101 
                               PNT(2)      20     202 
                               PNT(3)      30     303 
                               PNT(4)      40     404 
  WRITE x 
                                    The X values 
                                           
         PNT(1)      10   PNT(2)      20   PNT(3)      30   PNT(4)      40 
  WRITE y 
                                    The Y values 
                                           
         PNT(1)     101   PNT(2)     202   PNT(3)     303   PNT(4)     404 

 

 

 

3.7.72  READ menu 
Purpose: 

 

Displays a "data" menu to let you "read" values into all the data fields of the menu. This command is used when the values 

of all the data fields in the menu are to be changed. 

 

A data menu is a screen display which is designed to help its user to edit data. The fields in a data menu are previously 

defined in a DEFINE MENU statement. 

 

Syntax: 

 
READ menu(vars) 

 

Remarks: 

 

menu is the identifier of a data menu. 

 

vars is a list of variable identifiers that contain the values of the data fields being edited. The variables in the list must 

be arranged in the same order as the data fields in the menu to which they correspond. 

 



Promula Application Development System User's Manual 

236 

Data menus contain a number of data fields to be edited by the user. In the DEFINE MENU statement, each data field is 

denoted by a series of contiguous "at signs", (@), or tilde signs (~), one for each character of the data value. The data fields 

are ordered from left to right and from top to bottom of the menu template. 

 

Upon execution, the data menu becomes a screen display that has the first data field highlighted by the bounce bar. The 

system is now in edit mode and is ready to accept new data for the data fields in the menu. To begin editing of the first 

highlighted data field, press the [Enter] key and enter the new value as prompted at the bottom of the menu. Continue this 

process until all the data fields have been edited. 

 

Remarks: 

 

The use of the READ menu command is similar to the EDIT menu command, except that the READ menu puts the user 

in batch or automatic edit mode where he/she is not allowed to pick the data fields to edit. He/She must edit the data fields 

sequentially and in the order that they appear on the menu. After the last field is edited, execution of the program 

automatically proceeds with the statement following the READ menu statement. 

 

3.7.73  READ SEGMENT 
Purpose: 

 

Reads an executable program segment into your working space for execution. A program segment includes both code and 

data. To read data values only, use the READ VALUE segment statement. 

 

Syntax: 

 
READ SEGMENT seg [,DO(proc)] 

 

Remarks: 

 

seg is the identifier of the segment as it appears on the corresponding DEFINE SEGMENT and END SEGMENT 

statements. The default identifier of the top segment of any program is MAIN. 

 

proc is the identifier of a procedure in seg. Upon execution, this procedure is executed automatically. 

 

The segment seg is read in from the disk file specified on the OPEN SEGMENT statement. 

 

Examples: 

 

The following statements open and read in for execution the segment seg1: 

 
OPEN SEGMENT "a:program.xeq", STATUS=OLD 
READ SEGMENT seg1 

 

If segment seg1 is subordinate to another segment, say MAIN, then the following sequence must be entered:  

 
OPEN SEGMENT "program.xeq"  STATUS=OLD 
READ SEGMENT MAIN 
READ SEGMENT seg1 
 

where program.xeq is the name of the segment file on disk containing segment MAIN. 

 

3.7.74  READ set 
Purpose: 

 

Reads in labels for a set.  



Promula Application Development System User's Manual 

237 

 

Syntax: 

 
READ set [opt] 
data 

 

Remarks:  

 

set is the set identifier. 

 

data are the data lines for the read. One data line is needed for each active element in set. 

 

opt defines what types of labels are to be read. The default value for opt is ROW(1,20). opt can be one or more of the 

following: 

 

ROW[(ic,lc)] 

 

 to specify that set row descriptors (sometimes called stubs) are to be read. 

 

ic is a positive integer defining the initial column on each data line where the stub entry begins. The default is 

ic=1. 

 

lc is a  positive integer (lc >  or = ic) defining the last column on each data line where the stub entry ends. The 

default is lc=15. 

 

Only one stub per data line is permitted. Note that, if set was defined with a ROW option, the total width of the 

field may not exceed the width defined in that option. 

 

COLUMN[(ic,lc,nc)] 

 

to specify that set column descriptors (sometimes called spanners) are to be read. 

 

ic is a positive integer defining the initial column on each data line where the spanner entry begins. The default 

is ic=1. 

 

lc is a positive integer (lc > or =  ic)  defining the last column on each data line where the spanner entry ends. 

The default is lc=15. 
 

nc is a positive integer defining the number of columns or characters (including blanks) in each section of the 

spanner. The  following exact relationship must be satisfied: 

 
 (lc - ic + 1)/nc = nl 

 

where nl is a positive integer denoting the number of lines that each column heading will have. The default is 

nc=1. 

 

The specification ic, lc, nc can be read as, "read in each spanner from column ic to column lc in steps of nc."  Thus if 

ic=1, lc=30, nc=10, each data line should contain 30 characters that will form a three line (nl=(30-1+1)/10=3) column 

heading with 10 characters on each line. 

 

Only one spanner per data line is permitted. Note that, if set was defined with a COLUMN option, the format of 

the spanner data field must conform with the format specified in that option. 

 

KEY[(ic,lc)] 

 

 to specify that set codes are to be read.  



Promula Application Development System User's Manual 

238 

 

ic is a positive integer defining the initial column on each data line where the code entry begins. The default is 

ic=1. 

 

lc is a positive integer (lc > or = ic) defining the last column on each data line where the code entry ends. The 

default is lc=20. 

 

Only one code descriptor per data line is permitted. Note that if the set was defined with a KEY option, the total 

width of the code field may not exceed the defined width. 

 

The set codes are used for three separate purposes. First, if no row descriptors are supplied, then the codes are used 

in their place for displays of arrays that are classified by set. Second, if no column headings are supplied, then the 

codes are used. Third, when the user wishes to refer to particular set elements, he may use the codes in place of the 

element sequence numbers. See the ASK...ELSE and SELECT VARIABLE statements for a discussion of how 

set elements are selected with their codes and sequence numbers. 

 

Only one code per data line is permitted. Note that, if set was defined with a KEY option, the total width of the 

field may not exceed the width defined in that option. The maximum width of a code is 6 characters.  

 

Examples: 

 

The following example illustrates the READ set statement. Stubs, spanners, and codes are read in for set sta; the codes 

appear as the identifiers of the set elements in the WRITE set display. Notice that the default, AGE(n), descriptors are used 

as labels for columns classified by set age since no spanners or codes are related to set age. Set yer gets its descriptor values 

from the TIME option in its definition. 

 
DEFINE SET 
  age(3)    "AGE"   ROW(8) 
  yer(2)    "YEAR"  TIME(1920,2000)  
  sta(3)    "STATE" ROW(10) KEY(2) COLUMN(10,3) 
END SET 
 
DEFINE VARIABLE 
  a(age,sta,yer) "VALUES BY AGE, STATE, AND YEAR" 
END VARIABLE 
a=RANDOM(2000,9000) 
 
READ sta KEY(21,22) ROW(21,29) COLUMN(1,30,10) 
STATE     OF        OHIO         
STATE     OF        FLORIDA      
STATE     OF        ILLINOIS 
 
READ age ROW(1,6) 
00-20 
21-40 
41-60 

 

 

Given the definitions and data above, the values for the set labels may be displayed by the various WRITE statements as 

shown in the dialog below. 

 
  WRITE sta 
  Identifier Description 
  OH         OHIO 
  FL         FLORIDA 
  IL         ILLINOIS 
   
  SELECT yer(1) 



Promula Application Development System User's Manual 

239 

  WRITE a 
                           VALUES BY AGE, STATE, AND YEAR 
                                           
                                        1920 
                                           
                                    STATE     STATE     STATE 
                                       OF        OF        OF 
                                     OHIO   FLORIDA  ILLINOIS 
                       00-20        5,160     7,664     6,141 
                       21-40        6,456     2,334     5,625 
                       41-60        7,295     2,024     7,480 
  WRITE a(sta,age,yer) 
                           VALUES BY AGE, STATE, AND YEAR 
                                           
                                        1920 
                                           
                                     AGE(1)  AGE(2)  AGE(3) 
                         OHIO         5,160   6,456   7,295 
                         FLORIDA      7,664   2,334   2,024 
                         ILLINOIS     6,141   5,625   7,480 

 

 

 

See the DEFINE SET, DEFINE RELATION, and SELECT RELATION statements for more information on set 

descriptors. 

 

3.7.75  READ VALUE segment 
Purpose: 

 

Reads the information of a program or program segment from disk.  Only the values of the segment variables are read. To 

read both code and data values, use the READ SEGMENT statement.  

 

Syntax: 

 
READ VALUE seg  

 

Remarks: 

 

seg is the identifier of the segment whose values are being read from disk. 

 

Use the OPEN SEGMENT statement before using the READ VALUE segment statement. 

 

Examples: 

 

The code below opens a segment file on disk called wrvalseg.xeq. This segment is given the default name MAIN since it is a 

top-level segment. Segment MAIN contains the single variable, a. 

 
OPEN SEGMENT "wrvalseg.xeq" STATUS=NEW 
 
DEFINE PROGRAM  
  DEFINE VARIABLE 
    a "The value of variable A =" 
  END VARIABLE 
END PROGRAM 

 

The effect of the WRITE VALUE segment and READ VALUE segment are illustrated in the dialog below. 

 



Promula Application Development System User's Manual 

240 

  a=10 
  WRITE a 
  The value of variable A = 10 

 

 

 

The statement, WRITE VALUE MAIN, writes the values of segment MAIN variables (in this case only variable a) in the 

segment file on disk called wrvalseg.xeq. 

 
  WRITE VALUE MAIN 

 

 

 

The value of a variable can be changed by an expression. 

 
  a=20 
  WRITE a 
  The value of variable A = 20 

 

 

 

The READ VALUE MAIN statement will read in the values of the segment MAIN's variables that were stored by the last 

WRITE VALUE MAIN statement. 

 
  READ VALUE MAIN 
  WRITE a 
  The value of variable A = 10 

 

 

 

3.7.76  READ variable 
Purpose: 

 

Reads data into a variable. 

 

Syntax: 

 
READ var [fmt] [(sets)] [FROM file] 
 ... 
 data 
 ...  

 

Remarks: 

 

var is the identifier of the variable whose data is being entered. 

 

sets is an ordered list of the identifiers of the sets subscripting var. The sets may be listed in any order. If omitted, the 

order of the sets is that which appears in the definition of var. For multidimensional variables, this order is 

important: the first set in this list defines the rows of the data following, the second set classifies the columns of 

the data following, the third set classifies the two-dimensional pages of the data following, the fourth set classifies 

the three-dimensional sections of the data following, etc. The current order and range of the elements of the sets 

specified in sets controls the assignment of data to variable values.  

 

fmt is the format specification for the read operation and has the following syntax: 

 
\p:w 



Promula Application Development System User's Manual 

241 

 

where  

 

p is an integer indicating the starting position of the read, i.e, the column on each data line where the reading 

begins. The backslash means:  "start reading in column p". If omitted, the reading begins in column 1. 

 

w is an integer indicating the width of the read operation and it means "read the next w columns". 

 

The format specification may be omitted, in which case the data may be entered in free form. In free form, the 

values of variables may be entered anywhere on an input line provided they are separated by commas or blanks.  

 

data are the data values associated with var. The data values are entered on input lines which can have a maximum 

width of 255 characters each. The input lines and the data values on them must be arranged so that they agree with 

the internal structure of the variable, as defined by the DEFINE VARIABLE statement or by sets, and the format 

specifications of the READ variable statement (see examples below). The data may be stored in an external text 

file if the FROM option is used. 

 

file is the identifier of a logical file of type TEXT that contains the data for variable var. You must open file to the text 

file on disk that contains the data before executing the READ variable statement. 

 

You may read data for more than one variable in a single read operation by using the READ variables statement. 

 

Examples: 

 

1. Given the definitions  

 
DEFINE SET 
  row(4) 
  col(3) 
  page(2) 
END SET 
 
DEFINE VARIABLE 
  a(row,col,page) "A 3-Dimensional Array" 
END VARIABLE 

 

 You may enter data in array a via the following READ statement: 

 
READ a 
111 121 131 
211 221 231 
311 321 331 
411 421 431 
112 122 132 
212 222 232 
312 322 332 
412 422 432 

 

 

This order of the data entry is according to the order of the sets defining array a. You may verify this by using the 

WRITE a statement:  

 
WRITE a 
 
                            A 3-Dimensional Array 
                                           
                                   PAGE(1) 
                                           



Promula Application Development System User's Manual 

242 

                                    COL(1)  COL(2)  COL(3) 
                                           
                   ROW(1)              111     121     131 
                   ROW(2)              211     221     231 
                   ROW(3)              311     321     331 
                   ROW(4)              411     421     431 
                                           
                                   PAGE(2) 
                                           
                                    COL(1)  COL(2)  COL(3) 
                                         
                   ROW(1)              112     122     132 
                   ROW(2)              212     222     232 
                   ROW(3)              312     322     332 
                   ROW(4)              412     422     432 

 

 

 

2. You may read by col the same data as in Example 1 by using the following statement: 

 
READ a(col,row,page) 
111 211 311 411 
121 222 321 421 
131 231 331 431 
112 212 312 412 
122 222 322 422 
132 232 332 432 

 

3. You may read selected data values by using the SELECT set statement before the READ statement: 

 
SELECT row(1) 
SELECT page(1) 
READ a 
111 121 131 

 

This read operation is restricted to the first row and the first page of variable a. The values 111, 121, and 131 are 

assigned to the first, second, and third columns respectively. 

 

 

4. As is the case for other READ statements, numeric data values may be specified with the N*VALUE notation as in the 

example below. 

 
DEFINE SET 
  row(3) 
  col(10) 
END SET 
 
DEFINE VARIABLE 
  x(row,col) TYPE=REAL(11,3) "-------------- THE X ARRAY --------------" 
END 
 
READ x 
2*1 2*2 2*3 2*4 2*5 
2*6 2*7 2*8 2*9 2*10 
2*11 2*12 2*13 2*14 2*15 

 

The data values may be displayed by the statement WRITE x. The output of this statement is shown below. 

 
                   -------------- THE X ARRAY -------------- 



Promula Application Development System User's Manual 

243 

 
                         COL(1)     COL(2)     COL(3)     COL(4)     COL(5) 
     ROW(1)               1.000      1.000      2.000      2.000      3.000 
     ROW(2)               6.000      6.000      7.000      7.000      8.000 
     ROW(3)              11.000     11.000     12.000     12.000     13.000 
 
                         COL(6)     COL(7)     COL(8)     COL(9)    COL(10) 
     ROW(1)               3.000      4.000      4.000      5.000      5.000 
     ROW(2)               8.000      9.000      9.000     10.000     10.000 
     ROW(3)              13.000     14.000     14.000     15.000     15.000 

 

 

 

3.7.77  READ (variables) 
Purpose: 

 

Read data into more than one variable. 

 

Syntax: 

 
READ(var1[,fmt1][(sets)] [,var2[,fmt2][(sets)] [,...]) 
 ... 
 data 
 ...  

 

Remarks: 

 

var1 is the identifier of the variable whose data is first on each data line. 

 

fmt1 is the format specification for var1 and has the following syntax: 

 
 \p:w 

 

 where  

 

p is an integer indicating the starting column on each data line where the value for var1 begins. The backslash 

means:  "start reading in column p". If omitted, the value begins in column 1. 

 

w is an integer indicating the width of the value and it means "read the next w columns." If omitted, the default 

width is the width of var1 as specified in its definition. 

 

The format specification may be omitted, in which case the data may be entered in free form. In free form, the 

values of variables may be entered anywhere on an input line provided they are separated by commas or blanks. 

 

sets is an ordered list of the identifiers of the sets subscripting var1. The sets may be listed in any order. If omitted, the 

order of the sets is that which appears in the definition of var1.   

 

var2 is the identifier of the variable whose data is second on each data line.  

 

fmt2 is the format specification for var2 and may have the same form as fmt1 above. Here, if the format specification, p, 

is omitted, reading begins at the character immediately following the last character of the preceding value. 

 
 

data are the data values for var1, var2,....  The data values are entered on input lines which can have a maximum width 

of 255 characters each. Numeric data may be expressed using the N*VALUE notation. 

 



Promula Application Development System User's Manual 

244 

The DO set statement may be used with the READ variables statement to read data for array variables.  

 

Examples:  

 

Given the definitions  

 
DEFINE SET 
  month(12) 
END SET 
 
DEFINE VARIABLE 
  A               "A Value = " 
  B               "B Value = " 
  C               "C Value = " 
  D               "D Value = " 
  mc(month)       "Month Codes" 
  mn(month)       "Month Names" 
END VARIABLE 

 

you may enter the values 1 and 200, for A and B respectively, as follows:  

 
  READ(A:8,B\10:10) 
          1      200 

 

The following reads data for the vectors mc and mn: 

 
DO month 
   READ(mc:3,mn\5:12) 
END month 
JAN  January 
FEB  February 
MAR  March 
APR  April 
MAY  May 
JUN  June 
JUL  July 
AUG  August 
SEP  September 
OCT  October 
NOV  November 
DEC  December 

 

 

The following read uses the N*VALUE notation to specify repeated values in the data. 

 
READ(A,B,C,D) 
2*1234567 2*9876543 

 

After the read, the data may be displayed by a WRITE TABLE statement. For example the statement 

 
WRITE TABLE(1) BODY(a,b,c,d) TITLE("Table of scalars") FORMAT(10,20) 

 

produces the following output. 

 
                                Table of Scalars 
 
                         A Value =            1,234,567 
                         B Value =            1,234,567 
                         C Value =            9,876,543 



Promula Application Development System User's Manual 

245 

                         D Value =            9,876,543 

 

 

 

3.7.78  RUN 
Purpose: 

 

Compiles a PROMULA source file or runs a PROMULA executable. 

 

Syntax: 

 
RUN file 

 

Remarks: 

 

file is a string (optionally in quotes) or a string variable containing the name of the disk file where the code that you 

wish to compile or execute is stored. 

 

The RUN statement is similar to the RUN PROGRAM statement for executing PROMULA programs from inside a 

running application; and to the RUN COMPILER, RUN SOURCE, and RUN COMMAND statements for compiling 

PROMULA source codes. But there are several subtle differences: 

 

RUN and RUN PROGRAM may both be used to run PROMULA executable programs. When file is an executable 

PROMULA application, the RUN statement will suspend execution of the current application and hide its information 

before running file. Since the current application stays resident, there must be enough room for both file and the original 

application in memory for this to work properly. The original application will be automatically reloaded when execution of 

file is complete and a STOP statement is executed. The RUN PROGRAM statement, clears the original application from 

memory before loading file. In addition, RUN can be executed from inside a procedure; RUN PROGRAM cannot. 

 

RUN and RUN COMPILER may both be used to compile PROMULA source codes. When file is a PROMULA source 

code, the RUN statement will suspend execution of the current application and hide its information before compiling file. 

The original application will be automatically reloaded when compilation of file is complete and a STOP statement is 

executed. The RUN COMPILER statement clears the current application from memory before compiling file. In addition, 

RUN can be executed from inside a procedure, RUN COMPILER cannot.  

 

The RUN SOURCE file statement can be used for compiling PROMULA source codes only. It behaves like the RUN 

statement in this role except that RUN SOURCE displays the compilation listing on the screen. 

 

The RUN COMMAND file statement can only be used for compiling PROMULA source codes. RUN COMMAND 

behaves like the RUN statement except that it does not suspend execution of the current application or hide its information. 

The statements in file may use, but not redefine, structures defined in the current application, and any structures defined in 

file remain resident with your application after its compilation is complete and control is returned to the current application. 

 

Examples: 

 

The statement 

 
RUN "program.prm" 

 

will compile the PROMULA program stored in the source file program.prm. The compilation listing will not be shown on 

the screen but PROMULA will pause on errors. To have more control over the compilation of PROMULA source codes 

from the command line, use the RUN COMPILER statement. 

 

3.7.79  RUN COMMAND 



Promula Application Development System User's Manual 

246 

Purpose: 

 

Compiles a PROMULA source code from within a running application. This allows you to temporarily perform equations, 

read in data, and define procedures, variables and other PROMULA structures while running a PROMULA application. 

The RUN COMMAND gives you the means to execute a batch file of statements from command mode. 

 

Syntax: 

 
RUN COMMAND file 

 

Remarks: 

 

file is a quoted string or a string variable that contains the name of a text file containing PROMULA statements. 

 

Upon execution, PROMULA will compile the code contained in file. If the code is well formed and compatible with the 

current application (i.e., no redefinitions), the new executable code will become resident with the current application. 

 

Using this statement is like escaping the current application and using PROMULA in command mode. The main 

differences are (1) PROMULA reads the statements from a text file instead of from the keyboard, and (2) statements are 

executed in batch mode. 

 

If you want to add any interactive input or output statements to the running application, you should put them in a procedure 

in a file, then process the file using the RUN COMMAND statement. The procedure may then be executed by escaping 

from your application, getting into command mode (F10 from the Main Menu), and entering the procedure name. 

 

WARNING: If there is a DEFINE PROGRAM statement in file, you will clear the current application from memory and 

replace it with the code in file. 

 

The last statement in file should be a STOP. This will get you out of batch compilation mode and return control to the 

calling program. 

 

Examples: 

 

The source code of PRM2.PRM is shown below. It defines two variables: c and d. The STOP statement returns control to the 

calling program. 

 
DEFINE VARIABLE 
c 
d 
END 
STOP 

 

The variables defined in PRM2.PRM can be batch loaded using the code shown below. The code below defines two 

variables:  a and b, and a procedure, runcmd that runs PRM2.PRM. 

 
DEFINE VARIABLE 
a 
b 
END 
 
DEFINE PROCEDURE runcmd 
  RUN COMMAND "prm2.prm" 
  AUDIT VARIABLE 
END PROCEDURE runcmd 

 

Execution of procedure runcmd produces the following dialog. 

 



Promula Application Development System User's Manual 

247 

  DO runcmd 
  Ident   Description 
  A 
  B 
  C 
  D 

 

 

 

The AUDIT VARIABLE statement in procedure runcmd shows that variables c and d are now present with variables a and 

b. Other PROMULA structures, including procedures, can be added using similar code. 

 

3.7.80  RUN COMPILER 
Purpose: 

 

Compiles a PROMULA source code. 

 

Syntax: 

 
RUN COMPILER source LIST = output PAUSE = option 

 

Remarks: 

 

source is a string (optionally in quotes) or a string variable containing the name of the file to be compiled (the 

extension .PRM is assumed if none is specified). 

 

output directs the compilation listing and is one of the following 

 

NONE to turn off the listing; this option provides the fastest compilations. 

 

CONSOLE to display the listing on the screen. 

 

DISK file to save the listing on disk. file is a string or a string variable containing the name of the file 

where the listing is to be saved. 

 

PRINTER to send the listing to the printer. 

 

option controls whether or not PROMULA should pause compilation when an error is detected and is one of the 

following: 

 

ON to issue an error message and pause on errors 

 

OFF to issue an error message and continue on errors 
 

EJECT to end processing and return to the operating system on errors 

 

The RUN COMPILER statement clears the current application from memory before compiling file. Control returns to 

PROMULA command mode when the compilation is complete. 

 

The RUN COMPILER statement cannot be executed inside a procedure.   

 

 

Examples: 

 

The statement 



Promula Application Development System User's Manual 

248 

 
RUN COMPILER "program.prm" LIST=DISK "program.lst" PAUSE=ON 

 

will compile the PROMULA code stored in program.prm; the compilation listing will be saved in program.lst. 

 

3.7.81  RUN DOS 
Purpose: 

 

Runs an operating system command. This allows you to access the operating system from within a PROMULA program, 

perform an OS operation, and return to your program. 

 

Syntax: 

 
RUN DOS command 

 

Remarks: 

 

command is a quoted string or a string variable containing any command that is valid for your operating system. 

 

When the RUN DOS statement is executed, PROMULA will write itself and the current application to disk in a file called 

PROMULA.000; this is often a rather large file (300-500 Kbytes). PROMULA then clears itself from RAM and proceeds 

with the OS command. When the OS command finishes, PROMULA reloads itself, deletes the PROMULA.000 file and 

returns to the application. Note, on machines with a virtual operating system where much more memory is available, 

PROMULA will not write itself to disk. 

 

You should not use the RUN DOS statement to load RAM resident programs. 

 

Be warned that some uses of the RUN DOS statement are inherently non-portable and your application may require source 

code changes if it is moved across the various platforms on which PROMULA runs. 

 

Examples: 

 

The statement  

 
RUN DOS "dir b:" 

 

will produce a directory listing for the files on drive b: 

 

Similarly, the statement 

 
RUN DOS "edit myfile.txt" 

 

will run the program edit with a command line argument of myfile.txt. 

 

3.7.82  RUN EDITOR 
Purpose: 

 

Loads a file into the PROMULA Text Editor for editing. 

 

Syntax: 

 
RUN EDITOR [filename] 

 

Remarks: 



Promula Application Development System User's Manual 

249 

 

filename is a string (optionally in quotes) or a string variable containing the name of the text file you wish to edit.This 

name is the file specification you use to identify the file to the operating system. 

 

Upon execution, the text file is brought into your work space for editing using the text editor. The normal text colors for the 

Main Screen will be used by the editor. 

 

You may also use the editor while running a PROMULA application by pressing the Esc key to interrupt the application 

and, then selecting Main Menu option 4, load the editor. 

 

NOTE: The amount of memory (capacity) available to the text editor is limited by the amount of memory used by the 

application you are running. Thus, if you want to edit a very large file, it is best to clear your application from 

memory before using the editor. 

 

Examples: 

 

1. The statement RUN EDITOR demo.prm or RUN EDITOR "demo.prm" will load the file demo.prm into the editor 

for editing. 

 

2. Similarly, the following statements will bring demo.prm into your work space for editing. 

 
DEFINE VARIABLE 
   fname  TYPE=STRING(20) 
END VARIABLE 
 
fname="demo.prm" 
RUN EDITOR fname 

 

Where fname is a string variable.  

 

3.7.83  RUN PROGRAM 
Purpose: 

 

Runs a PROMULA executable file. 

 

Syntax: 

 
RUN PROGRAM file 

 

Remarks: 

 

file is a string (optionally in quotes) or a string variable containing the name of the file where the program that you 

wish to execute is stored (the extension .XEQ is assumed if none is specified). 

 

The RUN PROGRAM statement clears the current application from memory before executing file. Control returns to 

PROMULA command mode when the execution of file is complete. Alternatively, a STOP PROMULA statement in the 

application may be used to exit to the operating system. 

 

The RUN PROGRAM statement cannot be executed inside a procedure. 

 

Examples: 

 

The statement 

 
RUN PROGRAM "program.xeq" 



Promula Application Development System User's Manual 

250 

 

will clear the current application from memory and execute the PROMULA program stored in the executable file 

program.xeq. 

 

See the RUN statement for more information on PROMULA's run statements. 

 

3.7.84  RUN SOURCE 
Purpose: 

 

Compiles a PROMULA source code and displays the listing on the console. 

 

Syntax:  

 
RUN SOURCE filename 

 

Remarks: 

 

filename  is the name of a text file containing PROMULA statements. 

 

Upon execution, PROMULA will compile the code contained in the file named by filename. The compilation will be shown 

on the screen. 

 

After a successful compilation, control can be returned to the calling program by a STOP statement. The RUN SOURCE 

statement can be a convenient alternative to using the dialog driven compiler (F5 from the Main Menu). It is most useful 

for recompiling all the segments in a multisegment program which should be done whenever the top-level segment is 

changed and recompiled. 

 

You can also compile PROMULA source files using the simple RUN statement, but this will not show the compilation on 

the console. 

 

3.7.85  SELECT ENTRY 
Purpose: 

 

Allows the user to make a selection from a list of set elements. 

 

Syntax: 

 
SELECT ENTRY set 

 

Remarks: 

 

set is the identifier of a set. 

 

Upon execution, the SELECT ENTRY statement clears the Main Screen and displays the elements of set for browsing. 

The display contains the set element codes and their row descriptors. A prompt at the bottom of the Prompt Screen 

describes how to browse the list and make a selection. The keyboard action during execution of this statement is described 

below: 

 

Browsing keys Pressing the arrow keys or the PgUp and PgDn keys moves a highlight bar through the list of set 

elements. 

 

Enter key Pressing the Enter key selects the currently highlighted set element, clears the screen, and allows 

execution to continue. 

 



Promula Application Development System User's Manual 

251 

End key Pressing the End key allows the user to exit without making a selection. 

 

See also SELECT set, SELECT VARIABLE, and SELECT SET statements.  

 

 

Examples: 

 

The following example demonstrates the SELECT ENTRY statement: 

 
  DEFINE SET 
    dir(4) "4 Directions" 
  END SET 
 
  DEFINE VARIABLE 
    dirn(dir) "ROW LABELS" TYPE=STRING(10) 
  END VARIABLE 
 
  READ dirn:8 
  NORTH   SOUTH   EAST    WEST 
 
  DEFINE PROCEDURE selent 
    SELECT ROW(dir,dirn) 
    SELECT ENTRY dir 
    WRITE dir 
  END PROCEDURE selent 

 

 

Execution of procedure selent and selecting the first element of set dir produces the displays below: 

 

 

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

                                                                                    

 Identifier Description                                                             

 1         NORTH                                                                 

 2         SOUTH                                                                 

 3          EAST                                                                  

 4          WEST                                                                  

           End: Exit  Arrows PgUp PgDn Home: Move  Enter: Select                 

 
 

  Identifier Description 
  1            NORTH 

 



Promula Application Development System User's Manual 

252 

3.7.86  SELECT FIELD 
Purpose: 

 

Vary the information associated with a pick menu field. 

 

Syntax: 

 
SELECT FIELD menu FIELD = fldnum [, DESCRIPTION = flddsc ] 

 

Remarks: 

 

menu is the name of the pick menu that is to be modified.  

 

menu must refer to a pick menu that was labeled VARIABLE when it was defined. 

 

fldnum is an integer expression providing the sequence number of the field in menu that is to be modified. fldnum may 

be a numeric constant or a numeric variable. 

 

flddsc is a quoted string or string variable containing a new label for the field to be modified. The text will be left 

justified and truncated to fit in the space allocated for the field in the definition of menu. If the DESCRIPTION 

clause is omitted, then the field label is blanked and the bounce bar will never go to the field.  

 

See also the DEFINE MENU statement.  

 

 

Examples: 

 

The code fragment below may be used to experiment with the SELECT FIELD statement. 

 
DEFINE WINDOW 
  sw(00,00,79,22,white/black,none) 
  pw(01,24,79,24,white/black,top/single/navy/black) 
END WINDOW 
 
DEFINE MENU pickit, VARIABLE, POPUP(sw,pw) 
    Your Options are as follows: 
    ---------------------------- 
    \[ 1 ]  First option      \ 
    \[ 2 ]  Second option     \ 
    \[ 3 ]  Third option      \ 
    \[ 4 ]  Fourth option     \ 
    \[ 5 ]  SELECT FIELD      \ 
END 
FIELD 1, SELECT=1, ACTION=1 
  FIELD 1 
END 
FIELD 2, SELECT=2, ACTION=2 
  FIELD 2 
END 
FIELD 3, SELECT=3, ACTION=3 
  FIELD 3 
END 
FIELD 4, SELECT=4, ACTION=4 
  FIELD 4 
END 
FIELD 5, SELECT=5, ACTION=5 
  SELECT FIELD 



Promula Application Development System User's Manual 

253 

END 
END MENU 
 
DEFINE VARIABLE 
  pick     "Selection = " 
  fldno    "Field Number" 
  flddes   "Field Description"  TYPE=STRING(25) 
END VARIABLE 
 
 
DEFINE PROCEDURE selfld 
ASK "Would you like to change a Menu field: Y or N",Y 
    WRITE "Enter Field Number (1 thru 9)" 
    READ fldno 
    ASK "Would you like to blank or change the field: B or C",B 
        SELECT FIELD pickit, FIELD=fldno 
    ELSE C 
        WRITE "Enter new field descriptor (up to 25 characters)" 
        READ flddes 
        SELECT FIELD pickit, FIELD=fldno,DESCRIPTOR=flddes 
    END 
    selfld 
ELSE N 
END 
END 
 
DEFINE PROCEDURE demo 
SELECT pickit(pick) 
WRITE GOTOXY(0,10) 
DO IF pick EQ 5 
  selfld 
ELSE 
  WRITE ("SELECTION = "pick) 
END IF 
demo 
END PROCEDURE demo 
 

3.7.87  SELECT file 
Purpose: 

 

Selects a record of a random file for data access, or selects one or more records from an inverted file for data access. 

 

Syntax: 

 
SELECT file(key) 

 

Remarks: 

 

file is the identifier of the inverted or random file you are accessing. 

 

key is the sequence number, or the scalar variable whose value is the sequence number of the record you wish to 

access. Alternatively, key is a code used for selecting the records of an inverted file. 

 

If file is of type RANDOM, the record with sequence number key is selected. If file is of type INVERTED, all records 

containing key are selected. 

 

Examples: 

 



Promula Application Development System User's Manual 

254 

1. Select the second record in a random file and copy its data to a text file. 

 
DEFINE FILE 
  txt1 TYPE=TEXT 
  ran1 TYPE=RANDOM 
END FILE 
 
OPEN ran1 "b:ran1.ran", STATUS=OLD 
DEFINE VARIABLE ran1 
  item1 "Item 1"   TYPE=REAL(8,0) 
  item2 "Item 2"   TYPE=STRING(8) 
  item3 "Item 3"   TYPE=DATE(8) 
END VARIABLE ran1 
 
OPEN txt1 "b:txt1.txt", STATUS=NEW 
SELECT ran1(2) 
READ ran1 
WRITE txt1(item1:8,item2:8,item3:8) 

 

NOTE: At the beginning of the reading, the record pointer is at the beginning of the second record; at the end, the 

pointer has advanced to the beginning of the third record in file ran1. No advancement will take place if the 

record pointer is at the last record. 

 

2. It is possible to select the records of a random file based on a specific search key by using an inverted file. An example 

of this is illustrated below. 

 
*  purtrx is a random file containing 9 transactions records 
 
DEFINE FILE 
  purtrx      TYPE=RANDOM,       "Purchase transaction file"  
END FILE 
 
* Structure of the purtrx record 
 
DEFINE VARIABLE purtrx 
  transno            "TRANSACTION NO."           TYPE=REAL(5,0) 
  stkcode            "STOCK CODE"                TYPE=STRING(5) 
  stkdesc            "STOCK DESCRIPTION"         TYPE=STRING(32) 
  stkqty             "STOCK QUANTITY"            TYPE=REAL(5,0) 
  stkcost            "STOCK UNIT COST"           TYPE=MONEY(11) 
END VARIABLE purtrx 
 
* Display entire random file 
 
DEFINE PROCEDURE shotrx 
  OPEN purtrx "purtrx.ran" 
  DO purtrx 
    WRITE (transno,stkcode:7,stkdesc,stkqty,stkcost) 
  END purtrx 
END PROCEDURE shotrx 
 

Execution of procedure rdtrx produces the output below. 

 

    100   ADP3      Adapter, 3" Galv Steel URD    5       1.20 
    101   ADP5      Adapter, 5" Galv Steel URD   10     100.95 
    102  ADPAU                Adapter, Amp URD    8       4.80 
    103  BLTCA       Bolts, Carriage 1/2" X 6"   50       0.80 
    104  BLTOE      Bolts, Oval Eye 5/8" X 12"   15       2.89 
    105   ADP5      Adapter, 5" Galv Steel URD   10     100.95 



Promula Application Development System User's Manual 

255 

    106  BLTCA       Bolts, Carriage 1/2" X 6"  100       0.80 
    107  CAB12            Cable, #12 solTWwire  200       0.04 
    108   ADP5      Adapter, 5" Galv Steel URD   10     100.95 

 

 

3. Read a single record in a random file using a numeric record number 

 
DEFINE VARIABLE 
  rn "Record Number" 
END 
 
DEFINE PROCEDURE seltrx 
  SELECT purtrx(rn) 
  READ purtrx 
  WRITE (transno,stkcode:7,stkdesc,stkqty,stkcost) 
END PROCEDURE seltrx 
 

The third record of file purtrx may be displayed using procedure seltrx as shown in the dialog below. 
 

  rn = 3 
  seltrx 
    102  ADPAU                Adapter, Amp URD    8       4.80 

 

4. Select records from a random file using an inverted (index) file. 

 

Build an inverted file. Make "Stock Code" key postings. The key values from purtrx are stored in the random file along 

with record sequence numbers. purinv is an inverted file used for searching  the "direct" file purtrx with symbolic keys. 
 
DEFINE FILE 
  purinv      TYPE=INVERTED(10), "Inverted file" 
END FILE 
 
DEFINE VARIABLE purinv 
  purkey             "Stock code key"            TYPE=string(5) 
  purseq             "Transaction record number" TYPE=integer(5) 
END VARIABLE purinv 
 
OPEN purinv "purinv.ran", STATUS = NEW 
 
purseq = 0 
DO purtrx 
  purkey = stkcode 
  purseq = purseq + 1 
  WRITE purinv 
END purtrx 
CLEAR purinv 

 

 

Procedure selkey may be used to search a random file by key and display the records which match. 

 
DEFINE VARIABLE  
  key           "User defined stock code"        TYPE=string(5) 
END VARIABLE  
OPEN purinv "purinv.ran", STATUS = OLD 
 
DEFINE PROCEDURE selkey 
  SELECT purinv(key) 
  DO purinv 



Promula Application Development System User's Manual 

256 

    SELECT purtrx(purseq) 
    READ purtrx 
    WRITE(transno\1,stkcode\7,stkdesc\15:0:0,stkqty\50,stkcost\60) 
  END DO purinv 
END PROCEDURE selkey 

 

A sample dialog with procedure selkey is shown below 

 
  * Select all records with a stock code "ADP5" 
  key = "ADP5" 
  selkey 
  101   ADP5    Adapter, 5" Galv Steel URD         10        100.95 
  105   ADP5    Adapter, 5" Galv Steel URD         10        100.95 
  108   ADP5    Adapter, 5" Galv Steel URD         10        100.95 
   
  * Select all records with a stock code "CAB12" 
  key = "CAB12" 
  selkey 
  107   CAB12   Cable, #12 solTWwire               200       0.04 
   
  * Select all records with a stock code "BLTCA" 
  key = "BLTCA" 
  selkey 
  103   BLTCA   Bolts, Carriage 1/2" X 6"          50        0.80 
  106   BLTCA   Bolts, Carriage 1/2" X 6"          100       0.80 

 

 

3.7.88  SELECT indirect 
Purpose: 

 

Allows selection of a program variable for subsequent input/output operations. 

 

Syntax: 

 
SELECT indir(varlist) 

 

Remarks: 

 

indir is the identifier of an indirect variable. Indirects may be used with the WRITE, BROWSE, and EDIT 

variable, SORT, DO DESCRIBE, and PLOT statements. Indirects should not be used in calculations, 

SELECT SET IF, or the WRITE text statements. 

 

varlist is a list of variable identifiers. If varlist contains a single identifier, indir will be assigned to it and no variable 

selection screen will be displayed. If varlist is omitted, the selection list will display all the variables in the 

program except indir. 

 

Upon execution, the SELECT indirect statement clears the Main Screen and displays the list of variables in varlist for 

selection. The display contains the variables' identifiers and descriptors as defined in their definitions. A prompt at the 

bottom of the Prompt Screen describes how to browse the list and make a selection.  

 

The following keys are active during execution of this statement: 

 

Browsing keys Pressing the arrow keys or the PgUp and PgDn keys moves a highlight bar that highlights the current 

variable. 

 

Enter key Pressing the Enter key selects the current variable, clears the screen, and allows execution to continue. 



Promula Application Development System User's Manual 

257 

 

End key Pressing the End key allows the user to exit without making a selection. 

 

See also the ASK...ELSE statement and the INDIRECT function. 

 

 

Examples: 

 

The following example demonstrates the SELECT indirect statement: 

 
DEFINE VARIABLE 
  indir* 
  xval "THE VALUE OF X" VALUE=10 
  yval "THE VALUE OF Y" VALUE=20 
  zval "THE VALUE OF Z" VALUE=30 
END VARIABLE 
 
DEFINE PROCEDURE selvar 
  SELECT indir(xval,yval,zval) 
  DO IF END 
     WRITE "Goodbye" 
     BREAK selvar 
  END IF 
  WRITE (indir:L,indir) CLEAR(-1) 
  selvar 
END PROCEDURE selvar 

 

Execution of procedure selvar and selection of variable yval produces the following displays: 

 

 Ident  Description

 XVAL   THE VALUE OF X

 YVAL   THE VALUE OF Y

 ZVAL   THE VALUE OF Z

              End: Exit  Arrows PgUp PgDn Home: Move  Enter: Select

 
 

  THE VALUE OF Y    20 
 

 



Promula Application Development System User's Manual 

258 

 

3.7.89  SELECT menu 
Purpose:  

 

Displays a pick menu for making a selection. 

 

Syntax: 

 
SELECT menu(option) 

 

Remarks: 

 

menu is the identifier of a pick menu. 

 

option is a variable that will pick up the number (or action code) of the selection picked. The value of option may be 

used to determine alternative execution paths. 

 

A pick menu is a screen display which is designed to help its user pick from a set of selection fields that have been 

previously laid out with a DEFINE MENU statement. Two types of pick menus may be used with the SELECT menu 

statement: simple, and popup pick menus. 

 

When a simple pick menu is used in a SELECT menu statement, PROMULA clears the window opened to the Main 

Screen, displays the menu, and highlights the first selection field.  

 

Simple pick menu selections may be made by using the arrow keys to highlight the desired field and then pressing the 

Enter key, or by using the function keys (or the numeric keys) directly. The F1 (numeric 1) key picks the first field in the 

menu, the F2 (numeric 2) key picks the second field , and so forth. If you have more than ten selection fields, then press the 

Alt or Shift key together with one of the ten Function keys to get up to twenty selections. For example, pressing Alt-F1 

picks the 11th selection. When a field is selected, the sequence number of the field (as defined by its relative position on the 

menu) will be stored in the variable option, and execution will continue with the statement following the SELECT menu 

statement. 

 

When a popup pick menu is used in a SELECT menu statement, PROMULA displays the selection screen for the popup 

pick menu in the menu's selection screen window, and displays the field description for the currently highlighted field in the 

menu's field description window. The last selected option is highlighted. The first time the menu is executed, the first 

selection is highlighted. 

 

Popup pick menu selections may be made by using the arrow keys to highlight the desired field and then pressing the Enter 

key. To minimize keystrokes, you may enter a char as defined in one of the SELECT=char parameters of the menu 

definition. The SELECT menu statement does not distinguish between upper and lower case alphabetic keypresses; thus, if 

SELECT=A, the user may select the field either by pressing the 'A' or 'a' key. When a popup menu selection is made, the 

value of code, as defined in the appropriate ACTION=code parameter of the menu definition, will be returned to 

PROMULA. If code is the name of a submenu defined in the popup menu, the submenu will be displayed for selection. If 

code is a number, its value will be stored in the variable option, and execution will continue with the statement following the 

SELECT menu statement.   

 

The user may return from a popup pick menu submenu by pressing the End key.   

 

If your system supports a pointer device (such as a mouse), you may make a pick menu selection by positioning the pointer 

in the desired selection field and clicking the pointer/mouse button. 

 

Examples: 

 

An example of the SELECT menu statement is given with the discussion of the DEFINE MENU statement. 

 



Promula Application Development System User's Manual 

259 

A third type of pick menus, pulldown pick menus, are executed with the SELECT PULLDOWN statement. 

 

3.7.90  SELECT option 
Purpose: 

 

Selects PROMULA system options. 

 

Syntax: 

 
SELECT option  

 

Remarks: 

 

option is a list of any or all of the following options. 

 

BACKGROUND=BLACK/ WHITE / NAVY / GREEN / BLUE / RED / PURPLE / YELLOW 

 

to change the color of the Main Screen background. 

 

BROWSE=ON / OFF / ROW / COLUMN / VALUE 

 

to control the behavior of the WRITE variable and WRITE table statements, and tables defined by the DEFINE 

TABLE statement. 

 

When BROWSE=OFF, the above statements write the complete variable or table then proceed with the next statement 

without pausing. This option is useful for short reports on screen or output that is to be captured on disk (using the 

WRITE file or SELECT OUTPUT statements) or sent to a printer.  BROWSE=OFF is the default. 

 

When BROWSE=ON, the above statements generate displays which may be viewed in a controlled interactive mode 

as if a BROWSE variable or BROWSE table statement had been executed. This option is useful for viewing longer 

reports on screen. 

 

When BROWSE=ROW, COLUMN, or VALUE, the above statements may be used for interactive data editing as if 

an EDIT variable or EDIT table statement with a BY ROW, COLUMN or VALUE option had been executed. 

 

 

COMMA=ON/OFF 

 

to show commas in displays of numeric values denoting thousands (e.g., 1,500,000; 1,200.)  The default is ON. 

 

DATE=MMDDY2 / MMDDY4 / DDMMY2 / DDMMY4 

 

to select alternative formats for the DATE type variable. 

 

When DATE=MMDDY2 (the default) dates are treated as 8-character strings of the form mm/dd/yy for input-output 

purposes. Internally, the date is stored as a numeric quantity of the form yymmdd. For example February 14, 1966 may 

be entered or displayed as 2/14/66 and is internally stored as 660214. 

 

When DATE=MMDDY4 dates are treated as 10 character strings of the form mm/dd/yyyy for input-output purposes. 

Internally, the date is stored as a numeric quantity of the form yyyymmdd.   

 

When DATE=DDMMY2 dates are treated as 8-character strings of the form dd/mm/yy for input-output purposes. 

Internally, the date is stored as a numeric quantity of the form yymmdd.   

 



Promula Application Development System User's Manual 

260 

When DATE=DDMMY4 dates are treated as 10-character strings of the form dd/mm/yyyy for input-output purposes. 

Internally, the date is stored as a numeric quantity of the form yyyymmdd.   

 

Note, if you plan to do math on the 10-character date formats, you should pass the date variable to a variable of 

TYPE=INTEGER(10) in order to retain at least 10 significant digits. 

 

DEBUG=ON / OFF 

 

to control whether or not PROMULA pauses after encountering an error during compilations. 

 

When DEBUG=ON, PROMULA issues an error message upon encountering an error in compilation and pauses the 

compilation at that point. This is the default. 

 

When DEBUG=OFF, PROMULA issues an error message but does not pause. 

 

 

ECHOR filespec 
 

to specify a file in which to save an audit trail of PROMULA statements executed from command mode. The syntax of 

this statement is exactly like the SELECT OUTPUT statement, but, instead of capturing the output generated by 

PROMULA in a text file, this statement causes the PROMULA command mode statements to be captured. It is not 

necessary to SELECT PRINTER=ON/OFF to activate/deactivate the command capture. 

 

filespec is a quoted string or string variable containing the name of the file to be used for command capture. 

 

To turn the statement capture off and close the file, execute a SELECT ECHOR  "" statement. 

 

FACTOR=var 

 

to specify a variable whose value(s) should be used as a scaling factor for all numeric data reports displayed by the 

WRITE variable, and BROWSE variable statements. 

 

To deactivate the FACTOR option, execute a SELECT FACTOR = * statement. 

 

var is the identifier of the variable to be used as the scaling factor. The value(s) of the scaling factor is multiplied 

times each value to be displayed, and the resultant product is shown. If var is a multidimensional array, the set 

correspondence (if applicable) is maintained between var and the variable displayed. The default value for var is 

one. 

 

FOREGROUND=BLACK / WHITE / NAVY / GREEN / BLUE / RED / PURPLE / YELLOW 

 

to change the color of the Main Screen foreground. 

 

GHEADING=ON / OFF 
 

to turn page headings on plots on or off. The headings will only be produced if a SELECT HEADING=ON statement 

has also been executed. The default is ON.   

 

GFORMAT=ON / OFF 
 

to turn the gformat feature of the report generator on or off. When GFORMAT=ON, numeric quantities that are too 

large to fit in the specified display width are written in exponential notation. When GFORMAT=OFF, numeric 

quantities that are too large are written as asterisks.  The default is OFF.   

 

 

GRAPHICS=CHARACTER / MEDIUM / HIGH / PLOTTER 



Promula Application Development System User's Manual 

261 

 

To select the mode for PROMULA graphics. 

 

When GRAPHICS=CHARACTER, PROMULA's PLOT statement will produce character plots. CHARACTER 

mode is appropriate for both monochrome and graphics monitors. This is the default. 

 

When GRAPHICS=MEDIUM, medium-resolution plots are produced. The default MEDIUM graphics mode is 

three-color medium resolution CGA graphics. 

 

When GRAPHICS=HIGH, high-resolution plots are produced. The default HIGH graphics mode is monochrome 

high resolution CGA graphics. 

 

When GRAPHICS=PLOTTER, plots will be sent to the printer/plotter. The default PLOTTER/PRINTER graphics 

mode is high-resolution monochrome graphics on an Epson-compatible dot-matrix printer. 

 

The actual behavior of each of the graphics modes depends on PROMULA's graphics configuration. The information 

above applies to PROMULA's default configuration. See Chapter 6 for a discussion of configuring graphics. 

 

HEADING=ON / OFF / EJECT 

 

to control the page heading used by PROMULA's report generator. The report generator controls displays of 

multivariate information including writing multidimensional arrays, writing tables, and displaying results of the 

statistical functions. The headings will also appear at the top of plots generated in batch mode. 

 

When HEADING=ON, a page feed character and a header is written at the top of each page. This header includes the 

descriptor for the program (if available), the current date (in the form MM/DD/YY), and the word "Page" followed by 

the page number which is incremented by 1 as a new page is shown. This is the default. 

 

When HEADING=OFF no header or page feed character is written at the top of each page. 

 

When HEADING=EJECT, only a page feed character is written in the header. 

 

 

HELP filespec 

 

to select a dialog file to serve as an on-line help file. 

 

filespec is a quoted string or string variable containing the name of the physical disk file that contains the dialog 

file you want to use as an on-line help file.  

 

When the user presses Alt-H in response to a prompt, PROMULA looks for a DO IF HELP statement immediately 

following the statement that generated the prompt. If a DO IF HELP block is found, PROMULA executes statements 

in the block. If no DO IF HELP block is found, PROMULA checks to see if a dialog file has been specified with the 

SELECT HELP statement. If so, PROMULA will display the dialog file for browsing. 

 

If you have opened a window to the Help Screen, the dialog file will be shown in this window; otherwise, the Main 

Screen is used. See the DEFINE WINDOW and OPEN WINDOW statements and the discussion of windowing for 

details of this feature. 

 

Popup menus have an optional HELP parameter as part of their field statements. This parameter specifies a topic (by 

its sequence number) in a dialog file. When the user presses Alt-H in response to a POPUP menu, PROMULA opens 

the file specified with the SELECT HELP statement and displays the TOPIC whose sequence number matches the 

help code of the currently highlighted field in the POPUP menu. 

 

HIERARCHY=ON / OFF 

 



Promula Application Development System User's Manual 

262 

to control the interpretation of equations. 

 

When HIERARCHY=ON, operator precedence rules are turned on and expressions are evaluated using algebraic 

hierarchy precedence. This is the default. 

 

When HIERARCHY=OFF, operator precedence rules are turned off and expressions are evaluated using left-to-right 

(linear) precedence. 

 

LINES=page 

 

to change the number of lines per page to page. The default page length is 25 lines. The length of CHARACTER 

mode plots can be controlled by using the SELECT LINES statement. The number of lines written by the WRITE 

menu statement also is controlled by the SELECT LINES statement.   

 

page is an integer constant or a numeric variable. 

 

MAP=ON / OFF 

 

to produce a memory map with the compilation listing. 

 

When MAP=OFF no memory map is produced with the listing. This is the default. 

 

When MAP=ON a memory map is produced with the listing. 

 

Each statement line of this listing has four columns of sequence numbers: 

 

The first number, in Column Value, is the relative address of the next available word of "value storage". Depending on 

the size of your computer system memory, this number cannot exceed a certain maximum. If it does, you have to use 

program segmentation or database management to make your program fit within your working space (see Chapter 4). 

 

The second number, in Column Def, is the relative address of the next available word of "definition storage". You need 

concern yourself with this number only if its value exceeds a certain maximum. 

 

The third number, in Column Proc, is the relative address of the next available word of "procedure storage". This, too, 

cannot exceed a certain maximum determined by the size of your computer memory. The Proc numbers are also 

reported as the Statement address during execution errors, and you may locate the statement generating the error by 

looking up the statement in a mapped compilation listing. 

 

The fourth number, in Column Line#, is the sequence number of the statement within the source listing. 

 

Figure 3-1 shows the output produced by the PROMULA compiler for a source program that has the MAP=ON option 

in effect. 

 

 
SELECT MAP=ON 
Storage Allocation 
Value   Def  Proc Line#   PROMULA Source Statement 
   11    24    20     2   OPEN SEGMENT    "DEMO.XEQ"       STATUS=NEW 
   11    24    20     3   DEFINE PROGRAM  "A Demo Program" 
   11    24    25     4   DEFINE SET 
   11    24    25     5     month(12)     "Months of the Year" 
   11    54    25     6     acnt(3)       "Profit and Loss Ledger Accounts" 
   11    78    25     7   END SET 
   11    78    25     8   DEFINE VARIABLE 
   11    78    25     9   mp(month,acnt) TYPE=REAL(12,2) "Profit & Loss Figures ($)" 
   47    98    25    10   mn(month)      TYPE=STRING(12) "Month Names" 
   83   114    25    11   acn(acnt)      TYPE=STRING(12) "Profit & Loss Accounts" 



Promula Application Development System User's Manual 

263 

   92   135    25    12   amp            TYPE=REAL(10,2) "Average Monthly Profit ($)" 
   93   154    25    13   END VARIABLE 
   93   154    25    14   DEFINE RELATION 
   93   154    25    15     KEY(month,mn) 
   93   154    25    16     KEY(acnt,acn) 
   93   154    25    17   END RELATION 
   93   154    25    18   READ mn:4 
   93   154    34    19   JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 
   93   154    25    20   READ acn:6 
   93   154    34    21   Sales Costs Profit 
   93   154    25    22   DEFINE PROCEDURE profits 
   93   160    25    23     SELECT acnt(Sales) 
   93   160    29    24       EDIT mp TITLE("Please enter the monthly sales.") 
   93   160    46    25     SELECT acnt(Costs) 
   93   160    50    26       EDIT mp TITLE("Please enter the monthly costs.") 
   93   160    67    27     SELECT acnt* 
   93   160    70    28       mp(m,3)=mp(m,1)-mp(m,2) 
   93   160    89    29       amp=SUM(m)(mp(m,3)/12) 
   93   160   101    30       WRITE mp 
   93   160   106    31       WRITE amp 
   93   160   111    32       STOP 
   93   160   112    33   END profits 
   93   160   113    34   END PROGRAM, DO(profits) 
   93   160   113    35   STOP 

 

 

 

Figure 3-1:  Compilation Output to Printer with SELECT MAP=ON 
 

MATHERROR=ON / OFF 

 

to control math error processing during execution of calculations. 

 

When MATHERROR=ON, PROMULA will stop program execution if it attempts to do a division by zero, a 

logarithm of a negative number, or a fractional power of a negative number. This is the default condition. Like all the 

SELECT option statements, the SELECT MATHERROR affects the entire program; however, it is possible to 

implement local error processing using the DO IF ERROR statement. When MATHERROR=OFF, PROMULA will 

give a zero result for these abnormal calculations, and will continue with program execution. 

 

MINUS=LEADING / PARENTHESES 
 

to control the display of negative numbers. 

 

When MINUS=LEADING, negative values are displayed with a leading minus sign. This is the default. When 

MINUS=PARENTHESES, negative values are displayed enclosed in parentheses, e.g., the value -10.0 is displayed as 

(10.0). 

 

NS=code, ND=code, NA=code, or ERR=code. 
 

to specify a code value to use for the input or output of special values. An alternative syntax is SELECT NS(code), 

ND(code), NA(code), ERR(code) where code is up to to six alphanumeric characters. See the discussion of SELECT 

SPECIAL below. 

 

OUTPUT filespec 

 

to select a file for subsequent output operations.  

 



Promula Application Development System User's Manual 

264 

filespec is a quoted file name or a string variable that contains the name of a file in which you want to save the results of 

output statements. Output will also be displayed on the screen even if another device has been selected. 

 

To use the SELECT OUTPUT statement, follow it with a SELECT PRINTER=ON statement, and any other options 

you may want to set for text report generation. 

 
SELECT OUTPUT "report.out" PRINTER=ON WIDTH=132 

 

After selecting output, most displays produced by PROMULA will be written to the specified disk file. The affected 

statements include WRITE text, WRITE variable, COPY file, WRITE function, WRITE table, table, PLOT (in 

CHARACTER mode), WRITE menu, WRITE TEXT, and the statistical function reports. To close the file and 

inactivate the SELECT OUTPUT statement, execute a SELECT PRINTER=OFF statement. 

 

PAGE=number 
 

to change the value of PROMULA's internal page counter to number. The current page count is displayed in display 

headings produced by the report generator. 

 

PATH pathspec 

 

to indicate what the path of the data drive is. Here, pathspec is a valid path specification or a string variable whose 

value is a valid path specification, including subdirectory parameters. 

 

You can turn pathing off by executing a SELECT PATH "" statement. 

 

You may locally override the path to pathspec by using an S: as a "drive designation" before file names. For example if 

you enter the statement OPEN file "S:mydata.dta" STATUS=OLD, PROMULA will ignore the path designated by pathspec 

and look in the current system path for mydata.dta. You cannot turn pathing off by selecting option 2 from the Main 

Menu. 

 

PRINTER=ON / OFF 

 

to turn the printer on or off. 

 

The statement SELECT PRINTER=ON has the same effect as the simultaneous pressing of the Ctrl key and the 

PrtSc key on the IBM PC. You may also print text while in PROMULA by simultaneously pressing the Shift key and 

the PrtSc key, this will send the contents of the current screen to the printer. 

 

The SELECT PRINTER=ON/OFF statement is also used to start/stop the spooling of output to a disk file previously 

specified by a SELECT OUTPUT statement. 

 

QUOTES=ON / OFF 

 

to control the placement of quotes around row labels, column labels, and page headings in displays produced by the 

WRITE variable statement. When QUOTES=ON, double quotes are placed around these descriptors; this may be 

useful for setting up data to import into an external spreadsheet program. The default is QUOTES=OFF. 

 

 

RUNID=set 

 

to specify a character string that will be appended to the variable descriptor during display statements (WRITE, 

PLOT, EDIT, etc.). 

 

set is the identifier of a set whose first selected row descriptor will be appended to display titles. 

 

SCENARIO titlespec 



Promula Application Development System User's Manual 

265 

 

to specify a character string that will be appended to the title of displays produced by the text report generator and 

plots. 

 

titlespec is a quoted string or a string variable whose value you want to appear as part of the title of all display 

titles. 

 

SPECIAL=ON / OFF 

 

to activate PROMULA's special value processing. 

 

When SPECIAL=ON, PROMULA will process the following codes as special data values: NS = Not specified, NA = 

Not available, ND = Not disclosed. These codes will appear in reports and in results of expressions involving variables 

containing special values. 

 

When SPECIAL=OFF, PROMULA will treat values of arrays containing special values as if they were zero. This is 

the default. 

 

STEP = ON / OFF 

 

to activate/deactivate step mode during execution of a program. When STEP = ON, PROMULA will enter command 

mode after each statement, at this point, you may enter any command or do debugging operations as needed. When you 

are ready to execute the next statement, press the Escape key. In the default mode, STEP = OFF, execution proceeds 

from statement to statement without pausing.   

 

STRING (len) 

 

to change the maximum length of descriptors to len, an integer. The default length is 800 characters per descriptor. 

STORE=RAW / VIRTUAL / DYNAMIC 

 

to change the default behavior of the STATUS=OLD option of the OPEN file statement. If STORE=RAW,  files 

opened with STATUS=OLD or with no explicit status specification are opened with the OLD status. If 

STORE=VIRTUAL, files opened with STATUS=OLD or with no explicit status specification are opened with the 

VIRTUAL status. If STORE=DYNAMIC, files opened with STATUS=OLD or with no explicit status specification 

are opened with the DYNAMIC status.  See Chapter 4 for more information. 

 

TRANSPOSE=ON / OFF 
 

to control the orientation of array variable displays produced by PROMULA. Setting TRANSPOSE=ON specifies that 

arrays should be displayed in column-major order. For example, if TRANSPOSE=ON, a one-dimensional array will 

be displayed across the columns instead of down the rows, a two-dimensional array will be displayed with its first set 

dimensioning the columns and the second set dimensioning the rows, a three-dimensional array will be displayed with 

its third set dimensioning the rows and the first set dimensioning the pages. In other words, multidimensional arrays 

will be displayed as if they had been defined with their first and last sets switched.   The SELECT TRANSPOSE 

statement affects the displays produced by the WRITE, BROWSE, and EDIT variable statements. The WRITE, 

BROWSE, and EDIT variable statements can take a local TRANSPOSE option to override the global setting of 

TRANSPOSE locally. If an explicit set order is included with any of these statements, any global or local 

TRANSPOSE settings are ignored. 

 

UNITS=var 

 

to specify a variable whose value(s) should be used to perform unit conversions for all numeric data reports displayed 

by the WRITE variable, and BROWSE variable statements. 

 

var is the identifier of the variable to be used as the conversion factor. The value(s) of the conversion factor is 

multiplied times each value to be displayed, and the resultant product is shown. If var is a multidimensional 



Promula Application Development System User's Manual 

266 

array, the set correspondence is maintained between var and the variable displayed. The default value for var is 

one. 

 

To deactivate the UNITS option, execute a SELECT UNITS=* statement. 

WIDTH=width 

 

to change the width of display lines to width, an integer. The default width is 80 characters per line. The width of 

CHARACTER mode plots can be controlled by using the SELECT WIDTH statement.   

 

width is a numeric variable or a numeric constant. 

 

ZERO=BLANK / DASHES / ON 

 

to control the display of zero displays produced by PROMULA. 

 

When ZERO=BLANK, zero values in displays are shown as blanks. 

 

When ZERO=DASHES, zero values in displays are shown as a pair of dashes. 

 

When ZERO=ON, zero values in displays are shown as zeros. This is the default. 

 

3.7.91  SELECT PULLDOWN 
Purpose: 

 

Defines and displays a pulldown pick menu for selection. 

 

Syntax: 

 
SELECT PULLDOWN option = wind (menudesc) 

 

Remarks: 

 

option is a variable that will pick up the action code of the selection picked. The value of option may be used to 

determine alternative execution paths. 

 

wind is the identifier of the window that will be used to contain the menu-bar for the pulldown menu. The color 

scheme and border style for wind will also be used by any submenus defined in the menudesc.  wind should be 

a POPUP type window. 

 

menudesc is the description of the pulldown menu. The syntax of menudesc is as follows: 

  
 (fldlbl1, fldcod1 [,fldlbl2, fldcod2] [,fldlbl3, fldcod3] [, ... ]  ) 
 

where 

 

fldlbln is a label for the nth menu item. Each fldlbln may be either a quoted string or string variable. 

 

fldcodn is either a numeric action code or a submenu description for the nth menu item. If fldcodn is a 

numeric action code, its value will be stored in option when the field is selected and execution will 

continue with the code following the SELECT PULLDOWN statement. If fldcodn is a submenu 

description the submenu will be displayed for selection. 
 

If fldcodn is followed by a slash (/) in a submenu definition, a line will be drawn across the 

submenu. 
 



Promula Application Development System User's Manual 

267 

Each submenu description has the same general form as menudesc.   

 

 

The fields of the top-level menu are displayed in a row across wind. The fields of any second level submenu drop down 

from their parent field. The fields of any third level submenu are displayed to the right of their parent field. The size of the 

"window" used to display a submenu is determined by PROMULA according to the number of fields it contains and the 

length of its longest field label.  

 

Examples: 

 

The example below illustrates the use of the SELECT PULLDOWN statement. 
 

DEFINE WINDOW 
  w1(1,1,78,1,WHITE/BLACK,FULL/SINGLE/NAVY/BLACK,WHITE/NAVY),POPUP 
END WINDOW 
 
DEFINE VARIABLE 
  pick     "The menu selection" 
  f(10)    "Promula menu fields"  TYPE = STRING(12) 
  v(10)    "Promula menu selection values" 
  bar(10)  "Promula menu fields"  TYPE = STRING(12) 
END VARIABLE 
 
bar(1) = "File" 
bar(2) = "Edit" 
bar(3) = "MainMenu" 
bar(4) = "Help" 
f(1) = "Exit" 
f(2) = "Restart" 
f(3) = "Tutorial" 
f(4) = "Editor" 
f(5) = "Compile" 
f(6) = "Xeq" 
f(7) = "Resume" 
f(8) = "Offline >" 
f(9) = "Applications" 
f(10) = "Language" 
v(i) = i + 11 
 
 
DEFINE PROCEDURE test 
SELECT PULLDOWN pick = w1( 
    bar(1)  ( 
        "New",              1, 
         /, 
        "Open >", ( 
            "Source",       101, 
            "Xeq",          102, 
            "Prm",          103), 
        "Save",             2, 
        "Save as",          3 
        "Print",            4, 
         /, 
        "Exit",             5), 
    bar(2)  ( 
        "Undo",             6, 
        "Cut",              7, 
        "Copy",             8, 
        "Paste",            9, 
        "Delete",           10), 



Promula Application Development System User's Manual 

268 

    bar(3)      ( 
        f(1),               v(1), 
        /, 
        f(2),               v(2), 
        f(3),               v(3), 
        f(4),               v(4), 
        f(5),               v(5), 
        f(6),               v(6), 
        f(7),               v(7), 
        f(8) ( 
            "Fred",         201, 
            "George",       202, 
            "Mark",         203, 
            "Lois",         204), 
        f(9),               v(8), 
        /, 
        f(10),              v(9)), 
    bar(4)  ( 
        "Help for field",   22, 
        "Extended help",    23, 
        "Keys help",        24, 
        "Help index",       25, 
        "Tutorial",         26, 
        "About P90",        27), 
    ) 
WRITE CLEAR(0) (////pick) 
test 
END PROCEDURE test 

 

3.7.92  SELECT RELATION 
Purpose: 

 

Defines a relation between the elements of a set and the contents of an array variable indexed or subscripted by that set. 

 

Syntax: 

 
SELECT TYPE(set,vec) 

 

or 

 
SELECT TYPE(set,*)  

 

Remarks: 

 

set is the identifier of the set whose elements are related to the values of the vector vec. 

 

vec is the identifier of the vector whose values are related to the elements of the set. vec is usually a STRING TYPE 

variable 

 

TYPE is the type of relation between set and vec and may be one of the following: 

 

ROW to define row descriptors for the set. 

 

COLUMN to define column descriptors for the set. 

 

KEY to define codes for the set: this type of relation will cause vec to serve as both column and row 

descriptors for set and will allow you to make selections from set using the values of a CODE or 



Promula Application Development System User's Manual 

269 

STRING type variable. See the example program in the discussion of the ASK...ELSE section in 

this chapter for an illustration of this feature. 

 

TIME to define time values for the set. This type of relation is used in dynamic simulations modeling. 

 

A relation is not valid unless vec is a vector variable indexed by set. 

 

To restore the set relation to that specified in a previous DEFINE RELATION statement, use the SELECT type(set,*) 

statement. 

 

Examples: 

 

The effect of the SELECT RELATION statement is demonstrated by the following program: 

 
DEFINE SET 
  year(2)         "2 Years" 
  acnt(3)         "Profit and Loss Ledger Accounts" 
END SET 
DEFINE VARIABLE 
  mp(year,acnt)    "Profit and Loss Figures ($)"         TYPE=REAL(10,0) 
  yn(year)         "Year Names"                          TYPE=STRING(12) 
  acn(acnt)        "Profit and Loss Account Names"       TYPE=STRING(12) 
  acc(acnt)        "Profit and Loss Account Names"       TYPE=STRING(12) 
END VARIABLE 
 
DEFINE RELATION 
  ROW(year,yn) 
  KEY(acnt,acn) 
END RELATION 
   
READ yn:5 
1987 1988 
READ acn:7 
Sales  Costs  Profit 
READ acc:7 
ACNT-1 ACNT-2 ACNT-3 
 

 

The dialog below shows how the SELECT RELATION statement can change the column descriptors for set acnt. 
 

  WRITE mp 
                            Profit and Loss Figures ($) 
                                           
                                     Sales       Costs      Profit 
                  1987              50,000      48,000       2,000 
                  1988              91,000      86,000       5,000 
   
  * Change the column labels for set acnt using a SELECT COLUMN statement  
  SELECT COLUMN(acnt,acc) 
  WRITE mp 
                            Profit and Loss Figures ($) 
                                           
                                    ACNT-1      ACNT-2      ACNT-3 
                  1987              50,000      48,000       2,000 
                  1988              91,000      86,000       5,000 
 
  * The ROW relation between variable acn and set acnt is still in place 
  WRITE acc:40 
                           Profit and Loss Account Names 



Promula Application Development System User's Manual 

270 

                                           
                Sales                                         ACNT-1 
                Costs                                         ACNT-2 
                Profit                                        ACNT-3 
     
  * Restore the COLUMN relation between acnt and acn 
  SELECT COLUMN(acnt,*) 
  WRITE mp 
                            Profit and Loss Figures ($) 
                                           
                                     Sales       Costs      Profit 
                  1987              50,000      48,000       2,000 
                  1988              91,000      86,000       5,000 

 

 

 

3.7.93  SELECT set 
Purpose: 

 

Selects elements of a set. 

 

Syntax: 

 
SELECT set(list) or SELECT set* 

 

Remarks: 

 

set is the identifier of the set whose elements are selected. 

 

list is a list of element selections and may be of the form: 

 
k,l,m-t 

 

where the notation m-t means "from m to t" and where k,l,m, and t are any of the following:  

 

1. integers from 1 to N, where N is the size of the set 

 

2. identifiers of scalar variables whose values are in the range from 1 to N 

 

3. the values of CODE or STRING type variables that have been related to set through a KEY relation. 

 

4. time values that have been related to the elements of the set through a TIME relation. 

 

* is an asterisk that means clear the present set selection and restore the set to its default size and order as defined by 

the DEFINE SET statement. A set will be restored to a size other than its default size if you have executed a 

COMPUTE set:R statement before the restore (see the discussion of sets in Chapter 1). 

 

In its normal setting, a set has a number of elements N that are ordered sequentially from 1 to N. The SELECT set 

statement allows you to change both the range and the relative ordering of the set elements. 

 

A set selection is in effect until a new set selection is specified. Following a set selection, all expressions involving 

variables that are subscripted by that set are restricted by the range and ordering of the set selection. 

 

 

A set selection is valid only if it has values between 1 and N, the size of the set. 

 



Promula Application Development System User's Manual 

271 

Examples: 

 

1. The statement  

 
SELECT month(1,6,9) 

 

selects the 1st, 6th, and 9th element of the set month, i.e., the months January, June and September. All subsequent 

calculations or input/output instructions involving variables subscripted by month will be restricted to the selected 

months. 

 

2. The statement  

 
SELECT month(JAN-JUN) 

 

selects the first six months, January through June, of the set month. Here, JAN and JUN are codes that have been related 

to the month set by a KEY relation. 

 

3. The statements  

 
x = 1 
y = 6 
SELECT month(x-y) 

 

have the same effect as the statement of Example 2. Here, x and y are real variables that select the first six months, 

January through June, of the set month. 

 

4. The statement  

 
SELECT month(JAN-JUN), year(1980-1984) 

 

selects the elements of more than one set. 

 

5. The statement  

 
SELECT month*, year* 

 

resets the sets month and year to their default sizes and orders. 

 

3.7.94  SELECT SET 
Purpose: 

 

Allows the user to make several selections from a list of set elements. 

 

Syntax: 

 
SELECT SET set 

 

Remarks: 

 

set is the identifier of a set 

 

Upon execution, the SELECT SET statement clears the Main Screen and displays the elements of set for browsing. The 

display contains the set element codes/numbers and their descriptors as defined by a DEFINE RELATION or a SELECT 

relation statement. A prompt at the bottom of the Prompt Screen describes how to browse and make selections from the 

list. 



Promula Application Development System User's Manual 

272 

 

The keyboard action during execution of this statement is described below: 

 

Browsing keys Pressing the arrow keys or the PgUp and PgDn keys moves a highlight bar through the list of set 

elements. The current set element is highlighted in cyan if it has not been selected, or in red if it has 

already been selected. These default colors can be modified by a DEFINE WINDOW and OPEN 

WINDOW statement. 

 

Ins key Pressing the Ins key inserts a set element into the selection vector, and causes its sequence number to 

be marked by highlighting it in green or in a color defined via a previous DEFINE WINDOW 

statement. 

 

Del key Pressing the Del key cancels a previous selection. 

 

Enter key Pressing the Enter key activates selection of the currently highlighted set elements, and allows the 

execution to continue. If no elements are high-lighted when Enter is pressed, the set remains in the 

same state it was in before the SELECT SET statement. 

 

End key Pressing the End key allows the user to exit without making any selections. 

 

Examples: 

 

The following example demonstrates the SELECT SET statement: 

 
DEFINE SET 
  dir(4) "4 Directions" 
END SET 
 
DEFINE VARIABLE 
  dirn(dir) "ROW LABELS" TYPE=STRING(10) 
END VARIABLE 
 
READ dirn:8 
NORTH   SOUTH   EAST    WEST 
 
DEFINE PROCEDURE selset 
  SELECT ROW(dir,dirn) 
  SELECT SET dir 
  WRITE dir 
END PROCEDURE selset 

 

Execution of procedure selset and selection of the first and fourth elements of set dir produce the following two displays: 

 



Promula Application Development System User's Manual 

273 

 Identifier Description

 1            NORTH

 2            SOUTH

 3            EAST

 4            WEST

     End: Exit  Arrows PgUp PgDn Home: Move Ins: Tag Del: Untag Enter: Select

 
 

  Identifier Description 
  1            NORTH 
  4            WEST 

 

 

 

3.7.95  SELECT set IF 
Purpose: 

 

Select elements of a set according to a condition on a variable indexed by the set. 

 

Syntax: 

 
SELECT set IF condition 

 

Remarks: 

 

set is the identifier of the set whose elements are being selected. 

 

condition is any true-false expression involving one or more array variables subscripted by set. Only those elements 

for which condition is true are selected. If condition is false for all elements, the selection is null and all 

elements of set are selected. 

 

To detect and correct for a null set selection use the DO IF NULL statement immediately after the SELECT SET IF 

statement. An example of this feature is in the section related to the DO IF NULL statement. 

 

The selections made by SELECT set IF are made from the current selection vector of set. Thus a cascading, nested 

selection may be made by executing several SELECT set IF statements in series. 

 

Examples: 



Promula Application Development System User's Manual 

274 

 
DEFINE SET 
  month(12) 
END SET 
 
DEFINE VARIABLE 
  mv(month)     "Vector by Month" 
END VARIABLE 
 
READ mv 
1,0,0,1,0,0,1,0,0,1,0,1 
 
SELECT month IF mv NE 0 
 

 

After the selection, the selected values of the set may be illustrated by writing a variable subscripted by the set. 
 

  WRITE mv 
 

Vector by Month 
 

MONTH(1)     1 
MONTH(4)     1 
MONTH(7)     1 
MONTH(10)    1 
MONTH(12)    1 

 

The SELECT statement above selects only those months for which the value of variable mv is not equal to zero. 

 

3.7.96  SELECT VARIABLE 
Purpose: 

 

Asks the user a series of set selection questions based on the sets structuring a specified variable. 

 

Syntax: 

 
SELECT VARIABLE var 

 

Remarks: 

 

var is the identifier of an array variable that will serve to define a series of set selection questions. The order and 

identity of set selection questions will be defined by the order and identity of sets structuring var. 

 

This statement provides an alternative to the ASK statement as a way of allowing the user to make set element selections. 

Upon execution, the SELECT VARIABLE statement will pose a series of set selection questions to the user for each set 

dimensioning var. 

 

Each question will be of the form 

 

 Which setdesc entry(s) do you want? 
 

Where setdesc is the descriptor of the set being selected. If no set descriptor was specified when the set was defined, the set 

identifier (in capital letters) will be used. 

 

PROMULA will check the validity of the user's responses to ensure that selections are in the range of the set. 

 



Promula Application Development System User's Manual 

275 

In addition to set codes or element numbers, the following keywords may be entered in response to the SELECT 

VARIABLE statement's prompts: 

 

ALL to select all elements in the range of the set being selected. 

 

LIST to display the element numbers or codes and descriptors of all active elements of the set being selected. 

 

END to exit the SELECT VARIABLE statement set selection process. 

 

Example:  

 

The behavior of the SELECT VARIABLE statement is illustrated in the example below. First, two sets are defined: year, a 

time series set, and state. Notice that set year has no descriptor and that set state has a strange looking descriptor specifically 

for use with the set selection question generated by the SELECT VARIABLE statement. Next, two variables are defined: 

pop is a two-dimensional array that will be used in the SELECT VARIABLE statement to control the order of set 

selections, staten is a code type variable that can be used to specify selections from set state. Next, variable staten is related 

to set state and the variables are initialized. Finally, procedure slcvar is defined to run the SELECT VARIABLE statement 

and display the results. 

 
DEFINE SET 
  year(4)  TIME(1990,2020) 
  state(3) "of the 3 state" 
END SET 
 
DEFINE VARIABLE 
  val(state,year)  TYPE=REAL(15,0)  "State Values" 
  staten(state)    TYPE=CODE(2)     "State Names"       
END VARIABLE 
 
SELECT KEY(state,staten) 
 
READ staten:3 
OH CA IL 
 
val(i,j)=i*j*100000 
   
DEFINE PROCEDURE slcvar 
  SELECT VARIABLE val 
  WRITE val 
END PROCEDURE slcvar 

 

 

A sample dialog with procedure slcvar is shown below: 

 
DO slcvar 
Which of the 3 state entry(s) do you want? 
list 
Identifier Description 
1          OH 
2          CA 
3          IL 
Which of the 3 state entry(s) do you want? 
CA 
Which YEAR entry(s) do you want? 
1990-2010 
                                                                                 
                           State Values, 1990 to 2010 
                                         



Promula Application Development System User's Manual 

276 

                             1990           2000           2010 
                CA        200,000        400,000        600,000 

 

 

 

3.7.97  SORT 
Purpose: 

 

Sorts the elements of a set based on the values of a variable subscripted by that set. 

 

Syntax: 

 
SORT [order] set USING var 

 

Remarks: 

 

order is the order in which the set will be sorted and may be one of the following:  

 

ASCENDING sorts the specified set according to the values of var ordered from low to high. This is 

the default order. 

 

DESCENDING sorts the specified set from high to low. 

 

set is the identifier of the set whose elements are being sorted. 

 

var is the identifier of a variable whose values are used to determine the order of the set. The variable var must be 

classified by set, i.e., it must have set as one of its subscripts; thus, it cannot be a scalar. 

 

The variable var may be multidimensional, i.e., it may have additional subscripts other than set. In such case, the sorting is 

done over the dimension corresponding to the set with all the other sets dimensioning the array fixed at a single element. If 

not otherwise specified by a SELECT set statement, all dimensions other than set are fixed at the first element of their 

selection vector. 

 

After a sort operation, the sorted order of set remains in effect until a SORT or SELECT SET statement is executed. 

 

If var is a string variable, the elements of set are sorted alphabetically.  

 

Examples: 

 

The following program illustrates the SORT statement. 

 
DEFINE SET 
  row(10) 
  col(5) 
END SET 
  
DEFINE VARIABLE 
  var1(row)        "A 1-Dimensional Array" 
  var2(row,col)    "A 2-Dimensional Array" 
END VARIABLE 
  
READ var1 
3 45 56 19 21 34 97 89 52 21 
 
READ var2 
24  5 56 34 21 



Promula Application Development System User's Manual 

277 

98 76 34 27 14  
11 23 41 17 32 
54 10 99  2 20 
 1 22  3  4 35 
51 49 48 47 46 
11 31 33 22 11 
33 15 67 22 44 
79 21 59 85 69 
33 99  1 98 49 
 

 

The variable values in their default orders may be displayed by WRITE variable statements. 

 
WRITE var1 
 
                           A 1-Dimensional Array 
                                         
ROW(1)                3   ROW(2)               45   ROW(3)               56 
ROW(4)               19   ROW(5)               21   ROW(6)               34 
ROW(7)               97   ROW(8)               89   ROW(9)               52 
ROW(10)              21     
 
WRITE var2 
 
                           A 2-Dimensional Array 
                                       
                           COL(1)  COL(2)  COL(3)  COL(4)  COL(5) 
          ROW(1)               24       5      56      34      21 
          ROW(2)               98      76      34      27      14 
          ROW(3)               11      23      41      17      32 
          ROW(4)               54      10      99       2      20 
          ROW(5)                1      22       3       4      35 
          ROW(6)               51      49      48      47      46 
          ROW(7)               11      31      33      22      11 
          ROW(8)               33      15      67      22      44 
          ROW(9)               79      21      59      85      69 
          ROW(10)              33      99       1      98      49 

 

 

 

The use of the SORT statement is illustrated in the dialogs below. 

 

Sort the elements of set row in ascending order using the values of variable var1. 

 
SORT ASCENDING row USING var  
WRITE var1 
 
                           A 1-Dimensional Array 
                                         
ROW(1)                3   ROW(4)               19   ROW(5)               21 
ROW(10)              21   ROW(6)               34   ROW(2)               45 
ROW(9)               52   ROW(3)               56   ROW(8)               89 
ROW(7)               97                                                     

 

 

Sort the elements of set row in descending order using the values of variable var1.  

 
SORT DESCENDING row USING var1 
WRITE var1 



Promula Application Development System User's Manual 

278 

 
                           A 1-Dimensional Array 
                                         
ROW(7)               97   ROW(8)               89   ROW(3)               56 
ROW(9)               52   ROW(2)               45   ROW(6)               34 
ROW(10)              21   ROW(5)               21   ROW(4)               19 
ROW(1)                3 
    

 

 

Sort the elements of set row in ascending order using the values of the 3rd column of variable var2. 

 
SELECT col(3) 
SORT ASCENDING row USING var2 
SELECT col* 
WRITE var2 
                                                                               
                           A 2-Dimensional Array 
                                         
                           COL(1)  COL(2)  COL(3)  COL(4)  COL(5) 
          ROW(10)              33      99       1      98      49 
          ROW(5)                1      22       3       4      35 
          ROW(7)               11      31      33      22      11 
          ROW(2)               98      76      34      27      14 
          ROW(3)               11      23      41      17      32 
          ROW(6)               51      49      48      47      46 
          ROW(1)               24       5      56      34      21 
          ROW(9)               79      21      59      85      69 
          ROW(8)               33      15      67      22      44 
          ROW(4)               54      10      99       2      20 

 

 

 

Sort the elements of set row in descending order using the values of the 5th column of variable var2. 

 
SELECT col(5) 
SORT DESCENDING row USING var2 
SELECT col* 
WRITE var2 
                                                                                
                           A 2-Dimensional Array 
                                        
                           COL(1)  COL(2)  COL(3)  COL(4)  COL(5) 
          ROW(9)               79      21      59      85      69 
          ROW(10)              33      99       1      98      49 
          ROW(6)               51      49      48      47      46 
          ROW(8)               33      15      67      22      44 
          ROW(5)                1      22       3       4      35 
          ROW(3)               11      23      41      17      32 
          ROW(1)               24       5      56      34      21 
          ROW(4)               54      10      99       2      20 
          ROW(2)               98      76      34      27      14 
          ROW(7)               11      31      33      22      11 

 

 

Sort the elements of set col in ascending order using the values of the 8th row of variable var2. 

 
SELECT row(8) 
SORT ASCENDING col USING var2 



Promula Application Development System User's Manual 

279 

SELECT row* 
WRITE var2 
                                                                               
                           A 2-Dimensional Array 
                                       
                           COL(2)  COL(4)  COL(1)  COL(5)  COL(3) 
          ROW(1)                5      34      24      21      56 
          ROW(2)               76      27      98      14      34 
          ROW(3)               23      17      11      32      41 
          ROW(4)               10       2      54      20      99 
          ROW(5)               22       4       1      35       3 
          ROW(6)               49      47      51      46      48 
          ROW(7)               31      22      11      11      33 
          ROW(8)               15      22      33      44      67 
          ROW(9)               21      85      79      69      59 
          ROW(10)              99      98      33      49       1 

 

 

Sort the elements of set col in descending order using the values of the 2nd row of variable var2. 

 
SELECT row(2) 
SORT DESCENDING col USING var2 
SELECT row* 
WRITE var2 
                                                                               
                           A 2-Dimensional Array 
                                         
                           COL(1)  COL(2)  COL(3)  COL(4)  COL(5) 
          ROW(1)               24       5      56      34      21 
          ROW(2)               98      76      34      27      14 
          ROW(3)               11      23      41      17      32 
          ROW(4)               54      10      99       2      20 
          ROW(5)                1      22       3       4      35 
          ROW(6)               51      49      48      47      46 
          ROW(7)               11      31      33      22      11 
          ROW(8)               33      15      67      22      44 
          ROW(9)               79      21      59      85      69 
          ROW(10)              33      99       1      98      49 
 

 

 

 

3.7.98  STOP 
Purpose: 

 

Returns control to the calling program after a RUN statement. 

 

Syntax: 

 
STOP 

 

Remarks: 

 

PROMULA's run statements:  RUN file, RUN COMMAND, and RUN SOURCE, allow you to run programs while in 

command mode or from within procedures. 

 



Promula Application Development System User's Manual 

280 

The STOP statement returns control to the program that executed the last RUN statement.  Execution resumes at the 

statement following the run statement. See example in the discussion of the RUN COMMAND statement. 

 

The PROMULA Main Menu is at the top of every run chain. 

 

3.7.99  STOP PROMULA 
Purpose: 

 

Stops PROMULA execution and returns control to the operating system. 

 

Syntax: 

 
STOP PROMULA  

 

Remarks: 

 

Sometimes it is useful to stop execution of the PROMULA system altogether and return to the operating system; the STOP 

PROMULA statement enables you to do this. 

 

3.7.100  TIME 
Purpose: 

 

Initializes the values of the four time parameters used in controlling dynamic simulations. 

 

Syntax: 

 
TIME(dt,beginning,ending) [[SIZE](w,d)] 

 

Remarks: 

 

dt is a real number that will be used to set the value of DT, the integration interval for time integrals. 

 

beginning is a real number that will be used to set the value of BEGINNING, the beginning time point or lower 

limit of time integrals. The time parameter TIME is also set to the value of beginning by the TIME 

statement. 

 

ending is a real number that will be used to set the value of ENDING, the ending time point or upper limit of 

time integrals. 

 

w is an integer that specifies the width in characters of time parameter values when they are displayed in 

reports produced by the report generator. 

 

d is an integer that specifies the number of decimal digits for time parameter values when they are 

displayed in reports produced by the report generator. 

 

Before executing any dynamic simulation models, the control parameters must have been assigned a definite value via the 

TIME statement. Note that once they have been defined, the values of the individual parameters may be displayed via the 

BROWSE and WRITE statements, and may be changed via equations introduced by the verb COMPUTE. They may also 

be referenced on the right-hand side of equations and within conditional expressions. 

 

The current value for the independent variable TIME is initially set equal to the value of BEGINNING. In a program that 

has a value of TIME defined, all tabular displays generated by the report generator statements whose columns are not 

classified by a time series set will have the current value of time added to the title. 

 



Promula Application Development System User's Manual 

281 

See also Time Parameters in Chapter 1 and the discussion of Dynamic Procedures in the DEFINE PROCEDURE 

section of Chapter 3. 

 

3.7.101  WRITE COMMENT 
Purpose: 

 

Displays text in the Comment Screen. 

 

Syntax: 

 
WRITE COMMENT 
  text 
  ... 
END 

 

Remarks: 

 

text is any text that you wish to display in the Comment Screen. The amount of text displayed is limited by the size of 

the Comment Screen. 

 

The keyword END must be entered starting in column 1 and must be capitalized. 

 

Upon execution, the text will be shown in the Comment Screen of the display. 

 

For more details, see the sections on Windowing in the beginning of this chapter. 

 

3.7.102  WRITE DISK 
Purpose: 

 

Transfers data from a local variable to a disk variable in an array file in the dynamic access method. 

 

Syntax: 

 
WRITE DISK(vars)  

 

Remarks: 

 

vars is a list of dynamic variables. 

 

A dynamic variable is a scratch or fixed variable (also called a local variable) that has a dynamic relationship to a disk 

variable. Local variables may be related to disk variables through the DISK option of the DEFINE VARIABLE statement. 

See chapter 4 for a detailed description of disk access methods. 

 

Examples: 

 

The following code 

 
DEFINE FILE 
  filea 
END FILE 
 
OPEN filea "test.dba" STATUS=NEW 
DEFINE SET 
 rec(1000)  "Record" 
END SET 



Promula Application Development System User's Manual 

282 

 
DEFINE VARIABLE filea 
  dsk(pnt), "A Disk Variable on 'filea'" 
END VARIABLE filea 
 
DEFINE VARIABLE 
  pp  "Record Pointer" 
  scr "A dynamic variable for accessing single elements of dsk",DISK(filea,dsk(pp) 
END VARIABLE 

 

 

defines two variables:  dsk and scr. The disk variable, dsk, is a vector of 1000 elements on the disk file named test.dba. The 

variable scr is a dynamic local variable that is related to dsk. The READ DISK and WRITE DISK statements transfer a 

specific value from and to disk as illustrated in the dialog below.   

 
  scr = 0 
  dsk(i) = i 
  pp = 4 
  READ DISK(scr) 
 
  WRITE scr 
  A Scratch Variable in Memory 4 
  scr = 6 
  WRITE DISK(scr) 
 
  WRITE (dsk:L," ",dsk(pp)) 
  A Disk Variable on 'filea' 6 
 

 

 

 

3.7.103  WRITE file 
Purpose: 

 

Write data to a text file or a random file. 

 

Syntax 1: Write a record of data to a random file  

 
 WRITE file 

 
Syntax 2: Write to a text file  

 
 WRITE file(var1[,fmt1] [,var2[,fmt2]] [,...] 

 

Remarks: 

 

file is the identifier of the file you are writing to. 

 

var1 is the identifier of the variable whose data is first on each data record. 

 

fmt1 is the format specification for var1 and has the following syntax: 

 
\p:w:d 

 

p is an integer indicating the starting column on each data line where the value for var1 begins. The backslash 

means:  "start writing in column p". If omitted, the value begins in column 1. 

 



Promula Application Development System User's Manual 

283 

w is an integer indicating the width of the value and it means "write the next w columns." A negative width 

parameter left justifies the value of var. 

 

d is an integer indicating the number of decimal places to be displayed. If d is an "E", the values will be 

displayed in exponential notation. 

 

If w and d are 0, no trailing blanks will be written. 

 

var2 is the identifier of the variable whose data is second on each data record. 

 

fmt2 is the format specification for var2 and may have the same form as fmt1 above. If p is omitted in fmt2, the starting 

column for var2 is immediately to the right of var1. 

 

 

Examples: 

 

The examples in this section are based on the following definitions: 

 
DEFINE FILE 
  txt1 TYPE=TEXT 
  ran1 TYPE=RANDOM 
  arr1 TYPE=ARRAY 
END FILE 
 
OPEN ran1 "b:ran1.ran", STATUS=NEW 
DEFINE VARIABLE ran1 
  item1 "Item 1"   TYPE=REAL(8,0) 
  item2 "Item 2"   TYPE=STRING(8) 
  item3 "Item 3"   TYPE=DATE(8) 
END VARIABLE ran1 

 
1. Read from a text file and write to a random file. 

 
OPEN txt1 "b:txt1.txt", STATUS=OLD 
DO txt1 
  READ txt1(item1:8,item2:8,item3:8) 
  WRITE ran1 
END txt1 
 

2. Read from a text file and write to an array file.   

 
DEFINE SET 
  rec(100)  "Records" 
END SET 
 
OPEN arr1 "b:arr1.arr", STATUS=NEW 
DEFINE VARIABLE arr1 
  var1(rec) "Variable 1"         TYPE=REAL(8,0) 
  var2(rec) "Variable 2"         TYPE=STRING(8) 
  var3(rec) "Variable 3"         TYPE=DATE(8) 
END VARIABLE arr1 
 
DEFINE VARIABLE 
  rn        "Record Number"  
END VARIABLE 
 
rn = 1 
DO txt1 
  READ txt1(var1(rn):8,var2(rn):8,var3(rn):8) 



Promula Application Development System User's Manual 

284 

  rn = rn+1 
END txt1 

 

 

3. Read from a random file and write to a text file.  

 
DO ran1 
   WRITE txt1(item1:8,item2:8,item3:8) 
END ran1 

 

4. Read from a random file and write to an array file. 

 
rn = 1 
DO ran1 
  var1(rn) = item1 
  var2(rn) = item2 
  var3(rn) = item3 
  rn = rn+1 
END ran1 

 

3.7.104  WRITE function 
Purpose: 

 

Writes the values of a function in tabular form. 

 

Syntax: 

 
WRITE func[fmt] [TITLE(text)]  

 

Remarks: 

 

func is the logical identifier of a function defined by the DEFINE FUNCTION or DEFINE LOOKUP statement. 

 

fmt is a format specification of the form \p:w:d to indicate the position of the display, the width of the values displayed, 

and the number of decimals in real values, where  

 

p is an integer indicating the width in characters of the row descriptors for the display. 

 

w is an integer indicating the width, in characters, of the columns of the display. A negative width parameter left 

justifies the values displayed. 

 

d is an integer indicating the number of decimal places to be displayed. If d is an "E", the values will be 

displayed in exponential notation. 

 

For functions defined by the DEFINE LOOKUP statement, the default format is p=10, w=8 and d=2. 

 

For functions defined by the DEFINE FUNCTION statement, w and d have the values specified in the DEFINE 

VARIABLE statement for the function variables, and p is the value specified in the definition of the row 

descriptors of the set subscripting the function variables. 

 

text is a title for the display and can contain text, variables, and other formatting characters as described in the WRITE 

text statement. 

 

Examples: 
 

The WRITE function statement is illustrated below: 



Promula Application Development System User's Manual 

285 

 

DEFINE SET 
  pnt(6) 
END SET 
 
DEFINE VARIABLE 
  x(pnt) "The X values" 
  y(pnt) "The Y values" 
  p(pnt) "PNT Names"   TYPE=STRING(6) 
END VARIABLE 
x(i) = i 
y(i) = i**2 
p(i) = "PNT# "+i 
SELECT ROW(pnt,p) 
 
DEFINE FUNCTION 
  fx(x,y) 
END FUNCTION 
 
DEFINE LOOKUP 
  gx(6) X(1,2,3,4,5,6) Y(2,8,18,32,50,72) 
END LOOKUP 

 

Given the above definitions, the statements 
 

WRITE fx\10:10:4 TITLE(/"Y=f(x)=x**2") 
WRITE gx\3:6:1 TITLE(/"Y=g(x)=2x**2") 

 

produce the output below. 
 

Y=f(x)=x**2 
                                           
                                            (1)       (2) 
                           PNT# 1        1.0000    1.0000 
                           PNT# 2        2.0000    4.0000 
                           PNT# 3        3.0000    9.0000 
                           PNT# 4        4.0000   16.0000 
                           PNT# 5        5.0000   25.0000 
                           PNT# 6        6.0000   36.0000 
                                    Y=g(x)=2x**2 
                                           
                                        (1)   (2) 
                                  (1)   1.0   2.0 
                                  (2)   2.0   8.0 
                                  (3)   3.0  18.0 
                                  (4)   4.0  32.0 
                                  (5)   5.0  50.0 
                                  (6)   6.0  72.0 

 

 

 

3.7.105  WRITE menu 
Purpose: 

 

Displays a "data" menu including the values of its data fields. This statement is useful for displaying output results in menu 

form. 

 

Syntax:  

 



Promula Application Development System User's Manual 

286 

WRITE menu(vars) 

 

Remarks: 

 

menu is the identifier of a "data" menu. 

 

vars is a list of variable identifiers that contain the values of the data fields to be displayed. The variables in the list 

must be arranged in the same order as the data fields in the menu to which they correspond.  

 

A data menu is a template which is designed to help its user edit and display data. The fields in a data menu are previously 

defined in a DEFINE MENU statement. 

 

Data menus contain a number of data fields to be displayed by the user. In the DEFINE MENU statement, each data field 

is denoted by a series of contiguous "at signs", @, or "tilde signs", ~, equal in number to the desired number of digits in the 

data field. The data fields are ordered from left to right  and from top to bottom of the menu template. 

 

Upon execution, the data menu is displayed on the screen. The values of the data fields are displayed in the places marked 

by @ or ~ characters. 

 

Remarks: 

 

The use of the WRITE menu statement is especially helpful if you want to display output data in menu format. You can 

send the results of a WRITE menu statement to the printer or to a file using a SELECT OUTPUT and SELECT 

PRINTER=ON statement. The default length of the output is 25 lines, this may be modified by a SELECT lines 

statement. 

 

3.7.106  WRITE set 
Purpose: 

 

Shows the element codes and element descriptors for a set. 

 

Syntax: 

 
WRITE set 

 

Remarks: 

 

set is the identifier of the set being shown. 

 

Examples: 

 
DEFINE SET 
  month(12) 
END SET 
 
DEFINE VARIABLE 
  mc(month) "Month Codes" TYPE=STRING(3) 
END VARIABLE 
 
DEFINE RELATION 
 ROW(month,mc) 
END RELATION 
 
READ mc 
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC  
 



Promula Application Development System User's Manual 

287 

Given the above definitions, the statement 

 
WRITE month 

 

lists the members (or elements or entries) of the set month as shown below 

 
  Identifier Description 
  1          JAN 
  2          FEB 
  3          MAR 
  4          APR 
  5          MAY 
  6          JUN 
  7          JUL 
  8          AUG 
  9          SEP 
  10         OCT 
  11         NOV 
  12         DEC 

 
 

 

3.7.107  WRITE TABLE 
Purpose:  

 

Writes a table of several variables on an output device. 

 

Syntax: 

 
WRITE TABLE(sets), [TITLE(title)] [,FORMAT(rw,cw)], 
BODY(["text1",] var1[fmt1] [,"text2",] var2[fmt2],...) 

 

Remarks: 

 

sets is a list of the identifiers of the sets classifying columns and pages of the variables in the table. The first set will 

classify the columns of the table; the other sets, if any, will classify the pages of the table. Sets dimensioning 

table variables which are missing from the list will classify the rows of the table. The sets list sets must contain at 

least one set (or the number 1 for writing a group of scalar variables) and must be missing those set identifiers 

which will classify the rows of the multidimensional table variables. 

 

title is any text you wish to show as a title for the table. The title may include variables and other format characters 

according to the rules defined in the WRITE variables statement. 

 

text1 is any text that you wish to precede the values of var1 as a left-justified subtitle. This text may not contain 

variables. 

 

var1 is the identifier of the first variable in the table. 

 

fmt1 is the desired format for the values of var1. Usually, this is used to specify the number of decimal digits for var1. 

 

text2 is any text that you wish to precede the values of var2 as a left-justified subtitle. This text may not contain 

variables. 

 

var2 is the identifier of the second variable in the table. 

 

fmt2 is the desired format for the values of var2. 



Promula Application Development System User's Manual 

288 

 

rw is the number of spaces allocated for row descriptors. 

 

cw is the number of spaces allocated for table columns. 

 

A table is a display or report of several variables whose values are classified by a common set (or sets). The common sets 

classify the columns and pages of the table. 

 

A table has a body and an optional title and format. The body of the table contains the names of the variables whose values 

will  be displayed as the 'body' of the table. The format specifies the width of the rows and columns of the table. 

 

You may include as many variables as you wish in the body of a table. 

 

A table may be 'browsed' interactively by using the BROWSE TABLE statement. 

 

Examples: 
 

The following program demonstrates the WRITE TABLE statement: 
 

DEFINE SET 
  row(3) 
  col(6) 
END SET 
 
DEFINE VARIABLE 
  a(row,col) "A Data Set" 
  b(row,col) "B data set" 
  tot(col)   "The Total of A and B" 
END VARIABLE 
 
DEFINE PROCEDURE wrttab 
  SELECT LINES=60 
  WRITE TABLE(col), TITLE("The Table Title"),  
                    FORMAT(20,10), 
                    BODY(tot::1/"The A Values"/,a::2,/"The B Values"/,b) 
END PROCEDURE wrttab 
 
a = 1 
b = 2 
tot(c) = SUM(r)( a(r,c) + b(r,c) ) 

 
Given the above definitions, the statement 
 

DO wrttab 
 

 

produces the following output. 
 

                                  The Table Title 
                          COL(1)    COL(2)    COL(3)    COL(4)    COL(5)    COL(6) 
  The Total of A and B       9.0       9.0       9.0       9.0       9.0       9.0 
                                                                                   
  The A Values                                                                     
                                                                                   
  ROW(1)                    1.00      1.00      1.00      1.00      1.00      1.00 
  ROW(2)                    1.00      1.00      1.00      1.00      1.00      1.00 
  ROW(3)                    1.00      1.00      1.00      1.00      1.00      1.00 
                                                                                   
  The B Values                                                                     
                                                                                   



Promula Application Development System User's Manual 

289 

  ROW(1)                       2         2         2         2         2         2 
  ROW(2)                       2         2         2         2         2         2 
  ROW(3)                       2         2         2         2         2         2 

 

 

 

3.7.108  WRITE text 
Purpose:  

 

Writes text in the Main Screen. 

 

Syntax: 

 
WRITE [param] [(text)] 

 

Remarks: 

 

text is a specification for the text being written and may contain any of the following: 

 

text write text enclosed in quotes as is. You can use single quotes within double quotes, or vice 

versa, if you want to write quotation marks. 

 

$ begin a new page.  

 

/ begin a new line. 

 

+ suppress automatic carriage return (must be the last character of text). This allows you to 

concatenate the output of several WRITE text statements. 

 

var[\p:w:d] write value of a variable var starting in column p. Allow w spaces for the width of the value 

and d spaces for decimals. 

 

 A negative w left justifies the value of var.  

 

 If w and d are both zero, no trailing blanks will be displayed. This is especially useful for 

writing string type variables that may contain unknown numbers of trailing blanks. 

 

set write the value of the current primary descriptor of set. 

 

variable:I write the identifier of a variable. 

 

variable:L write the descriptor of a variable. 

 

variable:D write the identifier of a variable, followed by a colon, a space, and the descriptor for the 

variable 
 

param is any (or all) of the following: 

 

LEFT to left justify the output (default). 

RIGHT to right justify the output.  

CENTER to center the output. 

 

CLEAR(s) to pause s seconds, clear the screen, then continue. A negative s causes a pause until the 

user strikes any key, and then clears the screen. 

 



Promula Application Development System User's Manual 

290 

CURSOR=type to specify the type of the cursor. Three cursor types are possible: 

 

OFF no cursor 

STANDARD blinking dash (default) 

BLOCK blinking block  

 

GOTOXY(x,y) to specify x and y screen coordinates for the next write. The visible part of the screen 

contains values for x between 0 at the left and 79 at the right, and values for y between 0 

at the top and 24 at the bottom.   

 

You may intermix several text and param specifications in the same WRITE text statement. 

 

Examples: 

 

PROMULA's WRITE statement generates an automatic line-feed after the write. If you want to suppress this action, you 

may include a + character as the last character of output. The example below demonstrates this feature and :0:0 formatting. 

 
DEFINE SET 
  tst(5) 
END 

 
DEFINE VARIABLE 
  x 
  tstn(tst) TYPE=STRING(10)  
END 

 
SELECT ROW(tst,tstn) 
 
tstn(i)="# "+i 
 
 
DEFINE PROCEDURE wrt 
DO tst 
  x = tst:S 
  WRITE (tst" x ="x"--fills 8 characters by default. "+) 
  x = x**2 
  WRITE ("x**2 = "x:0:0" No trailing blanks with :0:0.") 
END tst 
END PROCEDURE wrt 

 

Execution of procedure wrt produces the following output. 

 

  # 1 x =       1--fills 8 characters by default. x**2 = 1 No trailing blanks with :0:0. 
  # 2 x =       2--fills 8 characters by default. x**2 = 4 No trailing blanks with :0:0. 
  # 3 x =       3--fills 8 characters by default. x**2 = 9 No trailing blanks with :0:0. 
  # 4 x =       4--fills 8 characters by default. x**2 = 16 No trailing blanks with :0:0. 
  # 5 x =       5--fills 8 characters by default. x**2 = 25 No trailing blanks with :0:0. 

 

This example demonstrates the justify parameter, variable formatting, and several other WRITE text options. 

 
DEFINE PROCEDURE writxt 
a=12345 
WRITE LEFT ("A=" a) CENTER ("A=" a) RIGHT  ("A=" a), 
      CENTER ("---------------------------------------------------------"), 
      ("A=" a:-15:3 "A=" a /, 
       "A=" a:-25:3 "A=" a /, 
       "A=" a:-35:3 "A=" a), 



Promula Application Development System User's Manual 

291 

      CLEAR(-1),GOTOXY(0,8),CURSOR=OFF, CENTER(, 

" 
" 

CLEAR(-1)    Waits for a key press, then 
clears 
             the screen 

"/, 
"/, 

" GOTOXY(0,8)  puts the cursor on row 8, in 
column 0 

"/, 

" CURSOR=OFF   turns off the cursor display "/, 
" WRITE CENTER centers this text "/, 

"  A= ",a:-12.3, "  "/, 

"  ") 

END PROCEDURE writxt 
 

The procedure writxt writes the lines below, then pauses (because of the CLEAR(-1) option.)   

 
A=  12,345 

A=  12,345 
A=  12,345 

-------------------------------------------------------------- 
A=12,345.000     A=  12,345 
A=12,345.000          A=  12,345 
A=12,345.000               A=  12,345 

 
 

 

If the user presses a key, PROMULA clears the Main Screen and writes the display below. 

 

A= 12,345.000

CLEAR(-1)     Waits for a key press, then clears

              the screen.

GOTOXY(0,8)   puts the cursor on row 8, in column 0

CURSOR=OFF    turns off the cursor display

WRITE CENTER  centers this text

 
 

3.7.109  WRITE TEXT 
Purpose: 

 

Displays free form text in the Main Screen. 



Promula Application Development System User's Manual 

292 

 

Syntax: 

 
WRITE TEXT 
  text 
  ... 
END 

 

Remarks: 

 

text is any text that you want to display in the Main Screen. 

 

The keyword END must be entered starting in column 1 and must be capitalized in order to distinguish it from other 

occurrences of the word "end" in the text. 

 

Upon execution, the text will be shown in the Main Screen (Action Window) of the display. 

 

For more details, see the discussion of PROMULA's Basic Windowing capabilities. 

 

3.7.110  WRITE VALUE segment 
Purpose: 

 

Writes the information of a program or program segment to disk. Only the values of the segment variables are written. To 

write both code and data values, use the END SEGMENT or END PROGRAM statement. 

 

Syntax: 

 
WRITE VALUE seg 

 

Remarks: 

 

seg is the identifier of the segment whose values are being written to disk. 

 

Use the OPEN SEGMENT statement before using the WRITE VALUE segment statement. 

 

Examples: 

 

The code below opens a segment file on disk called wrvalseg.xeq. This segment is given the default name MAIN since it is a 

top-level segment. Segment MAIN contains the single variable, a. 

 
OPEN SEGMENT "wrvalseg.xeq" STATUS=NEW 
 
DEFINE PROGRAM  
  DEFINE VARIABLE 
    a "The value of variable A =" 
  END VARIABLE 
END PROGRAM 

 

The effect of the WRITE VALUE segment and READ VALUE segment are illustrated in the dialogs below. 

 
  a=10 
  WRITE a 
  The value of variable A = 10 
 

 



Promula Application Development System User's Manual 

293 

The statement, WRITE VALUE MAIN, writes the values of segment MAIN variables (in this case only variable a) in the 

segment file on disk called wrvalseg.xeq. 

 
WRITE VALUE MAIN 

 

 

The value of a variable can be changed by an expression. 

 
  a=20 
  WRITE a 
  The value of variable A = 20 

 
 

 

The READ VALUE MAIN statement will read in the values of the segment MAIN's variables that were stored by the last 

WRITE VALUE MAIN statement. 

 
  READ VALUE MAIN 
  WRITE a 
  The value of variable A = 10 

 
 

 

3.7.111  WRITE variable 
Purpose: 

 

Shows the information in a variable. 

 

Syntax: 

 
WRITE var[fmt][ORDER(sets)][TITLE(title)][DISPLAY(dvar)][option] 

 

Remarks: 

 

var is the identifier of a variable. 

 

fmt is a format specification to indicate the position of the display, the width of the values displayed, and the 

number of decimals in real values, as follows:  

 
\p:w:d 

 

 where  

 

p is an integer specifying the width in characters for row descriptors. The default width is the width 

specifications of the row descriptors related to the set subscripting the rows of the display. 

 

w is an integer specifying the width in characters for each column of values. The default is the width 

specification in the definition of var. A negative width parameter left justifies the values of var in each 

column. 

 

d is an integer specifying the number of decimals to display for real numeric values. The default is the 

decimal specification (if applicable) in the definition of var. If d is an "E", the values of var will be 

displayed in exponential notation (base-10), and will show seven digits and six decimal places. 

 



Promula Application Development System User's Manual 

294 

If omitted, w and d are the parameters specified in the TYPE specification for var, and p is the width 

specifications of the row descriptors related to the set subscripting the rows of the display. 

 
 

sets is a list of the sets classifying the values of var. The order of the sets in this list specifies the structure of the 

display:  the first set classifies the rows of the display, the second set the columns, and the third to last sets 

classify the pages of the display. The keyword ORDER is optional; if it is omitted, sets must follow 

immediately after the optional format specification. 

 

title is any text you wish to show as a title for the table. The title may include variables, and other format 

characters according to the rules defined in the WRITE text statement. 

 

dvar is a variable used to control the display of variable var. dvar should be subscripted by the set that defines the 

rows of the display. PROMULA will display values of var only for those rows corresponding to elements of 

dvar that contain nonzero values. See Example in the section on the BROWSE variable statement. 

 

option is one of the following WRITE variable options: 

 

TOTAL[(sets)] displays totals over the selected sets along with values of var. If sets is omitted, all the 

marginal and grand totals for var will be displayed. 

 

PERCENT(set) displays the percent distribution of the total over set of var. 

 

CHANGE(n) The CHANGE option allows the user to show a table of percent change in time series 

data for a previously defined time series dataset or array. 

 

 The percent change for time t is computed from values for time t and t-1, where t and t-1 

are two consecutive selections of the time set. The selections depend on the current 

local setting of the set. They may or may not be consecutive time points. There may be 

more than one time unit between them. 

 

 Following the keyword, CHANGE, a real number within parentheses is required. It 

represents the number of time units to be used in computing percent change. Internally 

it is divided by the difference in time values for selections t and t-1. 

 

 Suppose values for 1970 and 1975 are used in computing the percent change. That is, 

the user has selected these years for computation and output generation. Also s/he 

wants to compute an annual percent change, so one time unit (a year) is designated on 

the CHANGE option (CHANGE(1)). The change for 1975 is computed as the 

difference in values for 1970 and 1975, divided by the 1970 value, and multiplied by .2 

(for annual change). A factor of 100 gives the final result as a percent change from 

1970 to 1975 in one year increments. 

 

 In the tabular display the words, Percent Change in, are placed in front of the original 

title (from the variable definition). If the TITLE option is used with the CHANGE 

option no words are prefixed. 

 

GROWTH(n) The GROWTH option allows the user to show a table of growth rates in time series 

data for a previously defined time series dataset or array. A time series dataset or array 

is one which is defined by a time series set. The growth rate for time t is computed from 

values for time t and t-1, where t and t-1 are defined as above. 

 

 Following the keyword, GROWTH, a real number within parentheses is required and 

stands for the number of time units between growth rates. Internally it is divided by the 

difference in time values for selected t and t-1. 

 



Promula Application Development System User's Manual 

295 

 Suppose the user has selected 1970 and 1975 and wishes to show annual growth rates 

(GROWTH(1)). The growth rate for 1975 is computed as a quotient — value for 1975 

divided by value for 1970 — raised to the power .2  (1.0/(1975-1970)). One is 

subtracted from this quantity to get a growth rate and a factor of 100 gives the final 

result as a percent rate from 1970 to 1975 in one year increments. 

 

 In the tabular display, the words, Growth Rate in, are placed in front of the original 

title unless the TITLE option is specified. 

 

MOVING(n) The MOVING option allows the user to show a table of moving averages in time series 

data for a previously defined time series array. Following the keyword MOVING, an 

integer, n, within parentheses, gives the number of single unit time increments over 

which the moving average is computed. The moving average for time t is computed 

from values for time t,...,t-(n-1), where the t's are consecutive time points. They are not 

consecutive time set selections, based on a local setting of the time set. Rather, they are 

time points as defined initially by the time values related to the set subscripting var. 

 

 Suppose the user has selected a five year moving average (MOVING(5)) based on an 

annual time series from 1970 to 1990, and he wishes to show only 1975, 1980, 1985, 

1990 moving averages. The average for 1990 is computed as the sum of values from 

1986 to 1990 divided by the number of time points as defined initially by the TIME 

option on the set definition. 
 

 In the tabular display the words, Moving Average for, are placed in front of the 

original title unless the TITLE option is specified. 

 

Example: 

 
DEFINE SET 
  row(3) 
  col(2) 
  pag(2) 
END SET 
 
DEFINE VARIABLE 
  a(row,col,pag) "A 3-Dimensional Array" 
END VARIABLE 
a(i,j,k)=i*j*k 
 

Given the defintions above, the statements 

 
WRITE a TITLE ("Unformatted Display of variable A") 
WRITE a\6:10:2(pag,col,row) TOTAL(col) TITLE(//"Formatted Display of variable A") 

 

 

produce the following output. 

 
                       Unformatted Display of variable A 
                                         
                                     PAG(1) 
                                         
                                         COL(1)  COL(2) 
                        ROW(1)                1       2 
                        ROW(2)                2       4 
                        ROW(3)                3       6 
                                         
                                     PAG(2) 
                                         



Promula Application Development System User's Manual 

296 

                                         COL(1)  COL(2) 
                        ROW(1)                2       4 
                        ROW(2)                4       8 
                        ROW(3)                6      12 
 
                        Formatted Display of variable A 
                                         
                                     ROW(1) 
                                         
                                 Total    COL(1)    COL(2) 
                      PAG(1)      3.00      1.00      2.00 
                      PAG(2)      6.00      2.00      4.00 
                                         
                                     ROW(2) 
                                         
                                 Total    COL(1)    COL(2) 
                      PAG(1)      6.00      2.00      4.00 
                      PAG(2)     12.00      4.00      8.00 
                                         
                                     ROW(3) 
                                         
                                 Total    COL(1)    COL(2) 
                      PAG(1)      9.00      3.00      6.00 
                      PAG(2)     18.00      6.00     12.00 

 

 

 

Examples of the other WRITE VARIABLE options are presented with the discussion of the BROWSE VARIABLE 

statement. 



Promula Application Development System User's Manual 

297 

 

4.  PROGRAM AND DATA MANAGEMENT 
 

A program that has too much data or too much code will not fit in your working space and will not run. Fortunately, in 

addition to its extensive interface design and modeling features, PROMULA has considerable database management and 

program management capabilities. Since these capabilities are required for large scale application development they are 

given special attention in this chapter. This chapter is divided into two sections: the first discusses the construction and use 

of PROMULA's array database files; the second discusses PROMULA's program segment manager. 

 

4.1  Database Management in PROMULA 
 

In PROMULA, a database is a file containing information. The file's type may be TEXT, ARRAY, or RANDOM. 

Databases allow your applications to use disk memory to permanently store a copy of program information. Databases may 

be shared by several applications, extended, read from, written to, and manipulated by your computer operating system like 

other files. 

 

Text files are the least structured type of database, they are simply a collection of variable length text records. The records 

of a text file must be accessed sequentially, so they may be difficult or inefficient to access and update. Furthermore, unless 

the information in the text file is carefully structured into a predictable pattern, it will be very difficult to work with. The 

lack of internal structure in text files is an advantage for some applications since the file may be easily extended by simply 

appending text at its end. 

 

Random files are more structured than text files. Random files are composed of fixed length binary records. Each record in 

the random file is composed of a collection of variables; the variables may be scalars or arrays. The information in a 

random file is accessed one record at a time. The records may be accessed at random – by record number, or through 

selection keys – by using an inverted file. Random files may be updated by adding records to the end of the random file, or 

by re-writing existing records. 

 

Array files are the most structured type of database. Array files are composed of variables, usually arrays, although scalars 

may also be present. An array file can also contain sets and relations. The information in an array file is accessed using sets 

and variables. Array files are ideally suited for the science and engineering applications that PROMULA is typically used 

for. Because of this, text and random files are rarely used for database management in PROMULA. This chapter focuses on 

using array files. Readers interested in the other files should refer to Chapter 3 of this Manual. For the remainder of this 

chapter, the terms database and array file will be used interchangeably. 

 

Before discussing the actual syntax of PROMULA's data management language, we should review PROMULA's variable 

storage types. Here, the phrase "variable storage type" refers to where PROMULA stores each variable's values. 

 

There are three storage types for PROMULA variables: 

 

Fixed Fixed variables are accessed from a fixed space in primary memory (RAM). They are defined with a DEFINE 

VARIABLE statement. The values of fixed variables may be saved in a segment file on disk by the END 

SEGMENT, END PROGRAM, and WRITE VALUE segment statements. Computations run fastest when 

they use fixed variables. 

 

Scratch Scratch variables are accessed from a scratch space in primary memory. They are defined with a DEFINE 

VARIABLE SCRATCH statement. Their values can be cleared from memory with a CLEAR statement to 

make room for other scratch variables. The values of scratch variables cannot be saved in a segment file on 

disk. Computations using scratch variables will be slower than using fixed variables because PROMULA 

must do more internal calculations to access their values. 

 



Promula Application Development System User's Manual 

298 

Disk Disk variables are stored on disk in an array file. They are defined with a DEFINE VARIABLE file 

statement. Disk variables are also referred to as database variables. The values of disk variables may be 

accessed directly on disk and they may be accessed dynamically or virtually in memory via scratch or fixed 

variables which are related to them. 

 

There are three methods of accessing the values of disk variables: 

 

Direct In direct access, the file containing the disk variable is opened and the variable is used like a fixed variable. 

This is the slowest and least flexible method of accessing disk variables, but it requires no special 

programming. With the direct access method, disk variable values are addressed on disk as needed; any 

changes made to the disk variable are saved in the array file. In order to use direct access, the definition of the 

disk variable must be in memory. 

 

Virtual In virtual access, an appropriate fixed or scratch variable (called a local variable) is associated with a disk 

variable. This local variable is used to access the values of the disk variable on disk. PROMULA manages 

transferring the data between the disk and local variable automatically. Virtual access allows programmers to 

access disk variables through local variables which are defined in programs that are physically separate from 

the ones which defined the disk variables. It also allows programmers to access different disk variables 

through a single local variable. 

 

Dynamic In dynamic access, an appropriate local variable is associated with a disk variable. This local variable is used 

to access the values of the disk variable in scratch memory. This method offers the same advantages as virtual 

access, but it requires the programmer to transfer values between disk and memory via explicit READ DISK 

and WRITE DISK statements. Dynamic access also allows programmers to transfer dimensional sections and 

subsets of multi-dimensional disk variables between disk and memory. For example, two-dimensional pages 

of a three-dimensional disk variable can be accessed through a two-dimensional local variable. Dynamic 

access is also faster than either direct or virtual access because a large number of disk variable values may be 

quickly transferred between disk and core memory for processing. Local variables used for dynamic access 

are like scratch variables in that their values may be cleared from memory via the CLEAR statement. 

 

4.1.1  Program 1 – Create a 'New' Database 
The first step in building a PROMULA database is to define an array file, and open it physically on disk. Since we plan to 

build a new database, the array file is opened with STATUS=NEW. 

 
DEFINE FILE 
  af  "Array file for database 'filea.dba'" TYPE=ARRAY 
END FILE 
* 
* Open af; its physical name is filea.dba 
* 
OPEN af  "filea.dba" STATUS=NEW 

 

The next step in building the database is to define the logical structure of the file. Here, the sets, variables, and relations of 

the file are physically laid out on disk. To do this, simply use the DEFINE SET file, DEFINE VARIABLE file and 

DEFINE RELATION file statements as described in Chapter 3 . 

 
DEFINE SET af 
  drow(3) 
  dcol(4) 
  dpag(2) 
END SET 
 
DEFINE VARIABLE af 
  dat1(drow,dcol,dpag) "A 3-dimensional Array on af" 
  dat2(drow,dcol)      "A 2-dimensional Array on af" 
  datb(drow,dcol,dpag) "A 3-dimensional Array on af" 



Promula Application Development System User's Manual 

299 

END VARIABLE 
 

When a database is first created, PROMULA initializes its variables:  numeric variables are given the value zero, and non-

numeric variables are initialized with "empty strings". Once the database variables are defined, they may be initialized with 

your data. We will do so here by using the disk variables themselves (i.e., by direct access). 

 
READ dat1 
111 121 131 141 
211 221 231 241 
311 321 331 341 
112 122 132 142 
212 222 232 242 
312 322 332 342 
 
dat2(r,c) = dat1(r,c,1) * 10 
 
datb = dat1 * 100 

 

The database structure and data can be physically saved, and its file closed with a CLEAR file statement. 

 
CLEAR af 

 

That's all there is to it. The database is defined and ready to use. Of course this is a very simplistic database;  it only 

contains three small, numeric, array variables. The methodology for constructing larger, more complex databases 

containing all types of PROMULA variables is the same. 

 

1. Define an array file and open it physically on disk. 

 

2. Use the DEFINE SET, DEFINE VARIABLE, and DEFINE RELATION statements to define the structure of 

the database. 

 

3. Initialize the variables as desired. 

 

4. Close the file. 

 

Note, you may add new sets, variables, and relations to an existing database by opening it with STATUS=OLD then 

following steps 2 through 4 as desired. 

 

4.1.2  Program 2 – Access an 'Old' Database 
After building, the database file is on disk and it may be used by other programs. Using a database makes it possible for 

your application to manipulate very large array variables even if they are too large to fit in primary memory. Another 

advantage is that database files store a permanent copy of program information separate from the program's segment file, 

and this copy may be shared by other applications (including programs written in other languages such as C or FORTRAN) 

or even accessed from PROMULA's command mode.   

 

Although it is not required, the program used to build and initialize a database is usually kept in its own file. This "database 

build" program need be run only once. Programs that use the database variables are defined in independent source files and 

the database variables are accessed virtually or dynamically using local variables.   

 

The first step in creating a program to use an array database on disk is to define an array file to access the database using 

the DEFINE FILE statement. 

 
DEFINE FILE 
  filea  "Array file for database 'filea.dba'" TYPE=ARRAY 
END FILE 

 



Promula Application Development System User's Manual 

300 

Next, define program variables and relate them to the database variables by including a DISK option in their definitions. 

 

The DISK option of the DEFINE VARIABLE statement is used to relate local variables to disk variables. The syntax for 

this option is described below: 

 

Syntax: 

 
DEFINE VARIABLE [SCRATCH] 
  var[(sets)][,"desc"][,TYPE=type],DISK(file,dvar[(dsets)]) 
END VARIABLE 

 

Remarks: 

 

var is the identifier of a local variable. It is through var that your application will virtually or dynamically access the 

disk variable, dvar.   

 

sets is the list of set identifiers specifying the dimensions of the variable var.   

 

desc is a descriptor for the variable var. 

 

type is the format type of var. This type (REAL, INTEGER, STRING), etc. must match the type of dvar. For REAL 

type variables, the width and decimal specifications of var are not required to match those of dvar. For all other 

types, the width specifications of var and dvar must match.  

 

file is the identifier of an array file. In order to access dvar through var, the physical file specified when file is opened 

must contain dvar. 

 

dvar is the identifier of the actual disk variable that you want to access through var. 

 

dsets is an optional list of set identifiers, scalar variables or integer constants — one for each dimension of dvar. These 

define the local sets and/or pointers which correspond to the disk sets subscripting dvar. 

 

The access method is defined by the specifications of dsets. There are two different ways to specify dsets: 

 

1. For virtual access, omit the specification of dsets. For example  

 
DEFINE VARIABLE 
  var(sets) "desc" DISK(file, dvar) 
END 
 

PROMULA will handle transferring information between the disk and local variable for you. This is the simplest 

approach, but since it may require a great deal of disk access, it may be too slow for computationally intensive 

applications. In virtual access, var must have the same shape and size as dvar; an exception to this is overlap mapping 

which we will describe in a later section.   

 

2. For dynamic access, dsets is a subscript list — one subscript for each dimension of dvar. The subscripts may be 

numeric scalar variables (pointers), numeric constants, or local set identifiers. You may access specific values of dvar 

by assigning values to the subscripts and then executing READ DISK or WRITE DISK statements.  

 

In dynamic access, sets defines the size and shape of the subset of dvar that may be dynamically transferred to and from 

disk. The dimensions of var may be any subset of the dimensions of dvar. However, the sizes of sets must not be larger 

than their corresponding dsets. The rules of correspondence between sets and dsets here are very much like the rules of 

correspondence that govern subscripting multidimensional equations — row to row, column to column, etc. 

 

The code below uses a variety of DISK options to relate local variables to the disk variables in the database filea.dba which 

was built in the last section. 



Promula Application Development System User's Manual 

301 

 
DEFINE SET 
  row(3) 
  col(4) 
  pag(2) 
END SET 
 
* Define fixed variables to use as pointers to disk variable dimensions. 
DEFINE VARIABLE 
  rr     "A Row Pointer" 
  cc     "A Column Pointer" 
  pp     "A Page Pointer" 
END VARIABLE 
  
* Define fixed variables that will access disk variables virtually 
DEFINE VARIABLE 
  ldat1(row,col,pag) "A 3-dimensional Array" DISK(filea,dat1) 
  ldatb(row,col,pag) "A 3-dimensional Array" DISK(filea,datb) 
  ldat2(row,col)     "A 2-dimensional Array" DISK(filea,dat2) 
END VARIABLE 
 
* Define fixed variables that will access disk variables dynamically  
DEFINE VARIABLE 
  dsv               "Dynamic Scalar"                     DISK(filea,dat1(rr,cc,pp)) 
  drv(row)          "Dynamic Vector by row"              DISK(filea,dat1(row,cc,pp)) 
  dcv(col)          "Dynamic Vector by col"              DISK(filea,dat1(rr,col,pp)) 
  dpv(pag)          "Dynamic Vector by pag"              DISK(filea,dat1(rr,cc,pag)) 
  drc(row,col)      "Dynamic Array by row and col"       DISK(filea,dat1(row,col,pp)) 
  dpc(pag,col)      "Dynamic Array by pag and col"       DISK(filea,dat1(rr,col,pag)) 
  dpr(pag,row)      "Dynamic Array by pag and row"       DISK(filea,dat1(row,cc,pag)) 
END VARIABLE 
 
* Define scratch variables that will access disk variables dynamically  
DEFINE VARIABLE SCRATCH 
  sdat1(row,col,pag) "Dynamic Array by row, col and pag" DISK(filea,dat1(row,col,pag)) 
  sdatb(row,col,pag) "Dynamic Array by row, col and pag" DISK(filea,datb(row,col,pag)) 
END VARIABLE 
 

Let's look at these examples of how local variables are related to disk variables starting with the local variables ldat1, ldatb 

and ldat2. 

 
ldat1(row,col,pag) "A 3-dimensional Array" DISK(filea,dat1) 
ldatb(row,col,pag) "A 3-dimensional Array" DISK(filea,datb) 
ldat2(row,col)     "A 2-dimensional Array" DISK(filea,dat2) 
 

The above definitions create three array variables. Variable ldat1 is a three-dimensional array for virtually accessing the 

disk variable dat1. Variable ldatb is similar to ldat1 except that it is for virtually accessing the disk variable datb. Variable 

ldat2 is a two-dimensional array variable for virtually accessing the disk variable dat2. 

 

Notice that each local variable has the same size, shape, and type as the disk variables to which it is related. This is required 

for correct virtual access. We will discuss how to access subsets and dimensional sections of disk variables shortly. 

 

The values of the three local arrays do not occupy any value storage because the DISK option in their definition tells 

PROMULA that they should be accessed virtually from disk. The virtual access method is indicated because the variables 

named in their DISK options are not subscripted. Local variables which are used to access disk variables virtually are 

sometimes referred to as virtual variables. 

 

Any changes in the virtual variables are automatically and immediately reflected in the values of the corresponding disk 

variables, and vice versa. It is this automatic passing of data to and from disk that makes virtual access slower than 



Promula Application Development System User's Manual 

302 

accessing local variables in memory. Virtual access is acceptable for operations which do not require fast execution, but in 

order to use disk variables efficiently, the dynamic access method should be employed. 

 

Now let's look at some examples of dynamic access starting with variable dsv. 

 
dsv   "Dynamic Scalar"  DISK(filea,dat1(rr,cc,pp)) 

 

Variable dsv is a local scalar variable related to the disk variable dat1 on disk. It may be used for dynamic access of the disk 

variable dat1. Here, dynamic access means explicitly transferring data between disk and memory. Dynamic access is 

indicated because the reference to dat1 in the DISK option is subscripted by three items — one for each dimension of the 

actual disk variable. Local variables which are used to access disk variables dynamically are sometimes referred to as 

dynamic variables.  

 

A value of dat1 on disk may be transferred to dsv by specifying the values of the pointer variables rr, cc, and pp to indicate 

which drow, dcol, and dpag element to read; then executing a READ DISK statement. Similarly, the current value of dsv 

may be written to a specific cell in array dat1 by specifying the values of the pointer variables rr, cc, and pp to indicate 

which drow, dcol, and dpag element to write then executing a WRITE DISK statement. The memory used by dsv may be 

cleared for use by other dynamic or scratch variables by a CLEAR statement.   

 

The programmer must make sure that the value of each pointer variable (rr, cc, and pp) is within the range of the disk set to 

which it corresponds whenever a READ DISK or WRITE DISK statement is executed. 

 

Notice that the local scalar dsv and the disk array dat1 do not have the same structure. This is allowed in dynamic access. It 

is required, however, that the structure (i.e., scalar, vector, two-dimensional array, etc.) of the local variable matches the 

structure of the disk variable as referenced in DISK option. We see in the above example that this is true:  dsv is a scalar; 

and the reference to dat1 in the DISK option, dat1(rr,cc,pp), is also a scalar. dat1(rr,cc,pp) may look like an array definition to 

some readers, but since rr, cc, and pp are scalars, instead of sets, it is indeed a scalar — similar to a reference to a single cell 

of a three-dimensional array. The programmer indicates that the actual disk variable is three dimensional by including three 

subscripts.  

 

Now let's look at the three variables drv, dcv, and dpv. 

 
drv(row)  "Dynamic Vector by row"  DISK(filea,dat1(row,cc,pp)) 
dcv(col)  "Dynamic Vector by col"  DISK(filea,dat1(rr,col,pp)) 
dpv(pag)  "Dynamic Vector by pag"  DISK(filea,dat1(rr,cc,pag)) 

 

The above definitions create three dynamic vector variables. Variable drv may be used to access an arbitrary row-vector of 

the disk variable dat1; variable dcv may be used to access an arbitrary col-vector of dat1; and variable dpv may be used to 

access an arbitrary pag-vector of dat1. Recall from Chapter 2 that a vector is simply a one-dimensional, or list-structured 

variable. 

 

Dynamic access is indicated because the reference to dat1 in the DISK option is subscripted — one set or pointer variable 

for each dimension of the actual disk variable. 

 

The correspondence between the local sets and the sets dimensioning the actual disk variable is indicated by the placement 

of pointers and set identifiers in the reference to dat1 in the DISK option. Thus, for the variable dpv(pag), dat1 is referred to 

as dat1(rr,cc,pag) indicating that the pag dimension of dpv corresponds to the third dimension of the actual disk variable. 

Similarly, for the variable dcv(col), dat1 is referred to as dat1(rr,col,pp) indicating that the col dimension of dcv corresponds to 

the second dimension of dat1 on disk. The dimensions of the disk variable which do not correspond to a dimension of the 

local variable are basepointed (i.e., assumed to take on an arbitrary single value) as indicated by the use of scalar variables 

in the reference to the disk variable. 

 

A row-vector of dat1 may be read into drv by specifying the values of the pointer variables cc and pp to indicate which dcol 

and dpag to read, then executing a READ DISK statement. Similarly, the current values of drv may be written to a specific 

row-vector in dat1 by specifying the values of the pointer variables cc and pp to indicate the dcol and dpag to write, then 

executing a WRITE DISK statement. The memory used by drv may be cleared for use by other dynamic or scratch 



Promula Application Development System User's Manual 

303 

variables by a CLEAR statement. Completely analogous techniques may be applied to transfer values for the other 

dynamic vector variables. 

 

Notice that the structures of the local vectors drv, dcv, and dpv match the structures of the disk variable referred to in their 

respective DISK options. For example, the structure of the disk variable referred to in the DISK option for the col-vector 

dcv, dat1(rr,col,pp), is also a vector by col. dat1(rr,col,pp) may look like the definition of a three dimensional array, but since 

rr and pp are scalars, and col is a set, it is indeed a vector by col. Analogous relationships hold for the other local vectors drv 

and dpv. 

 

The definitions for variables drc, dpr, and dpc are shown below: 

 
drc(row,col)  "Dynamic Array by row and col"  DISK(filea,dat1(row,col,pp)) 
dpc(pag,col)  "Dynamic Array by pag and col"  DISK(filea,dat1(rr,col,pag)) 
dpr(pag,row)  "Dynamic Array by pag and row"  DISK(filea,dat1(row,cc,pag)) 

 

These variables are dynamic two-dimensional arrays. The variable drc may be used to access a row-by-col array of values 

for an arbitrary dpag; the variable dpc may be used to access a pag-by-col array of values for an arbitrary drow; and the 

variable dpr may be used to access a pag-by-row array of values for an arbitrary dcol.   

 

As before, dynamic access is indicated because the specification of dat1 in the DISK option is subscripted — one pointer or 

set for each dimension of the actual disk variable. 

 

The correspondence between the local sets and the sets dimensioning the disk variable is indicated by the placement of 

pointers and set identifiers in the reference to dat1 in the DISK option. Thus for variable dpc(pag,col), dat1 is referred to as 

dat1(rr,col,pag) indicating that the pag and col dimensions of dpc correspond to the third and second dimensions of dat1 

respectively. Similarly, for variable dpr(pag,row), dat1 is referred to as dat1(row,cc,pag) indicating that the pag and row 

dimensions of dpr correspond to the third and first dimensions of dat1 respectively. The dimensions of the disk variable 

which do not correspond to a dimension of the local variable are base-pointed (i.e., assumed to take on an arbitrary single 

value) as indicated by the use of scalar variables in the DISK option. 

 

A row-by-col array of dat1 on disk may be read into drc from disk by specifying a value for the pointer variable pp to 

indicate which dpag of the array to read then executing a READ DISK statement. Similarly, the current values of drc may 

be written to a specific dpag of dat1 by specifying a value for the pointer variable pp to indicate which dpag of the array to 

write then executing a WRITE DISK statement. The memory used by drc may be cleared for use by other dynamic or 

scratch variables by a CLEAR statement. Completely analogous techniques may be applied to transfer values for the other 

dynamic array variables. Again, the programmer must make sure that the value of each pointer variable is kept within the 

range of the disk set to which it corresponds. 

 

Finally, let's take a look at definitions of variables sdat1 and sdatb. 

 
DEFINE VARIABLE SCRATCH 
  sdat1(row,col,pag) "Dynamic Array by row, col and pag" DISK(filea,dat1(row,col,pag)) 
  sdatb(row,col,pag) "Dynamic Array by row, col and pag" DISK(filea,datb(row,col,pag)) 
END VARIABLE 

 

These variables are dynamic three-dimensional arrays. Variable sdat1 may be used to access the entire three-dimensional 

array of values in the disk variable dat1, and variable sdatb may be used to access the entire three-dimensional array of 

values in the disk variable datb.   

 

The values are transferred to and from disk by WRITE DISK and READ DISK statements. The variables may be cleared 

from memory by a CLEAR statement. 

 

It is up to the programmer to be sure that there is sufficient memory to bring a dynamic variable into memory either 

explicitly with a READ DISK statement or implicitly by using it in an expression. This is especially true when dealing 

with large dynamic variables. 

 



Promula Application Development System User's Manual 

304 

Note that even though these variables are defined as memory type SCRATCH, they are not truly scratch variables because 

their values are stored on disk. In fact, using the DISK option makes the classification of local variables as fixed or scratch 

artificial. It is much more meaningful to classify local variables which have a DISK option in their definition as being 

either virtual or dynamic. 

 

Before accessing a disk variable, it is necessary to open the file containing it with an OPEN file statement. Be sure not to 

use STATUS=NEW when you open an existing datafile or PROMULA will erase the file's contents. 

 
OPEN filea "filea.dba" STATUS=OLD 

 

Once the file specified in the DISK option is physically opened, the disk variables may be accessed. The dialog below 

illustrates that the virtual variables do indeed contain the values of the disk variables to which they are related. 

 
WRITE ldat1 
                             A 3-dimensional Array 
                                         
                                     PAG(1) 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)              111     121     131     141 
                ROW(2)              211     221     231     241 
                ROW(3)              311     321     331     341 
                                         
                                     PAG(2) 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)              112     122     132     142 
                ROW(2)              212     222     232     242 
                ROW(3)              312     322     332     342 
 
WRITE ldat2 
                             A 2-dimensional Array 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)            1,110   1,210   1,310   1,410 
                ROW(2)            2,110   2,210   2,310   2,410 
                ROW(3)            3,110   3,210   3,310   3,410 
 
WRITE ldatb 
                             A 3-dimensional Array 
                                         
                                     PAG(1) 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)           11,100  12,100  13,100  14,100 
                ROW(2)           21,100  22,100  23,100  24,100 
                ROW(3)           31,100  32,100  33,100  34,100 
                                         
                                     PAG(2) 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)           11,200  12,200  13,200  14,200 
                ROW(2)           21,200  22,200  23,200  24,200 
                ROW(3)           31,200  32,200  33,200  34,200 
 

 

 



Promula Application Development System User's Manual 

305 

In order to use a dynamic variable which is a dimensional section of a disk variable, it is necessary to assign values to each 

pointer variable that corresponds to a disk set. Each pointer value must be greater than or equal to 1 and less than or equal 

to the size of the disk sets to which it corresponds. REAL type pointer variables are rounded to the nearest integer. 

 

For example, variable rr is used as a pointer to the set drow(3) on disk; rr may only take on the values 1, 2, or 3;  variable cc 

is used as a pointer to the set dcol(4); cc may only take on the values 1, 2, 3, or 4;  and variable pp is used as a pointer to 

dpag(2);  pp may only take on the values 1 or 2.   

 

The statements below set the drow-pointer to 2, the dcol-pointer to 3, and the dpag-pointer to 2. 

 
rr = 2 
cc = 3 
pp = 2 

 

Once the pointers contain the desired values, the selected data may be transferred from disk into the associated local 

variables via a READ DISK statement. 

 
READ DISK dsv drv dcv dpv drc dpc dpr sdat1 

 

After the READ DISK statement, the local variables' values have the values of their associated disk variables. The local 

variables may be used like other fixed or scratch variables as illustrated in the dialog below. 

 
*** dsv equals dat1(2,3,2)  
WRITE dsv 
Dynamic Scalar 232 
 
*** drv(rec) equals dat1(rec,3,2) 
WRITE drv 
                             Dynamic Vector by row 
                                         
  ROW(1)              132   ROW(2)              232   ROW(3)              332 
 
*** dcv(col) equals dat1(2,col,2) 
WRITE dcv 
                             Dynamic Vector by col 
                                         
  COL(1)              212   COL(2)              222   COL(3)              232 
  COL(4)              242                                                     
 
*** dpv(pag) equals dat1(2,3,pag) 
WRITE dpv 
                             Dynamic Vector by pag 
                                         
  PAG(1)              231   PAG(2)              232                           
 
*** drc(row,col) equals dat1(row,col,3) 
WRITE drc 
 
                          Dynamic Array by row and col 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)              112     122     132     142 
                ROW(2)              212     222     232     242 
                ROW(3)              312     322     332     342 
 
*** dpc(pag,col) equals dat1(2,col,pag) 
WRITE dpc 
                          Dynamic Array by pag and col 
                                         



Promula Application Development System User's Manual 

306 

                                 COL(1)  COL(2)  COL(3)  COL(4) 
                PAG(1)              211     221     231     241 
                PAG(2)              212     222     232     242 
 
*** dpr(pag,row) equals dat1(row,3,pag) 
WRITE dpr 
                          Dynamic Array by pag and row 
                                         
                                     ROW(1)  ROW(2)  ROW(3) 
                    PAG(1)              131     231     331 
                    PAG(2)              132     232     332 
 

 
 

The values of dat1 on disk may be modified by changing the values of the associated dynamic local variables then 

performing a WRITE DISK statement. For example, the statements 

 
drc(r,c) = r*c 
WRITE DISK drc 
 

will replace page two (pp = 2) of dat1 with an r*c product matrix, and the statements 

 
dsv = 1000 
WRITE DISK dsv 

 

will assign the value 1000 to the page two (pp = 2), column three (cc = 3), row two (rr = 2) cell of dat1. Notice that the values 

of the local variable ldat1 are also modified, since it is virtually related to dat1, as illustrated in the dialog below. 

 
WRITE ldat1 
                             A 3-dimensional Array 
                                         
                                     PAG(1) 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)              111     121     131     141 
                ROW(2)              211     221     231     241 
                ROW(3)              311     321     331     341 
                                         
                                     PAG(2) 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)                1       2       3       4 
                ROW(2)                2       4   1,000       8 
                ROW(3)                3       6       9      12 
 

 
 

The dynamic variable sdat1 is not automatically modified, since it is not virtually related to dat1. As illustrated below, sdat1 

still has the values of dat1 that were read in by the previous READ DISK statement. 

 
WRITE sdat1 
                       Dynamic Array by row, col and pag 
                                         
                                     PAG(1) 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)              111     121     131     141 
                ROW(2)              211     221     231     241 
                ROW(3)              311     321     331     341 



Promula Application Development System User's Manual 

307 

                                         
                                     PAG(2) 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)              112     122     132     142 
                ROW(2)              212     222     232     242 
                ROW(3)              312     322     332     342 
 

 
 

In fact, the values of the disk variable dat1 may be "restored" to their "original" state by transferring the values of sdat1 

back to disk with a WRITE DISK statement. 

 
WRITE DISK sdat1 

 

Notice that the values of the local variable ldat1 are also "restored", since it is virtually related to dat1 as illustrated in the 

dialog below. 

 
WRITE ldat1 
                             A 3-dimensional Array 
                                         
                                     PAG(1) 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)              111     121     131     141 
                ROW(2)              211     221     231     241 
                ROW(3)              311     321     331     341 
                                         
                                     PAG(2) 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)              112     122     132     142 
                ROW(2)              212     222     232     242 
                ROW(3)              312     322     332     342 
 

 
 

The dynamic variables associated with dat1 are not changed unless an explicit READ DISK or CLEAR variable statement 

is executed. As illustrated in the dialog below. 

 
WRITE dsv 
Dynamic Scalar 1,000 
 
WRITE drc 
                          Dynamic Array by row and col 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)                1       2       3       4 
                ROW(2)                2       4       6       8 
                ROW(3)                3       6       9      12 
 

 
 

The READ DISK statement transfers values from disk to memory. 

 
READ DISK dsv drc 
 
WRITE dsv 
Dynamic Scalar 232 



Promula Application Development System User's Manual 

308 

 
WRITE drc 
                          Dynamic Array by row and col 
                                         
                                 COL(1)  COL(2)  COL(3)  COL(4) 
                ROW(1)              112     122     132     142 
                ROW(2)              212     222     232     242 
                ROW(3)              312     322     332     342 

 
 

 

4.1.2.1  Accessing Subsets of Disk Variables 

The dynamic method for accessing array files described above allows a programmer to access dimensional sections of array 

variables on disk and to have different orderings for the dimensions of the local and disk variables. For example, the local 

variable dpr defined above is a pag-by-row section of the drow-by-dcol-by-dpag disk variable, dat1. 

 

Sometimes, in addition to accessing dimensional sections and reordering the structure of related disk and local variables, 

the programmer wants the local variable to be smaller than the disk variable. In other words, the programmer wants to bring 

in a subrange of values from one or more dimensions of the disk variable. The syntax of the DISK option described in the 

previous section is not flexible enough to support a floating subrange within a dimension. Consider for example the disk 

variable defined below: 
 
DEFINE SET af 
  dsub(500)   "Survey Subject" 
  dqst(100)   "Survey Question" 
  dyer(10)    "Survey Year" 
END SET 
 
DEFINE VARIABLE af 
  data(dsub,dqst,dyer) "Survey Responses by Subject, Question, and Year" 
END VARIABLE 

 

Suppose the programmer wants to be able to dynamically access the data for all dsub elements, a single arbitrary dyer 

element, and a range, say 20, of the dqst elements. In addition, the programmer wants to access the data through a local 

question-by-subject array. With the notation discussed thus far, he/she might try to define the local array as follows: 

 
DEFINE SET  
  sub(500)   "Survey Subject" 
  qst(20)    "Survey Question" 
END SET 
 
DEFINE VARIABLE 
  yp               "Year Pointer" 
  ldata(qst,sub)   "Survey Responses"  DISK(af,data(sub,qst,yp)) 
END VARIABLE 

 

The problem with this notation is that it will only allow the programmer to access the first 20 elements of set dqst. The data 

for dqst elements 21-100 cannot be accessed. Of course, the programmer could try increasing the size of set qst to 100, but 

that would define a local variable with 500 x 100 = 50,000 values = 200 Kbytes — too large to fit in memory on most 

platforms. The programmer might also try using virtual access, but that is slow and does not allow reordering of local sets. 

Finally, the programmer might try basepointing the qst dimension of the local array but then he/she could only access one 

dqst element at a time. None of these approaches is satisfactory. What is required is a means of having a basepoint and a 

local set corresponding to the same disk set.  In order to provide for this, an extended DISK option syntax is available. The 

extended syntax for defining a dynamic variable that can access a floating subrange of values from a disk variable is 

described below. 

 



Promula Application Development System User's Manual 

309 

Syntax: 

 
DEFINE VARIABLE [SCRATCH] 
  var[(sets)][,"desc"][,TYPE=type,] DISK(file,dvar[, BASE(dsets1)][, ORDER(dsets2)]) 
END VARIABLE 
 

Remarks: 

 

var is the identifier of a fixed or scratch variable. It is through var that your application will dynamically access 

the disk variable, dvar. 

 

sets is the list of local set identifiers specifying the dimensions of the variable var.   

 

desc is an optional descriptor for the variable var. 

 

type is the format type of var. This type, REAL, INTEGER, STRING, etc. must match the type of dvar. For 

REAL type variables, the width and decimal specifications of var are not required to match those of dvar.  For 

all other types, the width specifications of var and dvar must match.  

 

file is the identifier of an array file. In order to access dvar through var, the disk file specified when file is 

physically opened must contain dvar. 

 

dvar is the identifier of the actual disk variable that you want to access through var. 

 

dsets1 is an optional list of set identifiers, scalar variables or integer constants — one for each dimension of dvar. 

These define the local sets and pointers which correspond to the disk sets subscripting the dvar. 

 

dsets2 is an optional list of set identifiers and asterisks (*) — one for each dimension of dvar. These define the 

correspondence between the local sets and the disk sets which actually subscript dvar. Asterisks are used to 

indicate which dimensions of the disk variable are basepointed. 

 

Let's take a look at how to apply this extended syntax to our example. 

 

The database definition is the same:  

 
DEFINE SET af 
  dsub(500)   "Survey Subject" 
  dqst(100)   "Survey Question" 
  dyer(10)    "Survey Year" 
END SET 
 
DEFINE VARIABLE af 
  data(dsub,dqst,dyer) "Survey Responses by Subject, Question, and Year" 
END VARIABLE 
 

The programmer wants to be able to dynamically access the data for all dsub elements, a single arbitrary dyer element, and a 

range, say 20, of the dqst elements. In addition, the programmer wants to reorder the dimensions of the local variable as a 

qst-by-sub array. The syntax required for our example is  

 
DEFINE SET  
  sub(500)   "Survey Subject" 
  qst(20)    "Survey Question" 
END SET 
 
DEFINE VARIABLE 
  yp               "Year Pointer" 



Promula Application Development System User's Manual 

310 

  qp               "Question Pointer" 
  ldata(qst,sub)   "Survey Responses"  DISK(af,data, BASE(sub,qp,yp), ORDER(sub,qst,*)) 
END VARIABLE 

 

The BASE parameter of the DISK option tells PROMULA that the variables qp and yp are basepoints for the second and 

third dimensions of the disk variable, and that the set sub corresponds to its first dimension. The ORDER parameter of the 

DISK option tells PROMULA that the local sets sub and qst correspond to the first and second dimensions of the disk 

variable, and that ranges of values should be accessed from these dimensions. The third subscript of the ORDER parameter 

is an asterisk (*) indicating that a single element of the third dimension of the disk variable should be accessed. 

 

Given the above definition, any 20 consecutive dqst elements may be accessed by assigning the basepoint (first-element) 

value to variable qp and then executing a READ DISK statement. The programmer must be careful that the value of qp is 

at least 1 and no greater than 80 whenever a READ DISK or WRITE DISK is executed. For example, to read in the data 

for dqst elements 41 through 60, assign the value 41 to qp and execute a READ DISK statement. 

 

4.1.3  More About Database Management 

4.1.3.1  COPY file IMAGE 

 

It is possible to access a database without having to relate local variables to disk variables. The easiest way to do this is 

with the COPY file IMAGE statement. This variation of the COPY statement reads the definition of a database into 

memory and makes its sets, variables, and relations available for direct access. For example, if filea.dba is an array file on 

disk, the following code would load its definition into memory. 

 
DEFINE FILE 
  af TYPE=ARRAY 
END 
OPEN af "filea.dba" STATUS=OLD 
COPY af IMAGE 
 

4.1.3.2  The file:variable and file:set notations 

 

It is possible to directly access disk variables using the notation file:var. Where file is the identifier of a file which has been 

opened to an array file on disk, and var is the identifier of the database variable you wish to access. Similarly, the notation 

file:set may be used to reference sets in an array file. 

 

4.1.3.3  PAGED VIRTUAL and AUTOMATIC DYNAMIC Access 

Programs that manipulate database variables through virtual or direct access are easier to write than those that use dynamic 

access because explicit READ DISK, WRITE DISK, and CLEAR variables statements are not required. Unfortunately, 

virtual and direct access methods can be much slower than dynamic access. It seems the programmer must trade off ease of 

programming for execution speed. There is, however, a way to have the best of both worlds.  

 

As described in Chapter 3, the OPEN file statement can open array files as STATUS=VIRTUAL or 

STATUS=DYNAMIC. Files opened STATUS=VIRTUAL use paged virtual access. In this mode, large pieces of the 

database are transferred from disk to memory automatically by PROMULA. The efficiency of paged virtual access depends 

on the structure of the database variables and the way in which the virtual or disk variables are defined and used by the 

program. Files opened STATUS=DYNAMIC use automatic dynamic access. In this mode, the database is read into 

memory once — when the file is opened, and then it is written back out once — when the file is cleared. 

 



Promula Application Development System User's Manual 

311 

Of course, these methods do not provide the same degree of control that is possible when data access is described via the 

READ DISK and WRITE DISK statements. Furthermore, paged virtual and automatic dynamic access can require a great 

deal of memory and can only be used with small databases or with machines that have a large or virtual memory. 

 

4.1.3.4  Increasing PROMULA's Scratch Storage Area. 

 

Paged virtual and automatic dynamic access can only be used with small databases or with machines that have a large 

memory. There is, however, a way to increase the paging space (also called scratch storage) used for manipulating dynamic 

variables. This is done by including a           -PS=xx -DS=yy -VS=zz switch on the PROMULA command line.   

 

As mentioned in Chapter 3 (see discussion of SELECT MAP), PROMULA divides your working space into three 

partitions, each of which can accommodate about 32 Kbytes of storage. The three partitions are entitled Value Storage, 

Definition Storage, and Procedure Storage. The Value partition accommodates data values — the contents of variables. 

The Definition partition accommodates the definitions of data structures, sets, variables, menus, etc. The Procedure 

partition accommodates executable code — the statements of procedures. Your program is too large whenever any one of 

these three storage areas is filled. PROMULA's default memory allocation map is shown in Figure 4-2 below. This diagram 

indicates that PROMULA creates a 32K partition for each storage area, and that a scratch storage area whose size is 

hardware dependent is available at the "top" of memory. 

 

TOTAL  AVAILABLE  WORKING  SPACE 

DEFINITION PROCEDURE VALUE SCRATCH 

32K 32K 32K Hardware dependent 

 

The -PS=xx -DS=yy -VS=zz switch allows you to change the allocation of memory. The switch values (xx, yy, and zz)  are 

integers between 1 and 32. The switches have no effect on machines that employ a virtual memory system. 

 

The amount of storage required by your application can be determined by compiling it with SELECT MAP=ON and 

finding the maximum value attained by the storage counters. For example, the listing shown in Figure 4-2 indicates that the 

application requires a minimum of 10,011 bytes of value storage, 668 bytes of definition storage, and 92 bytes of procedure 

storage. A safe set of allocation switches for this program would be -VS=11 -DS=1 -PS=1. For example, entering the 

command line 

 
PROMULA -VS=11 -DS=1 -PS=1 RUN PROGRAM segment.xeq 

 

will start PROMULA and load the application stored in the file segment.xeq.  PROMULA will allocate a total of 13 Kbytes 

for the standard memory partitions and at least 83 Kbytes for scratch storage as diagrammed below.  

 

TOTAL AVAILABLE WORKING SPACE 

DEF PROC VAL SCRATCH 

1K 1K 11K Hardware dependent 

 

 

4.1.3.5  Automatic READ DISK 

 

PROMULA performs an automatic READ DISK operation whenever a dynamic variable is encountered on the right side 

of an equation or displayed with a WRITE or BROWSE statement — unless the variable has already been read into 

memory. The automatic READ DISK does not automatically move pointer variables, but it does ensure that dynamic 

variables have default values. The default for the basepointed dimensions of dynamic variables is the element indexed by 

the value of the pointer related to the disk set. 

 

PROMULA never performs an automatic WRITE DISK of a dynamic variable. 

 



Promula Application Development System User's Manual 

312 

4.1.3.6  Overlap Mapping 

 

It is possible to use a single n-dimensional local variable to virtually access several n-1 dimensional disk variables. The 

local and disk variables must all be of the same type, and the disk variables must be contiguous in a single database. The 

DISK option should specify the identifier of the first of the contiguous variables to be accessed. For example, the two-

dimensional local variable data may be mapped across the disk vectors name, adr1, adr2, and phon as shown below: 

 

Database Definition: Fixed Variable Definitions 

DEFINE FILE 
  af TYPE=ARRAY "ARRAY FILE" 
END FILE 
OPEN af "test.dba" STATUS=NEW 
DEFINE SET 
  rec(100) 
END SET 
DEFINE VARIABLE af 
  name(rec) TYPE=STRING(30) "NAME" 
  adr1(rec) TYPE=STRING(30) "Address 1" 
  adr2(rec) TYPE=STRING(30) "Address 2" 
  phon(rec) TYPE=STRING(30) "PHONE" 
END VARIABLE af 
CLEAR AF 

DEFINE FILE 
  af TYPE=ARRAY "ARRAY FILE" 
END FILE 
 
DEFINE SET 
  rec(100) 
  var(4) 
END SET 
 
DEFINE VARIABLE 
data(rec,var) TYPE=STRING(30) "Data" DISK(af,name) 
END VARIABLE 
 

 

4.2  Program Management in PROMULA 
 

In addition to helping you manage data with array variables and database files, PROMULA can help you manage large 

programs with segments and segment files. If your program code or data becomes too large to fit in your working space, 

you may divide it into segments that can be transferred to and from disk on an as needed basis. A segment is a program 

unit. When a segment is defined, it is explicitly given a name and is implicitly given a place in a program hierarchy. 

Program segmentation and segment files allow you to create very large, structured applications that run in environments 

with limited memory. Segment files also allow you to keep large program source codes in separate files so they can be 

edited, compiled, and debugged separately. 

 

Figure 4-1 is a schematic of how PROMULA organizes a segmented program; the segments could be kept in separate files 

on disk or grouped together in a single file. The resultant program has a hierarchical tree structure in which the lower 

segments of the tree inherit the structures and procedures of their parent segments.  

 

Main

Seg11

Seg2Seg1 Seg3

Seg31Seg21 Seg22

Seg211 Seg221
 

 

Figure 4-1:  Hierarchy of a Segmented Program 

 



Promula Application Development System User's Manual 

313 

4.2.1  A Segmented Program with a Database 
Figure 4-2 is the listing of an artificially large program that has been "segmented" and "databased" in order to fit in a small 

working space. 

 

The program in Figure 4-2 has five variables:  var, var1, var11, var2, and var3. Together they require 70,000 words or 280 

Kilobytes of storage: 

 

 Storage 
Variable Words Bytes 
var 50,000 200K 
var1 5,000 20K 
var11 5,000 20K 
var2 5,000 20K 
var3 5,000 20K  
Total 70,000 280K  

 

How do you fit them in a space of, say, 64 Kilobytes? Easy, break the oversized program into smaller pieces and only bring 

in the necessary pieces one at a time. This is analogous to using a set of encyclopedias:  you work with the one volume that 

you are interested in while the rest of them sit on the shelf until they are needed. A mapped compilation listing of the source 

code that produced SEGMENT.XEQ is shown below. 

 
Figure 4-2:  A Segmented Program with a Database 

Storage Allocation 
Value   Def  Proc Line#   PROMULA Source Statement 
   11    24    20     1   OPEN SEGMENT 'segment.xeq', STATUS=NEW 
   11    24    20     2   DEFINE PROGRAM "************ Begin Segment MAIN **************" 
   11    24    30     3   DEFINE FILE 
   11    24    30     4     Filex 
   11    39    30     5   END 
   11    39    30     6     OPEN Filex "segment.dba", STATUS=NEW 
   11    39    30     7   DEFINE SET 
   11    39    30     8     row(500) 
   11   551    30     9     col(10) 
   11   573    30    10     page(10) 
   11   595    30    11   END 
   11   595    30    12   DEFINE VARIABLE  Filex 
   11   595    30    13     var(row,col,page), 'Data for Segment MAIN' 
   11   613    30    14   END 
   11   616    30    15   DEFINE PROCEDURE proc 
   11   622    30    16     OPEN Filex "segment.dba", STATUS=OLD 
   11   622    37    17     WRITE( 'You are in Segment MAIN') 
   11   622    49    18     READ SEGMENT  Seg1, DO(proc1) 
   11   622    53    19     READ SEGMENT  Seg2, DO(proc2) 
   11   622    57    20     READ SEGMENT  Seg3, DO(proc3) 
   11   622    61    21   END proc 
   11   622    62    22   DEFINE SEGMENT Seg1 "********** Begin Seg1 ******************" 
   11   622    62    23      DEFINE VARIABLE 
   11   622    62    24        var1(row,col), 'Data for Segment Seg1' 
 5011   639    62    25      END 
 5011   639    62    26      DEFINE PROCEDURE proc1 
 5011   645    62    27        WRITE('You are in Segment Seg1') 
 5011   645    74    28        READ SEGMENT  Seg11, DO(proc11) 
 5011   645    78    29      END proc1 
 5011   645    79    30      DEFINE SEGMENT Seg11 "****** Begin Seg11 *****************" 
 5011   645    79    31         DEFINE VARIABLE 
 5011   645    79    32            var11(row,page), 'Data for Segment Seg11' 
10011   662    79    33         END 
10011   662    79    34         DEFINE PROCEDURE proc11 
10011   668    79    35            WRITE('You are in Segment Seg11') 
10011   668    91    36         END proc11 
10011   668    92    37       END SEGMENT Seg11 
 5011   645    79    38   END SEGMENT Seg1 



Promula Application Development System User's Manual 

314 

Figure 4-2:  A Segmented Program with a Database 
   11   622    62    39   DEFINE SEGMENT Seg2 "********** Begin Seg2  
******************" 
   11   622    62    40      DEFINE VARIABLE 
   11   622    62    41        var2(row,page), 'Data for Segment Seg2' 
 5011   639    62    42      END 
 5011   639    62    43      DEFINE PROCEDURE proc2 
 5011   645    62    44        WRITE('You are in Segment Seg2') 
 5011   645    74    45      END proc2 
 5011   645    75    46   END SEGMENT Seg2 
   11   622    62    47   DEFINE SEGMENT Seg3 "********** Begin Seg3  
******************" 
   11   622    62    48      DEFINE VARIABLE 
   11   622    62    49        var3(row,col), 'Data for Segment Seg3' 
 5011   639    62    50      END 
 5011   639    62    51      DEFINE PROCEDURE proc3 
 5011   645    62    52        WRITE('You are in Segment Seg3') 
 5011   645    74    53      END proc3 
 5011   645    75    54   END SEGMENT Seg3 
   11   622    62    55   END PROGRAM 
   11   622    62    56   ************************** End Segment MAIN ****************** 
 
 

 

 

The program in Figure 4-2 combines program segmentation and database management to give you what is sometimes 

called dynamic memory management. Dynamic memory management means being able to develop and use large programs. 

The memory management is achieved in two ways:  using database files to store program variables, and using program 

segmentation to store program code. When the program is compiled, PROMULA creates two files:  the program segments 

are physically stored on the disk file named SEGMENT.XEQ. The array file Filex is physically stored on the disk file named 

SEGMENT.DBA. 

 

var

a three-dimensional

disk variable

segment.dba
 Array  Database  File

Main

Seg11

Seg2Seg1 Seg3

segment.xeq
 Segment  File

 
 

Figure 4-3:  Hierarchical Structure of SEGMENT.XEQ and the database SEGMENT.DBA 
 

This diagram is the organizational chart of the program in Figure 4-2 and its supporting database. The database is stored in 

a disk file referred to as Filex in the program. The five segments are linked into a hierarchy of three levels of inheritance. 

The level of inheritance is increasing from top to bottom in the diagram. For example, the segment MAIN inherits no 

information from other program segments; it is at inheritance level 0. Segments Seg1, Seg2, and Seg3 inherit information 

from segment MAIN; they are at inheritance level 1. Segment Seg11 inherits information from segments Seg1 and MAIN; 

it is at inheritance level 2. 

 

Segment inheritance in the context of the diagram means the following:  to access information in a segment of inheritance 

level n you must first gain access to the information in the segment at inheritance n-1 that is directly linked to the segment 

at level n. In addition, segments at the same level of inheritance cannot share information directly, i.e., they cannot be in 

memory simultaneously. Parallel segments can share information only through a common parent segment and/or through 

shared databases. In the program of Figure 4-2, segment inheritance is manifested in terms of the following possible 

working space configurations: 



Promula Application Development System User's Manual 

315 

 

1. Segment MAIN may exist in working space alone. 

2. Segment Seg1 can exist in working space with segment MAIN alone or with MAIN and Seg11. 

3. Segment Seg11 can exist in working space only with MAIN and Seg1. 

4. Segment Seg2 can exist in working space only with segment MAIN. 

5. Segment Seg3 can exist in working space only with segment MAIN. 

6. Segments Seg1, Seg2 and Seg3 cannot be in your working space simultaneously. 

7. All segments share the information in the master segment MAIN; thus, all segments have access to the information in 

the database Filex, which is defined in the MAIN segment. 

 

The storage allocation for the segments is summarized below:  

 

 

Segment Begins at Ends at 

 Value Definition Procedure Value Definition Procedure 

MAIN  11 24 20 11 622 62 
Seg1 11 622 62 5011 645 79 

Seg11 5011 645 78 10011 668 92 
Seg2 11 622 62 5011 645 75 
Seg3 11 622 62 5011 645 75 

 

Figure 4-4:  Storage Allocation Statistics for SEGMENT.XEQ  
 

Notice that the level n segments begin where their parent (level n-1) segments end. The segment MAIN starts with the 

DEFINE PROGRAM statement and ends with the END PROGRAM statement. Each of the other segments starts with a 

DEFINE SEGMENT statement and ends with an END SEGMENT statement. 

 

Variable var is a disk variable:  its values are stored on the array file Filex and, thus, do not take up any RAM space! This 

saves you 200 Kilobytes of working space without compromising your ability to access the values of var in your program. 

The other four variables — var1, var11, var2, and var3 — occupy fixed spaces in your working space and are called fixed 

variables. Each of these variables requires 20 Kilobytes of RAM and is available to you only if you are working in the 

program segment where the variable is defined.  For example, var1 is available in  segments Seg1 and Seg11; var11 is 

available only in Seg11; var2 is available only in Seg2; and var3 is available only in Seg3. If all four fixed variables were in 

RAM simultaneously they would require 80 Kilobytes of memory. Separately, however, they each require 20 Kilobytes 

only, for a maximum requirement of 40 Kilobytes (when both var1 and var11 are in RAM). This segmentation saves you 40 

Kilobytes of RAM space. 

 

Thus, in this example you only require 40 Kilobytes of RAM to use 280 Kilobytes of data values. 

 

Figure 4-5 below contains a sample interaction with the program SEGMENT.XEQ. 

 

Figure 4-5:  An Interactive Run with a Segmented Program 
  PROMULA? RUN PROGRAM segment.xeq 
   
  PROMULA? DO proc 
  You are in Segment MAIN 
  You are in Segment Seg1 
  You are in Segment Seg11 
  You are in Segment Seg2 
  You are in Segment Seg3 
   
  PROMULA? AUDIT SET 
  Identifier Description 
  ROW 
  COL 
  PAGE 



Promula Application Development System User's Manual 

316 

Figure 4-5:  An Interactive Run with a Segmented Program 
   
  PROMULA? AUDIT VARIABLE 
  Identifier Description 
  VAR        Data for Segment MAIN 
  VAR3       Data for Segment Seg3 
   
  var = 10 
   
  PROMULA? SELECT row(450-455), col(4-8), page(1) 
  PROMULA? WRITE var 
     
                               A Segmented Program with a Database Page 1 
   
                               Data for Segment MAIN 
   
                                      PAGE(1) 
   
                               COL(4)  COL(5)  COL(6)  COL(7)  COL(8) 
              ROW(450)             10      10      10      10      10 
              ROW(451)             10      10      10      10      10 
              ROW(452)             10      10      10      10      10 
              ROW(453)             10      10      10      10      10 
              ROW(454)             10      10      10      10      10 
              ROW(455)             10      10      10      10      10 

 
 

 

4.2.2  Multi-Segment Programs in Separate Disk Files 
If the segments of your program become very large, or if you just want the convenience of being able to edit and debug 

them independently, you can store each segment in a separate file. 

 

If you choose to do this, there are several important rules you must follow. 

 

1. In order to use any structures defined in a segment, you must first physically open the disk file that contains the 

segment then read in the segment by executing OPEN SEGMENT and READ SEGMENT statements. 

 

2. If you change and recompile a parent segment, you must also recompile all the segments "under" it. Lower level 

segments and parallel segments, however, can be recompiled without having to recompile their parent segments. 

 

3. After returning from a lower level segment, you must reopen the parent segment before you can write to it with a 

WRITE VALUE segment statement. 

 

Example: 

 

The following example shows how the source code of SEGMENT.XEQ would have to be modified in order for each segment 

to reside in a separate disk file. 

 

The file containing segment MAIN is shown below. Notice that it contains a DEFINE PROGRAM statement but no 

DEFINE SEGMENT statement. 

 

Procedure proc in this multi-file version of SEGMENT.XEQ has been modified by adding the appropriate OPEN SEGMENT 

statements before the READ SEGMENT statements that execute the lower level segments. 

 

MAIN 
OPEN SEGMENT "segment.xeq"  STATUS=NEW  
******************* Begin Main Segment ************* 



Promula Application Development System User's Manual 

317 

DEFINE PROGRAM "A Segmented Program with a Database" 
DEFINE FILE 
  Filex 
END 
OPEN Filex "segment.dba", STATUS=NEW 
DEFINE SET 
  row(500) 
  col(10) 
  page(10) 
END  
DEFINE VARIABLE  Filex 
  var(row,col,page), 'Data for Segment MAIN' 
END 
DEFINE PROCEDURE proc 
  OPEN Filex "segment.dba" 
  WRITE( 'You are in Segment MAIN') 
  OPEN SEGMENT "seg1.xeq" 
  READ SEGMENT  Seg1, DO(proc1)   
  OPEN SEGMENT "seg2.xeq" 
  READ SEGMENT  Seg2, DO(proc2) 
  OPEN SEGMENT "seg3.xeq" 
  READ SEGMENT  Seg3, DO(proc3) 
  CLEAR filex 
END proc 
**************** End Main Segment *********************** 
END PROGRAM 
STOP 

 

The files containing the segments seg1, seg2, and seg3 are shown below. Notice that the file containing segment MAIN is 

opened and read at the top of each of these files so that the definitions in segment MAIN can be used. This implicitly puts 

seg1, seg2, and seg3 at inheritance level 1 under segment MAIN . 

 
seg1 

OPEN SEGMENT "segment.xeq" STATUS=OLD 
READ SEGMENT MAIN 
OPEN SEGMENT "seg1.xeq" STATUS=NEW 
 
DEFINE SEGMENT Seg1 
**************** Begin Segment 1 ******************* 
   DEFINE VARIABLE 
     var1(row,col), 'Data for Segment Seg1' 
   END 
   DEFINE PROCEDURE proc1 
     WRITE('You are in Segment Seg1') 
     OPEN SEGMENT "seg11.xeq" 
     READ SEGMENT  Seg11, DO(proc11)   
   END proc1 
**************** End Segment Seg1 ****************** 
END SEGMENT Seg1 
STOP 

 
seg2 

OPEN SEGMENT "segment.xeq" STATUS=OLD 
READ SEGMENT MAIN 
OPEN SEGMENT "seg2.xeq" STATUS=NEW 
 
DEFINE SEGMENT Seg2                                   
**************** Begin Segment Seg2 ****************  
   DEFINE VARIABLE                                       
     var2(row,page), 'Data for Segment Seg2'             



Promula Application Development System User's Manual 

318 

   END                                                   
   DEFINE PROCEDURE proc2                                
     WRITE('You are in Segment Seg2')                    
   END proc2                                             
***************** End Segment Seg2 *****************  
END SEGMENT Seg2                                      
STOP 

 
seg3 

OPEN SEGMENT "segment.xeq" STATUS=OLD 
READ SEGMENT MAIN 
OPEN SEGMENT "seg3.xeq" STATUS=NEW 
 
DEFINE SEGMENT Seg3                                    
***************** Begin Segment Seg3 ***************   
   DEFINE VARIABLE                                        
     var3(row,col), 'Data for Segment Seg3'               
   END                                                    
   DEFINE PROCEDURE proc3                                 
     WRITE('You are in Segment Seg3')                     
   END proc3                                              
**************** End Segment Seg3 ******************   
END SEGMENT Seg3                                       
STOP 

 

The file containing seg11 is shown below. Notice that both parent segments:  seg1 and MAIN are opened and read at the top 

of this file. This implicitly puts seg11 at inheritance level 2 under segments MAIN and seg1. 

 
seg11 

 
OPEN SEGMENT "segment.xeq" STATUS=OLD 
READ SEGMENT MAIN 
OPEN SEGMENT "seg1.xeq" STATUS=OLD 
READ SEGMENT seg1 
OPEN SEGMENT "seg11.xeq" STATUS=NEW 
 
DEFINE SEGMENT Seg11 
*************** Begin Segment Seg11 ************* 
  DEFINE VARIABLE  
     var11(row,page), 'Data for Segment Seg11' 
  END 
  DEFINE PROCEDURE proc11 
      WRITE('You are in Segment Seg11') 
  END proc11 
**************** End Segment Seg11 ************** 
END SEGMENT Seg11 
STOP 
 

The STOP statements at the end of all the files are used during multi-file compilations; they return control to a "job file" 

that contains a series of RUN statements that compile the segments of the program in the right order. A job file can be a 

convenient way to automatically compile all segments after you have changed segment MAIN. 

 

A simple sequential job file is shown below. Your own job files can be more elaborate allowing you to select individual 

segment files for compilation. The important thing to remember is that if you compile a parent segment, all segments 

"under" it must also be compiled in order to insure that the beginnings and endings of Value, Definition, and Procedure 

storage for each segment are correct and consistent.   
 
WRITE("RUNNING segment.prm") 
RUN segment.prm 
WRITE("RUNNING seg1.prm") 



Promula Application Development System User's Manual 

319 

RUN seg1.prm 
WRITE("RUNNING seg11.prm") 
RUN seg11.prm 
WRITE("RUNNING seg2.prm") 
RUN seg2.prm 
WRITE("RUNNING seg3.prm") 
RUN seg3.prm 
STOP PROMULA 
 



Promula Application Development System User's Manual 

320 

 

5.  CONFIGURING PROMULA 
Most of PROMULA's system options may be configured by each application through the SELECT option statement. 

However, the physical configuration of PROMULA's graphics modes may only be controlled through PROMULA's 

graphics configuration program PCONFIG.XEQ. This program is a PROMULA application that provides a menu-driven 

interface for configuring each of PROMULA's graphics modes to your hardware's capabilities and your preferences so that 

you can produce plots on your screen and printer. The program provides the means to select predefined graphics 

configurations and to create and manage custom graphics configurations for hardware that does not work under one of the 

predefined configurations. Typically, you will only have to configure PROMULA's graphics once — when you first install 

PROMULA on your system. 

 

Currently, PROMULA supports graphics configurations for the following types of devices:  

 

1. CGA medium resolution 3-color graphics adapter 

2. CGA high resolution black & white graphics adapter 

3. EGA 16 color high resolution graphics adapter 

4. VGA 16 color high resolution graphics adapter 

5. IBM/Epson printer, high resolution, landscape 

6. IBM/Epson printer, high resolution, portrait 

7. IBM/Epson printer, medium resolution, landscape 

8. IBM/Epson printer, medium resolution, portrait 

9, IBM/Epson printer, CGA high resolution screen dump 

10. IBM/Epson printer, CGA medium resolution screen dump 

11. HP LaserJet II printer, high resolution, landscape  

12. HP LaserJet II printer, medium resolution, landscape 

13. HP LaserJet II printer, high resolution, portrait 

14. HP LaserJet II printer, medium resolution, portrait 

15. VT 330 SIXEL graphics 

16. VT 240 REGIS graphics 

17. IBM/Epson printer, VGA high resolution screen dump 

18. LN03 Plus Printer, landscape 

 

PROMULA's default graphics configuration is as follows: 

 

MEDIUM mode CGA medium resolution 3-color graphics adapter 

HIGH mode CGA high resolution black & white graphics adapter 

PLOTTER mode IBM/Epson printer, high resolution, landscape 

 

 

5.1  Using the Graphics Configuration Program 
 

There are two primary functions of the graphics configuration program: 

 

1. Selecting a graphics configuration to be used by one of PROMULA's graphics modes. 

2. Managing custom graphics configurations. 

 

5.1.1  Selecting Graphics Configurations 
 

Configuring PROMULA's graphics is a simple two-step process. First, you select the graphics mode you wish to configure. 

Then you select the graphics configuration you want to assign to the selected mode. 

 



Promula Application Development System User's Manual 

321 

Although it is possible to assign any device to any graphics mode, only configurations supported by your hardware will 

perform properly. If you misconfigure PROMULA's graphics, it is likely that plots on screen or on the printer will not look 

right, or your computer may lock up when PROMULA tries to produce a plot. If either of these events occurs, first try 

pressing the Esc key; if that does not help, reboot your computer and reconfigure PROMULA's graphics for a device that is 

supported by your hardware.  

 

The following screens illustrate this sequence of steps. First, you run the program PCONFIG.XEQ.  The screen below 

shows the main menu of the graphics configuration program. 

 

                      PROMULA GRAPHICS CONFIGURATION PROGRAM

          MAIN MENU

         F1 Exit to PROMULA Main Menu

         F2 Create, Modify, or Delete Custom Graphics Configurations

         F3 Configure Graphics Modes

         F4 Test PROMULA Graphics

 
 

Choosing the third option off the main menu will bring up the graphics mode selection screen shown below. Use the arrow 

keys to highlight the graphics mode you wish to configure and press Enter to select it. 

 



Promula Application Development System User's Manual 

322 

       Select the graphics mode you wish to configure, or press [End].

 Identifier Description

 1          MEDIUM

 2          HIGH
 3          PLOTTER

              End: Exit  Arrows PgUp PgDn Home: Move  Enter: Select

 
 

After selecting a graphics mode to configure, the graphics configuration selection screen is displayed. Use the arrow keys to 

highlight the graphics configuration you want to assign to the selected graphics mode and press Enter to select it. 

 

 

 

After making these two selections, your new graphics configuration will be written permanently in the PROMULA 

configuration file, PROMULA.PAK, and you will be returned to the graphics configuration program main menu where 

you may exit the program and use PROMULA. 

 

5.1.2  Managing Custom Graphics Configurations 
 

You can use the graphics configuration program to create new graphics configurations that satisfy the requirements of your 

hardware and/or your preferences. Changing the line colors and patterns requires no technical knowledge, but changing plot 

sizes, especially for printers, requires detailed technical information about your printer's data transfer protocol. 

 

Currently, the following items are used to define a PROMULA graphics configuration: 

 

1. Device Descriptor 

 

 This is a string of up to sixty characters that describes the configuration definition. It is used only for descriptive 

purposes, and its value does not affect the behavior of graphics in any way. 

 

2. Device type 

 

 This is a code describing the type of output device that will be used for plots. 

 

 0  =  video 

 1  =  raster-printer, e.g., HP LaserJet 

 2  =  vector-video, e.g., VT 240 Regis Graphics 

 3  =  raster-video, e.g., VT 330 Sixel Graphics 



Promula Application Development System User's Manual 

323 

 4  =  vector-printer, e.g., a Pen Plotter  

 

3. Horizontal text pixel width 

 

 This is the width in pixels of each character of horizontal text that may appear with a plot. Text on plots uses an 

internally defined fixed-width font. 

 

4. Horizontal text pixel height 

 

 This is the height in pixels of each character of horizontal text that may appear with a plot. 

 

5. Vertical text pixel width 

 

 This is the width in pixels of each character of vertical text that appears with the plot. 

 

6. Vertical text pixel height  

 

 This is the height in pixels of each character of vertical text that appears with the plot. 

 

7. Total width in pixels 

 

 This is the total width of the plot area in pixels. 

 

8. Total height in pixels 

 

 This is the total height of the plot area in pixels. 

 

9. Total width in standard units  

 

 This is the total width of the plot, including accompanying text, in standard units, typically inches. 

 

10. Total height in standard units 

 

 This is the total height of the plot, including accompanying text, in standard units, typically inches. 

 

11. Border color code 

 

 In LINE and VALUES plots, this is the color to be used for the border around the plot and all text displayed with the 

plot. In all other plot styles (i.e., PIE-CHARTS, MARKED-POINT PLOTS, and BAR PLOTS), the entire image will 

be drawn in this color. 

 

12. Line color codes 

 

 These six values specify the colors to be used for the plotted curves in LINE and VALUES plots. The colors 

available depend on your hardware. The color codes used by PROMULA are listed below. 

 

  

SIXTEEN-COLOR GRAPHICS CONFIGURATIONS. 

 

 0 = BLACK  1 = BLUE  2 = GREEN  3 = CYAN     
 4 = RED  5 = PURPLE  6 = YELLOW  7 = WHITE    
 8 = GREY  9 = LT BLUE 10 = LT GREEN 11 = LT CYAN  
12 = LT RED 13 = LT PURPLE 14 = LT YELLOW 15 = LT WHITE 

 

 THREE-COLOR GRAPHICS CONFIGURATIONS. 

 



Promula Application Development System User's Manual 

324 

1=CYAN 2=MAGENTA 3=WHITE 
 

 For monochrome monitors and printers the only valid color code is 1. 

 

13. Line patterns 

 

 These six strings of twenty-character values specify the patterns to be used for the plotted curves in LINE and 

VALUES plots. The default line patterns are shown below: 

 

SIXTEEN-COLOR THREE-COLOR MONOCHROME MONITORS 

MONITORS MONITORS AND PRINTERS 

            
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXX 
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX X X X X X X X X  
XXXXXXXXXXXXXXXX XXXX    XXXX XXXX    XXXX 
XXXXXXXXXXXXXXXX XXXX    XXXX XX  XX  XX  XX 
XXXXXXXXXXXXXXXX XXXX    XXXX XXXX  X  XXXX  X 

 

14. Video BIOS type code 

 

 This decimal number is used to tell PROMULA the appropriate settings to use for your graphics monitor. For 

example, the video BIOS type codes for PROMULA's four video configurations are listed below: 

 

Configuration  Code 

   

1. CGA medium resolution 3-color graphics   4 

2. CGA high resolution black & white graphics   6 

3. EGA 16 color high resolution graphics 16 

4. VGA 16 color high resolution graphics 18 

 

For additional information on the Video BIOS type code consult Milton, R.  Programmers Guide to PC and PS/2 

Video Systems  Microsoft Press; Redmond, Washington (1987)  

 

15. Raster Orientation:  0=portrait, 1=landscape 

 

 For raster devices such as printers, this code specifies the orientation of the image. 

 

16. Raster bandwidth 

17. Raster horizontal bit multiplier 

18. Raster vertical bit multiplier 

19. Raster initialization string 

20. Raster start-of-line string 

21. Raster end-of-line string 

22. Raster end-of-plot string 

 

Items 16 through 22 are used to control raster devices (e.g., printers). See your printer manual for the values of these 

parameters. 

 

23. Vector Draw line string 

24. Vector Write Horizontal Text String 

25. Vector Write Vertical Text String 

26. Vector draw Circle String 

 

Items 23 through 26 are used to control vector devices (e.g., pen plotters). See your plotter manual for the values of these 

parameters. 

 



Promula Application Development System User's Manual 

325 

After determining the values of the items to include in a custom graphics definition, you may use the graphics configuration 

program to create a configuration that matches these specifications. 

 

First load the program and select option 2 off the main menu. This brings up the custom graphics management menu shown 

below.  

 

From this menu, you can create a new custom graphics configuration, or modify or delete an existing one. To create a new 

configuration, select option 2 from this menu. This will bring up the configuration selection screen. 

 

Next, select a configuration to use as the basis for the new one. 

 

Identifier Description

1          CGA medium resolution 3-color graphics

2    CGA high resoluti9on black & white graphics

3    EGA 16 color high resolution graphics

4    VGA 16 color high resolution graphics

5    IBM/Epson printer, high resolution, landscape

6    IBM/Epson printer, high resolution, portrait

7    IBM Epson/printer, medium resolution, landscape

8    IBM/Epson printer, medium resolution, portrait

9    IBM/Epson printer, CGA high resolution screen dump

10    IBM/Epson printer, CGA medium resolution screen dump

11    HP LaserJet II printer, high resolution, landscape

12    HP LaserJet II printer, medium resolution, landscape

13    HP LaserJet II printer, high resolution, p9ortrait

14    HP laserJet II printer, medium resolution, portrait

15    VT 330 SIXEL graphics

16    VT 240 REGIS graphics

17    IBM/Epson printer, VGA resolution screen dump

   Select a configuration to use as the basis for the new one, or press [End].

              End: Exit  Arrows PgUp PgDn Home: Move  Enter: Select

 
 

After selecting a template configuration, you can edit its descriptor to give it a unique name. 

 



Promula Application Development System User's Manual 

326 

                Edit the description of graphics configuration #19

   GCD(19)                          CGA high resolution black & white graphics

  Enter value or End? NEW CGA HI RES (SMALL PLOT)

 
 

Last, enter the parameters associated with the new configuration using PROMULA's interactive data editor on the screen 

below. 

 

Device type: 0-video;1,3=raster;2,4=vector 0

Horizontal text pixel width 8

Horizontal text pixel height 8

Vertical text pixel width 8

Vertical text pixel height 8

Total width width in pixels   500

Total height in pixels 200

Total width in standard units 16

Total height in standard units 12

COLOR CODES: 01=BLACK

Background color code 1

LINE COLORS

(1) 1

                Edit the parameters of graphics configuration #19

         End: Exit  Fn Shift-Fn PgUp PgDn Home Arrows: Select Enter: Edit

NEW CGA HI RES (SMALL PLOT)

 
 

The custom configuration management menu also offers the options of modifying or deleting existing custom graphics 

configurations. If you choose to modify an existing configuration, the list of existing custom graphics configurations will be 

displayed and you may select one for editing. If you choose to delete an existing configuration, the list of existing custom 

graphics configurations will be displayed and you may select one to be deleted. 



Promula Application Development System User's Manual 

327 

5.1.3  Testing PROMULA Graphics 
 

The graphics configuration program also offers the opportunity to test graphics configurations. Selecting the fourth option 

from the configuration program's main menu brings up the plot testing control screen. From this screen, you may change 

the graphics modes or generate the various types of PROMULA plots. 

 

             Select the style of plot you wish to view, or press END.

CURRENT GRAPHICS MODE IS HIGH

0 = CHANGE GRAPHICS MODE

1 = NORMAL

2 = LINE

3 = SCATTER

4 = BAR

5 = STACK

6 = PIECHART

7 = VALUES

or press [End] to Exit

  ?

 

 


	1.  INTRODUCTION
	1.1  Organization of the Manual
	1.2  What is PROMULA?
	1.3  PROMULA Language Highlights
	1.3.1  Total Programming Environment
	1.3.1  Structured Notation
	1.3.2  Language Tutorial
	1.3.3  Language Course
	1.3.4  Tutorial Writer
	1.3.5  Menu Manager
	1.3.6  Data Editor
	1.3.7  Report Generator
	1.3.8  Graphics
	1.3.9  Command Mode
	1.3.10  Compilation Mode
	1.3.11  Conversational Mode
	1.3.12  Multidimensional Data Structures
	1.3.13  Array or Matrix Equations
	1.3.14  Equation Solver
	1.3.15  Variable Management System
	1.3.16  Program Management System
	1.3.17  Dynamic Simulation
	1.3.18  Windows
	1.3.19  Mathematical and Statistical Functions
	1.3.20  Command-Line Recall
	1.3.21  Multi-platform Performance


	2.  PROMULA BASICS
	2.1.  The PROMULA Application Development System
	2.1.1.  Starting PROMULA
	2.1.2.  The PROMULA Main Menu
	2.1.2.1.  F1 -- Exit PROMULA
	2.1.2.2.  F2 -- Restart PROMULA
	2.1.2.3.  F3 -- Run the PROMULA Tutorial
	2.1.2.4.  F4 -- Edit a Source File
	2.1.2.5.  F5 -- Compile a Source Program
	2.1.2.6.  F6 -- Run a Program from the Console
	2.1.2.7.  F7 -- Resume an Interrupted Program
	2.1.2.8.  F8 -- Run a Program from a Disk File
	2.1.2.9.  F9 -- Run a Menu of Applications
	2.1.2.10.  F10 -- Use the PROMULA Language

	2.1.3.  Running Interactive Programs in Batch
	2.1.4.  PROMULA Keyboard Conventions
	2.1.4.1.  Esc -- Escape to the PROMULA Main Menu
	2.1.4.2.  Alt-H -- Get Context-sensitive Help

	2.1.5.  Line Editing
	2.1.6.  Printer Control

	2.2.  PROMULA Application Programming
	2.2.1.  Data Definition
	2.2.1.1.  Variables -- Scalars and Arrays
	2.2.1.2.  Planning the Data Structures for an Application
	2.2.1.3.  Defining Sets
	2.2.1.4.  Defining Variables
	2.2.1.5.  Relating Sets and Variables

	2.2.2.  Program Control
	2.2.2.1.  Procedures
	2.2.2.2.  Linear Flow
	2.2.2.3.  Conditional Branches
	2.2.2.4.  Looping

	2.2.3.  Data Manipulation
	2.2.3.1.  Reading in Data
	2.2.3.2.  Selecting Sets
	2.2.3.3.  Sorting Sets
	2.2.3.4.  Writing Equations

	2.2.4.  Report Generation
	2.2.4.1.  Writing Variables
	2.2.4.2.  Saving a Report on Disk
	2.2.4.3.  Plotting Variables

	2.2.5.  Interface Design
	2.2.5.1.  Interactive and Noninteractive Programs
	2.2.5.2.  Selections
	2.2.5.2.1    Selecting from a Fixed Number of Options
	2.2.5.2.2    Selecting Variables
	2.2.5.2.3    Selecting Set Elements

	2.2.5.3.  Editing Data
	2.2.5.4.  Multi-Page Displays and Windowing

	2.2.6.  Application Programming Summary


	3.  PROMULA LANGUAGE REFERENCE
	3.1  The PROMULA Nouns
	3.1.1  Equation
	3.1.2  Expression -- Arithmetic
	3.1.3  Expression -- Boolean
	3.1.4  Expression -- Character
	3.1.5  Expression -- Functional
	3.1.5.1  Arithmetic Functions
	3.1.5.2  File Management Functions
	3.1.5.3  The INDIRECT Function

	3.1.6  Expression -- Logical
	3.1.7  Expression -- Numeric
	3.1.8  Expression -- Relational
	3.1.9  File
	3.1.9.1  Data Files
	3.1.9.1.1    Text Files
	3.1.9.1.2    Random Files
	3.1.9.1.3    Inverted Files
	3.1.9.1.4    Array Files

	3.1.9.2  Segment Files
	3.1.9.3  Dialog Files
	3.1.9.4  Access Methods
	3.1.9.5  File Names
	3.1.9.6  Interface PROMULA Files with Other Software

	3.1.10  Function
	3.1.11  Menu
	3.1.11.1  Pick Menus
	3.1.11.2  Data Menus

	3.1.12  Numeric Precision
	3.1.13  Parameter
	3.1.14  Procedure
	3.1.15  Program
	3.1.16  Relation
	3.1.17  Segment
	3.1.18  Set
	3.1.19  Statement
	3.1.20  System
	3.1.21  Table
	3.1.22  Time Parameters
	3.1.23  Variable
	3.1.24  Window -- Basic
	3.1.25  Window -- Advanced

	3.2  Statement Format
	3.3  Commas and Blanks
	3.4  Line Length
	3.5  Line Continuation
	3.6  Format of PROMULA Statement Descriptions
	3.7  The PROMULA Statements
	3.7.1  ASK CONTINUE
	3.7.2  ASK...ELSE
	3.7.3  AUDIT file
	3.7.4  AUDIT SET
	3.7.5  AUDIT VARIABLE
	3.7.6  BREAK procedure
	3.7.7  BROWSE COMMENT
	3.7.8  BROWSE DIALOG
	3.7.9  BROWSE FILE
	3.7.10  BROWSE function
	3.7.11  BROWSE menu
	3.7.12  BROWSE SET
	3.7.13  BROWSE set
	3.7.14  BROWSE TABLE
	3.7.15  BROWSE TEXT
	3.7.16  BROWSE TOPIC
	3.7.17  BROWSE VARIABLE
	3.7.18  BROWSE variable
	3.7.19  CLEAR file
	3.7.20  CLEAR variable
	3.7.21  CLEAR WINDOW
	3.7.22  [COMPUTE] Equation
	3.7.23  COPY
	3.7.24  DEFINE DIALOG
	3.7.24.1  Executing the BROWSE DIALOG Statement
	3.7.24.2  Executing the BROWSE TOPIC Statement

	3.7.25  DEFINE FILE
	3.7.26  DEFINE FUNCTION
	3.7.27  DEFINE LOOKUP
	3.7.28  DEFINE MENU
	3.7.29  DEFINE PARAMETER
	3.7.30  DEFINE PROCEDURE
	3.7.30.1  Dynamic Procedures

	3.7.31  DEFINE PROGRAM
	3.7.32  DEFINE RELATION
	3.7.33  DEFINE SEGMENT
	3.7.34  DEFINE SET
	3.7.35  DEFINE SYSTEM
	3.7.36  DEFINE TABLE
	3.7.37  DEFINE VARIABLE
	3.7.38  DEFINE WINDOW
	3.7.39  DO CORRELATE
	3.7.40  DO DESCRIBE
	3.7.41  DO DIRECTORY
	3.7.42  DO file
	3.7.43  DO  IF
	3.7.44  DO IF END
	3.7.45  DO IF ERROR
	3.7.46  DO IF ESCAPE
	3.7.47  DO IF HELP
	3.7.48  DO IF KEYPRESS
	3.7.49  DO IF NULL
	3.7.50  DO INVERT
	3.7.51  DO LSOLVE
	.7.52  [DO] procedure
	3.7.53  DO REGRESS
	3.7.54  DO set
	3.7.55  DO UNTIL
	3.7.56  DO WHILE
	3.7.57  EDIT menu
	3.7.58  EDIT TABLE
	3.7.59  EDIT variable
	3.7.60  END
	3.7.61  END PROGRAM
	3.7.62  END SEGMENT
	3.7.63  LEVEL
	3.7.64  OPEN file
	3.7.65  OPEN SEGMENT
	3.7.66  OPEN WINDOW
	3.7.67  PLOT
	3.7.68  RATE
	3.7.69  READ DISK
	3.7.70  READ file
	3.7.71  READ function
	3.7.72  READ menu
	3.7.73  READ SEGMENT
	3.7.74  READ set
	3.7.75  READ VALUE segment
	3.7.76  READ variable
	3.7.77  READ (variables)
	3.7.78  RUN
	3.7.79  RUN COMMAND
	3.7.80  RUN COMPILER
	3.7.81  RUN DOS
	3.7.82  RUN EDITOR
	3.7.83  RUN PROGRAM
	3.7.84  RUN SOURCE
	3.7.85  SELECT ENTRY
	3.7.86  SELECT FIELD
	3.7.87  SELECT file
	3.7.88  SELECT indirect
	3.7.89  SELECT menu
	3.7.90  SELECT option
	3.7.91  SELECT PULLDOWN
	3.7.92  SELECT RELATION
	3.7.93  SELECT set
	3.7.94  SELECT SET
	3.7.95  SELECT set IF
	3.7.96  SELECT VARIABLE
	3.7.97  SORT
	3.7.98  STOP
	3.7.99  STOP PROMULA
	3.7.100  TIME
	3.7.101  WRITE COMMENT
	3.7.102  WRITE DISK
	3.7.103  WRITE file
	3.7.104  WRITE function
	3.7.105  WRITE menu
	3.7.106  WRITE set
	3.7.107  WRITE TABLE
	3.7.108  WRITE text
	3.7.109  WRITE TEXT
	3.7.110  WRITE VALUE segment
	3.7.111  WRITE variable


	4.  PROGRAM AND DATA MANAGEMENT
	4.1  Database Management in PROMULA
	4.1.1  Program 1 – Create a 'New' Database
	4.1.2  Program 2 – Access an 'Old' Database
	4.1.2.1  Accessing Subsets of Disk Variables

	4.1.3  More About Database Management
	4.1.3.1  COPY file IMAGE
	4.1.3.2  The file:variable and file:set notations
	4.1.3.3  PAGED VIRTUAL and AUTOMATIC DYNAMIC Access
	4.1.3.4  Increasing PROMULA's Scratch Storage Area.
	4.1.3.5  Automatic READ DISK
	4.1.3.6  Overlap Mapping


	4.2  Program Management in PROMULA
	4.2.1  A Segmented Program with a Database
	4.2.2  Multi-Segment Programs in Separate Disk Files


	5.  CONFIGURING PROMULA
	5.1  Using the Graphics Configuration Program
	5.1.1  Selecting Graphics Configurations
	5.1.2  Managing Custom Graphics Configurations
	5.1.3  Testing PROMULA Graphics



