)

GREAT MIGRATIONS
FORTRAN to C Translator

User's Manual

Copyright 1988-2017, Great Migrations LLC
ALL RIGHTS RESERVED

COPYRIGHT NOTICE for
gmFortran

Version 938 ReleasedMay, 2007
Published by:

Great Migrationd.LC
7453 Katesbridge Ct
Dublin, Ohio 43017

(877)644.8222

This User's manual fagmFortranis the property oGreat Migrations LLC It embodies proprietary, confidential, and trade
secret information. The User's manual and the files ofjthEortranmachne-readable distribution media are protected by
trade secret and copyright laws.

The use ofgmFortranis restricted as stipulated in tii&reat Migrations LLCLicense Agreement which came with the
gmFortranproduct and which you completed and returneGteat Migrations LLC The content of the machimeadable
distribution media and the User's manual may not be copied, reproduced, disclosed, transferred, or reduced to any
electronic, machineeadable, or other form except as specified in the License grgewith the express written approval

of Great Migrations LLC

The unauthorized copying of any of these materials is a violation of copyright and/or trade secret law.
DISCLAIMER OF WARRANTIES AND LIMITATIONS OF LIABILITIES

THIS USER'S MANUAL IS PROVIDIB ON AN "AS IS" BASIS. EXCEPT FOR THE WARRANTY DESCRIBED IN
THE GREAT MIGRATIONS LLC LICENSE AGREEMENT, THERE ARE NO WARRANTIES EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE, AN ALL SUCH WARRANTIES ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED.

IN NO EVENT SHALL GREAT MIGRATIONS LLCBE RESPONSIBLE FOR ANY INDIRECT OR CONSEQUNTIAL
DAMAGES OR LOST PROFITS, EVEN IFGREAT MIGRATIONS LLC HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMACE.

Some states do not allow the limitation or exclusion of liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

TRADEMARK

PROMULA®is a registered trademark @Gfeat Migrations LLC
gmFortrafPis aregistered trademark of Great Migrations LLC.

DEFINITION OF PURCHASE

The definition of your particular purchase is specified in@neat Migrations LLCLicense Agreement which came with
the gmFortranproduct and which you completed and returneteatMigrations LLC If you have any questions about
your rights or obligations as@mFortranuser or believe that you have not received the complatéortranpackage that
you purchased, please contact:

Great Migrations LLC
7453 Katesbridge Ct
Dublin, Ohio43017

(877)644.8222

PromulaFortran Translator User's Manual

Table Of Contents

PLEASE READ THIS SECTION ..ottt ceeet ettt e e e e ettt e e e s et bmmmtaa e e e e e sab e e e e s sata s sanaessestaneesestaneesestannnnnsnnss 1
L. INTRODUCGCTION ..ottt ceee ettt e e ettt e e e e et mmmtaa e e e e e sttt ees s st e saeaes s s st essastanseesestannnnsaesrestaaeeersrannnns 2
L. USER SUPPORT. ... iitieiit ettt e et eeeemtet e e et ee et ee et e e eaum—aeessaneetaaeetn s ssan s amntasasstnssssansetneesssaaanessnsasssneaesnsessnnasen 2
1.2 WHAT IS GREATMIGRATIONS FORTRAN . ..ottt eeeee ettt ettt e e e e s esmmrbe s e e s et s e e s eaba s e e seeneeesaans 2
1.3 COMPILER ADVANTAGES. ...ttt ettttutieetettuueeieeeeesstunaeeeetttaeeestat aseesssttnaessastaeesannnretenaeerettaeeeertnaaaereeesrnnnns 3
1.4 TRANSLATOR ADVANTAGES. .. .t tttttttueeeetttteeetaeneestttaeessastteessstaaaasaeesettnsaeesestanaessrnnnsssnnteerestnteeseetemmeereersnnn 3
1.5 HOW GREAT MIGRATIONS FORTRANWORKS.uuiiiiiiiiiieeeeeiii s eeeeseesetts e e e s eati e e e s ssssmmmtan e e s estanseeeessanseeesennrens 5
1.6 RATIONALE FORDEVELOPINGGREAT MIGRATIONS FORTRAN.outiiiiiiiie e vaemmn s 5
1.7 DOWNSIZING MAINFRAME CODES FORUSE ON THEPCDOSPLATFORM ..uuuiiiiiiiiiiieeieiiie e eseeemreiiseeesetann e e e seannn e eenens 6
1.8 DEALING WITH FORTRAN DIALECT PROBLEMS......ituiiiiiieiiie e et ceeee it ee et e ee et e e esteessamaaeeean e eestnsessnaeeesnesannsanesesd 6
1.9 DEALING WITH C TYPES ANDFORTRANTYPES. ... ittt ceeee e et e et e e e e e e tmee e e et e e st e e et e eetn e eenmsannaees 7
1.10 DEALING WITH FORTRANINPUT/OUTPUT INC .uuuiiiiiiiieieeeitiie e emtie s e ettt e e s eeba s e s seenessetanaeeseesaneeeessssnnnnnaees 7
L1.10 RUNTIME LIBRARY ..ttiiiuiiiutitt et eetu et aeetsn et eetaseansetaet s esmnaessasetnsansetnestneansamnsstnresnsetnsstnsesnsstsaanntnsstnsennestneeen 8
1.12 DEALING WITH COMMON BLOCKS.iituiiiiieeiit ettt eeeee e e e et e e et e e et e e s e e s st e es b e e et eeesanssennstnessteeesnsessnneeernsd 8.
1.13 ALLOCATION OF LOCAL VARIABLEScittuiiitteettteeettes emetee s e e ettt e e st ee st saeasetaseeaansestaaeetnsssannaaesstnaeesneesnneeeen 8
1.14 A SAMPLE TRANSLATION TO C.uiitiiiiiii et e e e et ees e e e e e et e e et e e eemmta e e e et e e e e e e et e e aa s emensann e e e tn e eean e sannsensamanss 9
DA O @ 1V 1Y, AN N I I N | SR UPPPPRR 11
2.1 COMMAND LINE SYNTAX otutiuueitteettteetuu e tmmmtueestneseunaestaeestn aeneesnsaestaaeesnsesannseesnmaaseeesnsersnnsestnseeennsermnntaneesnnns 11
2.2 SPECIFYING YOURC OUTPUT BIASO BC, BF, BO......ooiiiiiiiiitiiiieie ettt ettt b e s e e e e e e e e e eesaneneee s 13
2.3 ARITHMETIC CONVERSIONSD CL, CS, CO,C1,C2,C3...ceitiiiiiiiiieiiiiieieieeieeee ettt st e e eenean s e e e e e e e e e e eeeeaaraaaan 16
2.3.1 Arithmetic with Short Integer Variables..........oooo e s 19
2.4 DETAILED COUTPUTFORMAT @ CF1,CF2,CF4,CF8,CF1B......cuui it ceeeie ettt eeemeev e e e 22
2.5 TREATMENT OFCHARACTERVARIABLES 8 CHD, CHR, CHS, CHVouiiiiiiiii e 25
2.5.1 Initializing CharacCter VAIUBScccoiiiiiiiii ettt ettt e e e s me e bb et e e e s annbreeeee s 27
2.5.2 SUDPIOGIram ATQUIMEIALS.uuiiiieiiitiieetaeatee e e attte et e e s sttt et eeamt e e e s s e ba e et e e e sasebe e e s seameeeesanbbbeeeeesansbbseeseaneeees 28
PR TRe S 10 o131] o PO PP PRPPPO 32
S Y B O Po1 - Yox =] g @ o] gToz= 1 (=T F= L1 o L= 33
2.5.5 Character TreatmMent CONCIUSIONL.uiiiiiiiiii e ceeee et e et e e e et eeeeeett e eeseetta e eesennnessteeeessstaaaaes 34
2.6 APPEARANCE OFCOMMENTSIN COUTPUTA CMO, CML,CM2......cciiiieeeeeee ettt e eneee e evaans 34
2.7 TREATMENT OFDATA INITIALIZATIONS O DA, DC, DR ittt emme et e e e e 35
2.7.1 Overview of Initialization ProbIEM......... .o et e e e 36
2.7.2 The INitialiZation SWILCRES..........uviiiiiic et e e e e e et e e e e s eeeme et e e e e eaatneeesesbanann 38
2.8 TURN ONDEBUGGINGMODE @ DB....couiiiiiiiiii ettt e e e e e e e e e et seeaeesseeaaa e e e eesaaaeeeees 41
2.9 ECHOCONTROLOPTIONSO ES,ET,EX, EZ,EP,ELoooeeeeeeeeeee et a e eaan 41
2.9.1 Warnings, NOtes, and COMMENES........uiiiiiiiieee e eeeeeiie et e et e e e e e e e e e e s e s rmme e e e e e e e e e s eesaa s s nsneenaeesesaesanannnnnrnnes 42
2.9.2 Annotated Listing Of SOUICE COOE.........ciiiiiiiiiiiiieeie et e eeene e nnneeee e A
2.9.3 Symbol Listing and Cross Reference Table..........cuuiiiii it 44
2.9.4 Intermediate COMPIlEr TADLIES.........uiiiiiii et e e ib e e e e 46
2.9.5 Annotadd LiSting Of C OULPUL.......cciieiiiii i e e e e e e s eeeee e e e e e e e e e e aete et s e s eeensasseeeeeaeeeeeensnnnes 47
2.10 TREATMENT OFSYNTAX ERRORSO ERO,ER1,ER2,ER3,ERA.........ovvvviiiiiiiiiiiiiieeeieeeeeeeeeeeee i A8
2.11 FORTRANINPUTFORMAT USEDO FSNUM, FT, FF, FV, FO . ot 49
2.12 SOURCEFORTRANINTEGERTYPE D FIS, FIL ...cooiiiiiiiiiiitiee ettt e e e e e e e e e e e raneneeees 50
2.13 GNAME 8 NAME OF FILE CONTAINING GLOBAL SYMBOLScuututuiiieiieieeeeeieieeeieeeeeseeseesestarinn s snsrsssnnsneseesesses 50
2.14 COMMON VARIABLES CONVENTION G GA, GD, GP, GS, GR, GV......cuururiiieiiiieeiiiiiieeee e e e e e 50
2.14.1 Overall Alignment Control with G GpcC, GPS, GPI, GP....coiiiiiiiiiiiei it e 54
2.15INAME & NAME OF FILE CONTAINING INLINE FUNCTIONS......cuutuiiiiiitieeeeeeetseeseetaseessesaaseeseeemeesaneesesannns 54
A S T I 2 e = W O LN I IRZ = = o T T 1 55
2.17 TREATMENT OFINTERNALLY GENERATED CONSTANTSO KA, KS ittt e e e s eenee e e e eeees 56
2.18 MAXIMUM OUTPUTLINE WIDTH O LINUM .uuuiiiiitiieeeeittiee e e eeeemeet s e e s s etae e e e s eaba s snaessssesassasesessansessssrmnnssaeeeesnes 58
2.19 LINK TIME PROCESSING OFCOMMON DATA MODULESO LM, LS. .cciiiiiiiiiiiiiiiieeieet et venmenanss 58
2.20 INCLUSION OFLINE NUMBERS FORDEBUGGINGO LN, LO ..uuuuuiiiiiiiiiiiiiiiiiiiiieeee ettt e s e e e e e e e eeeee e e e e e e e e eeeaenanns 60
2.21 FORTRANDIALECT SELECTIONFLAGS O IMDIALECT 1uuuiiiitiiieeiiitiieeeeeesimmateieeeeestteeesssstaseaaenesestanaeesestnnaeeeees 60

PromulaFortran Translator User's Manual

2.22 NESTINGINDENTATION TO BEUSED IN THEOUTPUT® N*, NO, NN.....oooiiiiiiiiiiiiiiiiici s irticie e s e e e e e e e e eeersveeneeeeeed 61
2.23 INLINE COMMENTS OUTPUTMARGIN WIDTH @ NCNUMcooiiiiiiiiiiiiiiiie s e e ceeeiiee e s eeeeeeeeeeeeesssbasamnmessssbarannaaeaeens 61
2.24 UPPER ANDLOWERBRACESCONVENTION INC & NUO,NUZL,NU2,NLL, NL2.......cotvrrirriiiiieieeeeceeeiieieeeeeeeeeeennnd 62
2.25 NAME OF THEFILE TO RECEIVE THEC OUTPUT O ONAME ..1utuuuieieiieeeeeieeeeerttieeneeeeesstsssanaseseeesesseeseseeessssesssssnnn 62
2.26 SPLITTING OFOUTPUT INTO SEPARATEFILES O OS, OMcovvtiiiiieieiiiieeeiiiiiieieeeeeeeeeeeesstiasssesesssssanseseaeessssssssnns 62
2.27 MISCELLANEOUSPROTOTYPNG CONTROLFLAGS @ PNUMB, PHNUMBccvviiiiiiiiieieeeeeiemeiie et 63
2.27.1 P19 Include Definitions Of iNt FUNCHONS.......cciiiuiiiiiieicceeee e e et e e e et remmrat e e e e e erbn e e e s esba e eneeeeeees 64
2.27.2 P2 Use ANSI Prototypes for QUMENt FUNCHONS..........oiiuuiiiiieiiiieeeiie et e e 64
2.27.3 P4,P® Exclude Referenced or Defined ProtOtyPReS..........uuviiiiiiiiieeeiiiiei et e e e 65
2.27.4 P16 Ignore Prototypes for DefinitionS...........uviiiiiiiiiii et eeereee e 66
2.27.5 P33D Treat User Prototypes as SyStem FUNCHANS.........ccooiiiiiiiieeie et e e e 67
2.27.6 P64D Write PFC Style Prototypes, NOt C TY P ittt enne e e e e e 638
2.27.7 P128 Write All Function decls t0 Header File.......ccccoiiiiiiiiiiiiieeee e 69
2.27.8 P25@ Use ANSI C FUNCLION DECIAIALIONS. .. .uuuiieiiieeeiiiiiiieeee ettt e e e e eeeeiese s e e e e e e e eeesesababbasnnnees 70
2.27.9 P51 Make Parameters Always Take EXplIiCit Value TYPE........cccccruriieiimrmnsiieeiinenrvnieneeeeeeeeessannnenes 71
2.27.10 P1024 Exclude undefs From the TranslatiQnl........c..ceeeiiiiiiiiieeeeecieeeeeeccee e eeeeeee e e e e e eeaaaaaaes 71
2.27.11 P2048® Force Variables to Have Explicit Character TYPEc.uvviiiiiiiiiiiieeeee e 72
2.27.12 P409® Define Equivalences via a #AefiNe..........c.uuiiiiiiiiieie e 74
2.27.13 P8193 Use Parameter Identifiers in EQUIVAIENCES...........uviiiiiiiiieeeiiie e 75
2.27.14 P16384 Display Include Files Separately...........ccuuiiiiiiiiimmiiiiiie e e 76
2.28 LISTING FILE CONTROLO PANAME, PHNUMB, PNNAME, PWNUMBcivvtiiiiiiiii e e eetemeri s eeseebe s e e s eeta e e seeneeens 78
2.29 QUANTITY CONTROLFLAGS & QINUMB, QENUMB, QDNUMB, QXNUMB, QHNUMB, QWNUMB........ccceeeiririeeeee 78
2.29.1 QInumid Size of Compacted StatemMENt STOTAGE.cvviiiiiee i et 79
2.29.2 QEnumb Size of the Line NUMDBEr Tahle...........c..uuiiiiiiiiiieeeicciiie et e e e e e e e e e e e e ennneees 79
2.29.3 QDNUMIB Size of @ DAta BIOCK.........cuiiiiiiiiiiiie e, 79
2.29.4 QXnumb Size of External INformation StOragE........uuuiiiiiiiiiiii et e e 79
2.29.5 QHnumi® Size ofinclude File INfOrmMation StOrAgE..........uuuuririiiiiiiiiccciiirieeeee e e e e e e e rerre e e reaaaeaaea s 79
2.29.6 QWnuUmB Word Size of SOUrce PlatfOrM...........ccuuuiiiiiiiieeeiiiiiiiiiiiie e e e s seesrev e e eeereeeeaaeeeeessmnneees 80
2.30 SPECIFY ACONFIGURATIONFILE O RNAMEcvtuiiiiiiiii e ettt ereee e e e et e e e st s e e e s bmmmst s e e s ee b e e s eebaa e s saenessesranss 80
2.31 STORAGE THRESHOLDVALUES & SANUM, SDNUM, SSNUM, SVYNUM, SZNUMccivviiiieeiiiiee e eeeemeer e eevaes 80
2.32 FORTRANDIALECT DOLOOPASSUMPTIONSD T, TL, T2, iuuiiiiiiiiiiieiieeie e eeeee e e et e e e e et ennee e e e e raa e e e e e enad 83
2.33 TREATMENT OFINTERNALLY GENERATED TEMPORARIESD TA, TS uuiiiiiiiiiiieeiiei e eeeeeemte e e e e e e e e et seeneeeeeens 88
2.34 SPECIFYINGUNIT NUMBERSO UR,URNUM, UP,UPNUM, UW, UWNUM.......coiiiiiriiieiieeiisceeee e e eeeend 20
2.35 FILE TO RECEIVE PROTOTYPEDEFINITIONS G WWNAME ...\ ciiiiiiieeiiiiiieeeeetiemeteteeeeeessteeesesstaseaasnessstanseeessrsnnaeeeens Q0
2.36 MISCELLANEOUSCONTROLFLAGS O YL, Y2 ooititiiiiiiii et eeeeeteeee ettt e et e e e e e e e eaeeie e e e e e e e e eeeeessab et s emnnrsaranns 90
2.36.1 The Treatment of ENtry POIBESY L..........cooiiiiiiiieeee e et eee et e e s r e e e e e eeeesseensssssaaeseeees 90
2.36.2 Output Form of Parameter Identifi@ySY2..........uiiiiiiii e ereere e e e e e e e e e e 93
2.37 TREATMENT OFMULTIPLE ASSIGNMENTSO XA, Y A 1ouuiiiiiiiieieiiieeettttttmmmeesetattsseseeeeeseesssaeeneesessssessraraaaeaess 93
2.38 TREATMENT OFSINGLE STATEMENT NESTINGBRACE D XB, YB....cciiiiiieiiitiiiiieeieseeseiieeiseeeeeeeseeessssssssnnnneesssranes 94
2.39 CONSTANT REDUCTION OPTIMIZATION O XC, Y Cuvrrneieeituiieeeeeetteeeeeeeeeeeattaeeeesastaseesessa s seesessansssessanseesesnnnes 95
2.40 CHARACTER OPTIMIZATION SWITCHESDO XCH, Y CH cevuuiiiiiitiieeeietetee s eemeevaeeeeeeaaaeeeesssansnaeseseeannneseessnnnneeesenss 97
2.41 TREATMENT OFFORTRAN"D" DEBUGGING STATEMENTS.uciituiiitieeeteeeeteeeeeeaneessteeeaneessnneessamaaeeeaneesraeeennss 97
2.41.1 Treatment of Other Debugging StatemM@NYESIIING.c.vvviiiiiiiiieii e 98
2.42 USE OFPRINTF-STYLE FORMATTING O XF, Y F iiittiiiieiieti e e e et seees e e s eet s e e e eetaa e e e e e e sammmsaansseesssbaseesesbanseennnnsenes 99
2.43 INITIALIZATION CHECK FORAUTO VARIABLES O X1, Y 1. ittuuiiieiiiitiei e ettt s e eeeee et e e e et s e e s eevama s e e eseaaanaeeeenen 100
2.44 DO LOOPCOUNTERREDUCTION OPTIMIZATION @ XL, YL ttuuiiiiittiiieeiettieieeeeiemmestteeesestnnaeeseetnnseaaaneesssssnneassenen 100
2.45 SUBPROGRAMARGUMENT TYPE CHECKING O XP, Y P..oiiiiiiiiiiiieeiieeeeeeetieeeeeeeee et e eeeestabaasse s emananseseeeassseessnnns 101
2.46 SINGLE PRECISIONREAL ARITHMETIC G XR, YR ..eiiittiittttitiiieieeeeeeieaesiseeeeeeeeeeesssasbasaessnmnsssasasnnseesesesesesssssenns 102
2.47 SUBSCRIPTPOINTERNOTATION O XS, Y 'S, Y SV, Y S ..ttt ittt eei ettt ee e eeeee ettt e e e ettt e e e e e st s e e s ee b e e e eebannns 102
2.48 UNFORMATTED WRITE OPTIMIZATION G XU, YU ciiiiiiiiiiiiiiiitittii e etae s e e s e e e e eeeeeeeaassannneesssssssbasannnsaeaeeesennn 105
2.49 SUBPROGRAMCALL -BY-VALUE ARGUMENTSO XV, YV o iittiiiiiiiiiiie ettt e eeeee e et e e e e ettt e e e e s ssbmman s eeseebanaaeeaens 106
2.50 DOLLAR SIGNS ASINITIAL SYMBOLS IN IDENTIFIERSO X8, Y& oot 106
2.51 LOCATION OFFORTRANFILES TO BEINCLUDED O ZINAMEcccvvuniiiiietiieeeeetiiesesseeseetanseeseesanseesesrmmmssnneessesans 106
2.52 PROJECTPROCESSINGD HPROJIECT....cetuuuiiieetutieeseesusimsaiasessesssnsesssstasess nenressnaessessaseesessanimaeessessssaeeseessnnns 106
3. CONFIGURATION FILE ..ottt e ettt e e e eeeee e e et e e e e e aaa e e e e e s s b eesseaaa e essesbaneeseennesrananns 108
3.1 THE CONFIGURATION SWIT CHESSTATEMENT .. cetniiitieeet e et eeeseee e e et e e e e s eaaeesat e s emmsa e seaneessaeesaneesnnseeeeeean 108

PromulaFortran Translator User's Manual

3.2 THE CONFIGURATION COMMEN T S STATEMENT ...etuuieiitittieeeeetttaeseeeeeesestaseesssstassesssstnmnnsnsaessssnnsaeeressnneeesennnnes 109
3.3 THE CONFIGURATION PATHNAMES STATEMENTciiiitiieeeeettieeeeeetimmesteseesastansesssstansesseensssstaneesessnnaesessnnnnns 113
3.4 THE CONFIGURATION RESTRUCTURESTATEMENT ...cettuieiittteeesettt s eeaeseesststneeessssnneessssmnmntsnseesssnnaeeeesssnneenes 115
3.5 THE CONFIGURATION KEYWORD S STATEMENT ..cctuuieiiiiitieeeeettteseeeeeesestnnseesssttnssesssstnnnsssseessessnseeesersnnaeesennnres 117
3.5.1 Simple Keyword REPIACEIMENL.........cci it eres s e e e e seeessa et eae e e e e eeeeeeeeeenssesseeereeeaaaaaaaeses 120
3.5.2 Pattern Strings for COMMON DIOCKS........ceiiiiiiiiiiii et e e e 121
3.5.3 Pattern String for EXternal FUNCHIONS.ccooiiiiiiiii et 122
3.5.4 Pattern String for SUDProgram SUMOGALES.........cuiiiiiiiiiiiieeree ettt e e e 123
3.5.5 Pattern Strings fOr VAX DESCIIPIOLS.evtieiiitiieete e i imtee ettt e e ettt e e s rmmee st e e e s anbbne e e e e s smmne s s annneeees 124
3.6 THE CONFIGURATION PRAGMA STATEMENT ..uutiiiteiiieeeieee et e eemmtaee et e e et ee et e e et aaaaeestaeetneestaeeannessrmnaeesans 124
3.7 THE CONFIGURATION S STATEMENT ...otvvtttttttuieiieeeeetetieeeseeeeeesetsessstsssaaa s seessaaaa e seseesssesesssstesrnnntesssrersanssesees 126
4, THE CONFIGURATIO N FUNCTION PROTOTYPE S......oo it sreer ettt s s et e e e eeaaas 128
4.1 FUNCTION PROTOTYPESYNTAX 11tuietttutuieetettunieesssmnmeetuneesestnnaeesstnnsaaeetesssstanteesestunaessssmnnntanieesestnmeeeernnaeeens 128
4.2 VALUE PARAMETERS.....ctuuititittttieetttttt s ieeesseseattseessstansees et tnmastanseesestaneeeastanseetnnnessstanaesestaneeseetaniaaasereressnnsnns 129
B g = N I N Y O N R 130
4.4 IMIULTIPLE FORMS. ... it ieiit e et e et e e e et e e e e e et e e et e e e et aaee s et eeeta e e aan e e aan s snmmta e eann e etnneeetnaeennsannneanneesnneannnsars 131
4.5 GLOBAL SYMBOLS AND PROTOTYPES.iituiiiteeittieeettieeeee e ettt eeeta ettt eestamaesstnsastaeestaeeestntennssnaesstaeersnsaees 133
4.6 RENAMING IDENTIFIERSONLY ..uuiituiiitiieitieeeiteeeiemate e et eeetaeesat e s eaa s eaens st eaesaseseansessaneessamnessansessaneeetnsessnnnssenn 133
5. OVERVIEW OF RUNTIME LIBRARY .ottt et e e e e ettt e e e e s temme st s e e e e saa e e e s s asban s snaneeseebanaesenes 134
5.1 NAMING AND ORGANIZATION OF FUNCTIONSiitineeitieeeeteeet e eeemtt e eeeat e eeteessteesssiaaeesssneestneeesneesnnsessnnnneeernns 134
5.2 GENERAL FORTRANOPERATIONScituuiiittieetieeetieeetamateestiaeestaeeestesstaaaentsseeetnetsaeeetaeessaassstaeeesteersnaeseen 135
5.3 INPUT/OUTPUT OPERATIONS. ... eetettiteeteetatteesestemmstaaeeseesaseeesssasasaaaeessestansaessestasseessssannnsssaessessnseessessanseesennnnes 135
5.3.1 RUNLME EITOr MESSAQES.ciiiiieieiiiiiii s ieaeettttiae et e e e e e ee et eeeas enaeeeeeeettstea i aaseaeeeaaansssasaeeaeeeeesessssnnnnnnnnns 135
5.4 NONCOMPLEXINTRINSIC FUNCTIONS. ... tttieettieeetieeeteeeemeateeean e es st eestneessumaasessanseetnsaesnnestnnessnmntaeeesnsesennaerenns 136
5.5 VIRTUAL MEMORY SYSTEM ..otuiiiuiiitieeitteettieeaemtetaeeanes st esttneeesumaasessnnestneeenntetanesenmntaeesnneeetaeesenseeennsemnnrenn 137
5.5.1 The Virtual Memory Management AIGIOML.ooouuuueienereis e e e e e e e e e e e e reeeeeeeeeeeaenrnn e e e eenenas 137
5.5.2 Virtual Memory GIobal Variables............uiiiiiii et e e e e e e e e e eee e e e e e e 138
5.6 SINGLE PRECISIONCOMPLEX ARITHMETIC ..evuuiitteiite ettt eetttseeee st eeetnsessunsestnneestmmassessnnsestnaaesnnesesnnsennmssneernners 139
5.7 DOUBLE PRECISIONCOMPLEX ARITHMETICcuueiiteiite ettt e e etieee e et ee et e e esta e e st e s ammta e sstnsetnaesatneeesnssannssnneerenns 139
6. RUNTIME LIBRARY FUNCTION DESCRIPTION S....oiiiiiiie ettt eeeme et e et e e 140
6.1 CPXABS: COMPUTE THESHORT COMPLEX ABSOLUTEV ALUEiituiiitee et eeeteeeeee e e e e e e e e e e eevmneeeeenneeees 140
6.2 CPXADD: SHORTCOMPLEX ADDITION ...cuuiiuueitteeetteesteeeeeesaaeeetneesaaee st ees i esetaeeetseeasesssneernnmraeeranaerran 140
6.3 CPXCJG:COMPUTE THESHORT COMPLEX CONJUGATEituniiitnieetieeeteeeiemaeeeaeesetaeeeatesean e saenesnneeeanseeennaeees 141
6.4 CPXCMP: SHORT COMPLEX COMPARISON......icuuetitueeettesetieaaentetaeetneeenneestuaeesaasessnnsestneestnaerannesrnnntaaeeennns 141
6.5 CPXCOS:COMPUTE THESHORT COMPLEX COSINE. .. .cuuititueeitteteteetimmaeestneestneestnaeesnnsaenmssneesteeeanessnaaessnns 142
6.6 CPXCPX: CONVERT TWO FLOATS TO SHORT COMPLEXcituuiiituieitueeetieeeimmateeesnaeestnaesstesannaannssnnaessnsessnnsanes 142
6.7 CPXDBL: CONVERTDOUBLE PRECISION TOSHORT COMPLEX......cctuiiitueeetteeetnseaenteneeesnesenneessneeesnnaasessnneeeen 143
6.8 CPXDIV: SHORTCOMPLEX DIVISION ...uiiiuiiiiieiiiieeit e e emete e et e e e e e ete e e st eaeaessa e s st eeaneeennsessnmnaaaeesnersnnaren 143
6.9 CPXDPX: CONVERT DOUBLE COMPLEX TO SHORT COMPLEXcuuiittueeetuneeetneeienmeteeesnessneessneeenniaanessnneessnns 143
6.10 CPXEXP: SHORT COMPLEX EXPONENTIALuuiitueeeteeitieee et eeeeeeeaeeeetaeeeet e e eanees e eeeaaeesansessanseesnseennnsaneeen 144
6.11 CPXIMA: COMPUTE THEIMAGINARY PART OF ASHORT COMPLEX......cccuuiiiteeiiieeeeeieeeeeeeeeetaeeeaeeeaneeevmmnnns 144
6.12 CPXLOG: SHORT COMPLEX NATURAL LOGARITHMuuiitiiiiiie it e et eeeee e e e eee e et ee et eeeamea e e s e eean e eeaneeeean 145
6.13 CPXLOG10: SHORT COMPLEX BASE LOLOGARITHM ...cvuiiiiiiieiiieeeet e eeeeeeee e ete e e et e e eae e s et e e ssmmms e s eaneesanneeeannns 145
6.14 CPXLONG: CONVERT SHORT COMPLEX TOLONGccvuiiiitieeteeeit e e eeete e et e e e e e eae e e et enees s e s eeeanaeeeaneeen 146
6.15 CPXMUL: SHORT COMPLEX MULTIPLICATION ...uuuiituneeetneeeeteeeseeeeessaeeeaneesaneessnneessnmesesasnsseannseesnseesnnesrennen 146
6.16 CPXNEG: COMPUTE THESHORT COMPLEX NEGATIVEctuuiiitiieitieeeet e e et e e ete e et eeeat e s et anenesnnaeeanaeeennnaeen 147
6.17 CPXPOL: SHORT COMPLEX CONVERSION TOPOLARottt ceeee et e e et e e eaa e eean 147
6.18 CPXPOW: RAISE SHORT COMPLEX TO APOWER.........iiiiiiiiii e e e e e et e e et e e e et eeeraans 148
6.19 CPXREAL: COMPUTEREAL PART OF SHORT COMPLEXuuiituiiitieeiiteeetieeaenestaeeeateeesaneessnneessimsaessnneestnaeessnns 148
6.20 CPXSIN: COMPUTE THESHORT COMPLEX SINE.....uiituiiitieeiiteeettieaeeettaeeetteeeetneestaneestmmnsaessnnessnaeestnaassnnsaanns 149
6.21 CPXSROOT:COMPUTE SHORT COMPLEX SQUARE ROOT . .uuiiiiiiiiiiiiii it etieeet et e ea et s et e s mee st e saseneeas 149
6.22 CPXSUB: SHORT COMPLEX SUBTRACTIONueitutietunieetueeetnieeeseeussesaeessseeesnsesssm—aeessneesanseseneeernserennsaneeeen 149
6.23 DPXABS: COMPUTE THEDOUBLE COMPLEX ABSOLUTEV ALUEcuviiiitieeieie e et e e eeme e e e e e e e eee e e et eeennennnas 150
6.24 DPXADD: DOUBLE COMPLEX ADDITIONcituiettuteetteeeteeeeemsaeeeanessaeeesaeeeanimaeessansesaneeeansersnnsesrnmaeeensnnns 150

PromulaFortran Translator User's Manual

6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66
6.67
6.68
6.69
6.70
6.71
6.72
6.73
6.74
6.75
6.76
6.77
6.78
6.79
6.80
6.81

DPXCJG: COMPUTE THEDOUBLE COMPLEX CONJUGATEcivtnieieteeeteeeeteeesemmeaeesaneesanseesansesannsaensstnssssnnssenns 151
DPXCMP: DOUBLE COMPLEX COMPARISONuciutuieeuteeeunteetaceeesesaesssnsestneestnsessumnsssstessstsersnssesnesrennsenns 151
DPXCOS: COMPUTE THEDOUBLE COMPLEX COSINE.ciutuiiieteieteeitteeeemsasessseesssesesnessssessssnsessssssneesees 152
DPXCPX: CONVERT SHORT COMPLEX TODOUBLE COMPLEX......uuiiittieetnieieineesimmseeesnessnsestnssesnnsieensaneessnns 152
DPXDBL: CONVERTDOUBLE PRECISION TODOUBLE COMPLEXcivuuieitteieieeetieeemeesnessnesstneesssnssssnneeesenns 153
DPXDIV: DOUBLE COMPLEX DIVISION ...ivuiiiuiitniitniianietn et eesttesanestaessasssnsssnssamsssssn st sssnsessstsrassnnntsssserns 153
DPXDPX: CONVERT TWO DOUBLES TODOUBLE COMPLEX ...cuuiitniitiiiteiteessimneiessesnssnsessessnsssnsernnnsesnsssnnees 154
DPXEXP: DOUBLE COMPLEX EXPONENTIAL «.tutittitttittt ettt tascesmtasstaessassansstnssan st imeasssssanssssstesasssssrnneesnns 154
DPXIMA: COMPUTEIMAGINARY OF DOUBLE COMPLEXuuivuittittitniisnesiseesnessntesnsssnessneesnssrmssesssesanssnnernnns 155
DPXLOG: DOUBLE COMPLEX NATURAL LOGARITHM ...utiitiittiiitieeieiieestieemtteesnessieeansstnssanssssanssnsssnssansstnesanns 155
DPXLOG10: DOUBLE COMPLEX BASE 1O LOGARITHM ...uuiituiiiiiieniitiiianeeteaeesnessnsesnestnssanessnsbmnsessnssansesnsssnns 156
DPXLONG: CONVERTDOUBLE COMPLEX TOLONG......uuiiituiiitiieiet e etme e e e e e e et e e st s eeemsan e saansesbaeseennsans 156
DPXMUL: DOUBLE COMPLEX IMULTIPLICATION ..uuuiiuuuettueeetneessnsieemssaessssssssnesssnesessimsessssssssssssersnsesenneesonn 156
DPXNEG: COMPUTE THEDOUBLE COMPLEX NEGATIVEivuuiiiitieiutieieineesmmsesetnsesssssstaeesssnssesmsanssssneeranees 157
DPXPOL: DOUBLE COMPLEX CONVERSION TOPOLARuuiivteiiteeeeteeeeisceeeseteesansessaneesasnsessanssssssnnssstnesssnnnss 157
DPXPOW: RAISE DOUBLE COMPLEX TO APOWERL........ciiutiiiii it et e et e e s e s semmt s e eb e e eaa e s eaneeeeans 158
DPXREAL: COMPUTEREAL PART OF DOUBLE COMPLEX ...cvuittiiitiettiienietnetimeessnsssnsssnsssnsesnestnsrennssssnsesnssnnnes 158
DPXSIN: COMPUTE THE DOUBLE COMPLEX SINEtutituituiitnetneisnesmeseanestnssan st etsnsssnsinnsssssssaessnsesneesnsssnon 159
DPXSROOT:COMPUTE DOUBLE COMPLEX SQUARE ROOT......uuiiiiiiiiiieeeeetisceees e e e et s e e e et s e e s esvmmmsea e e e eenenns 159
DPXSUB: DOUBLE COMPLEX SUBTRACTION ... uttuttutttetnttntsnieemsaesnsssnseanettnransesimesstsstsnsesaseteeressnesaseeenns 160
FIFAMAXO: FORTRANINTRINSICFUNCTION AMAXD ...outiiiiiiiei it eeee et e e et e et e et s s mee s s sa s et eeanas 160
FIFAMINO: FORTRANINTRINSICFUNCTION AMINGOD ...ouiiiiiiii e eeieee e et e et e s mres s s e e s eneeens 161
FIFASC50: FORTRANEXTERNAL FUNCTION ASCBO......cuiiiiiiiiie e eiieee e e e e s ses e e e s aa e eas 161
FIFCHAR: FORTRANINTRINSICFUNCTION CHARt ee et et 162
FIFCOS: FORTRANINTRINSICFUNCTION COS... ..ottt remnt s e s e e e e e e e aaas 162
FIFDATE: EXTERNAL FUNCTION DA T A oottt e et eeema et e e s et e e b e e b e et sneneaeebanes 163
FIFDDIM: FORTRANINTRINSICFUNCTION DDIM ...ttt et eee st e e s s ea e eaas 163
FIFDINT: FORTRANINTRINSICFUNCTION DINT L.uiitiiiiiiiiii et eemmt e sab e ea e s e aaeeeas 163
FIFDMAX1: FORTRANINTRINSICFUNCTION DIMAXL ...ttt eeee e e et e e et e smee s s ra s eaeeanas 164
FIFDMIN1: FORTRANINTRINSICFUNCTIONDMINT ...ttt eeeeeee et s s mres e s e e s eeas 164
FIFDMOD: FORTRANINTRINSIC FUNCTION ...cuuituiitttiteiie ittt ieeeete s s st sstssanssssessmnesssnssassssserassnsesnsrnnnnns 164
FIFDNINT: FORTRANINTRINSICFUNCTION DININT Lottt eeeee e et e et e s mes e e e e e s eens 165
FIFDSIGN: FORTRANINTRINSICFUNCTION DSIGN. ... ottt cee et r e et reee s e e e e eaeeanas 165
FIFEQF: FORTRANINTRINSIC FUNCTION EQRFottt sree et e et e e e e sanan 166
FIFEXIT: FORTRANEXIT SUBROUTINEutttutittitttitettniemestettetaestesteessenntesterteetettaeraestimenreraee 166
FIFGETAR: FORTRANGET COMMAND LINE ARGUMENTS. .. ituittiitiiiteetettneiemessnesterssetesterasennsesniernnns 166
FIFGETCL: FORTRANGET COMMAND LINE SUBROUTINE ... ituittiittiittietettneiemnessnestnersnsesesterssennsesniernnns 167
FIFGETENV: FORTRANGET VALUE OF ENVIRONMENT VARIABLES.cuiittiiieiieiieeiisiemeeitiesaeseniesneesneennns 167
FIFHBIT: FORTRANHIGH BIT MANAGEMENT 1. ituittiittttett it stmesesaestaesansstestnseanstannsestnessnsetettaeetaestones 168
FIFI2ABS: FORTRANINTRINSICFUNCTION I2ABSottt e e e e ma e s e e e et e eans 168
FIFI2ZDAT: FORTRANEXTERNAL FUNCTION I2DATE . .oe et eeeet et et etres e s e e e e s an e 168
FIFI2DIM: FORTRANINTRINSICFUNCTION [2DIM ..euiiiiieiii ettt e e eeeee s e e e s aneen 169
FIFI2DINT: FORTRANINTRINSICFUNCTION I2DINT .eeiiiiiiiei i et ee e e et e e e e e s mee st e ran e eaneeanas 169
FIFIZMAXO: FORTRANINTRINSICFUNCTION I2ZMAXOD .. ettt et e et a s e s e e e s e eens 169
FIFI2ZMINO: FORTRANINTRINSICFUNCTION I2ZIMINOD ...cuiiiiiiiiee et eeee et e e e s mee e e s e eanesans 170
FIFI2ZMOD: FORTRANINTRINSICFUNCTION I2ZMODcuiiiiiiiiee e eeeeee st es s e e s e eas 170
FIFI2ZNINT: FORTRANINTRINSICFUNCTION I2NINT L.ttt e s e s s e e e an s 171
FIFI2ZPOW: FORTRANINTRINSICFUNCTION I2ZPOWottt et e ee e r e e eaaas 171
FIFI2SHF: FORTRANINTRINSICFUNCTION I2SHET ..cuiiieii ettt er e e e e e raaas 171
FIFI2SIGN: FORTRANINTRINSICFUNCTION I2SIGN. ... ittt ieeeee s et es e e e s e eas 172
FIFIABS: FORTRANINTRINSICFUNCTION LABS ... oot e e em s e et s e ra e et e ranas 172
FIFIARGC: FORTRANGET COMMAND LINE ARGUMENT COUNT ...ttuiitiiteiteiieitsesmeessaseteenesaesensesnssnnnnss 172
FIFIBIT: FORTRANINTRINSICFUNCTION IBIT uiiieiiiiiiiiii it et e e e et e st s et e e e s semmt s s en e s s s snseenessnssenas 173
FIFICHAR: FORTRANINTRINSICFUNCTION ICHAR ..ottt ettt s v es e e e s e ens 173
FIFIDIM: FORTRANINTRINSICFUNCTION IDIM ...ttt et e e e et s s em s s s et e st e ran s et e eanas 174
FIFIDINT: FORTRANINTRINSICFUNCTION IDINT .ouiiiniiiiiiiiiie et eee e et s e e e et e s seemaa s ean e st seanseaneeans 174
FIFINDEX: FORTRANINTRINSICFUNCTION INDEX ..ottt teeee e mes e e e s e e 174

Vi

PromulaFortran Translator User's Manual

6.82
6.83
6.84
6.85
6.86
6.87
6.88
6.89
6.90
6.91
6.92
6.93
6.94
6.95
6.96
6.97
6.98
6.99
6.100
6.101
6.102
6.103
6.104
6.105
6.106
6.107
6.108
6.109
6.110
6.111
6.112
6.113
6.114
6.115
6.116
6.117
6.118
6.119
6.120
6.121
6.122
6.123
6.124
6.125
6.126
6.127
6.128
6.129
6.130
6.131
6.132
6.133
6.134
6.135
6.136
6.137
6.138

FIFIPOW: FORTRANINTRINSICFUNCTION IPOW.....ouii ettt e e et e e e e eaas 175
FIFISHF: FORTRANINTRINSICFUNCTION ISHET ... e e e e e et e e e e eaas 175
FIFISIGN: FORTRANINTRINSICFUNCTION ISIGN......cuuiiiiiiiiiie i eeeme e e e e s eeaa e 176
FIFMAXO: FORTRANINTRINSICFUNCTION MAXO ..ouiiiiiiiie e eeeee e e e e e e e s aee s st seea e s eaneeeen 176
FIFMAX1: FORTRANINTRINSICFUNCTION MAXL ..ouiiiiiiiii e eeeee e e e e e e e e s e e s st seea e s eaneeeen 176
FIFMINO: FORTRANINTRINSICFUNCTION MINO ...ttt et e st eeema e e st e r e e e s e s aaas 177
FIFMIN1: FORTRANINTRINSICFUNCTION MINDL L.oeitiitii et e st er e st e e st e r e e e s e s aaas 177
FIFMOD: FORTRANINTRINSICFUNCTION MONDciiiiiiiiii ettt eemmt e s et e e s e s e e eas 177
FIFNEF: FORTRANINTRINSICFUNCTIONNEFot em e 178
FIFNINT: FORTRANINTRINSICFUNCTION NINT ...ttt eeee et e e eemmb e e s b e sbe e s s aaeeeas 178
FIFRAD50: FORTRANEXTERNAL FUNCTION IRADSO. ... cuuiiiiiiiii et e e s mees et s s e e e s ane e 179
FIFRBIT: FORTRANINTRINSICFUNCTION RBIT . .ceniiii i et e e s e e e s e s e e eaaaas 179
FIFSIN: FORTRANINTRINSICFUNCTION SIN .. ettt e et e e e s emmt e s eb e s saa e e et e s eaaenenes 180
FIFSNCS:FORTRANSINGLE PRECISIONSINE/COSINE......uuuiiiiirtitieiettiiseesesssstanseesesssneesssssmnntsssessesrsnseeeees 180
FIFSTRGV: FORTRANSTRING VALUE CONVERSION. ... ccuuuiiittiietnieeetceeeseteerenesssnsessssessnssssssnsesseessnnns 181
FIFSYSTM: FORTRANEXTERNAL FUNCTION SYSTEM... oottt s eee e e eaas 181
FIFTAN: FORTRANINTRINSICFUNCTION TAN ... ettt seee e e e e et et s e e e st s semnt s esa e snessnseanessnsenins 181
FIFTIME: FORTRANEXTERNAL FUNCTION TIME ...t cee ettt e rer st e e e s e e eaas 182
FIFXBIT: FORTRANINTRINSICFUNCTION XBIT oottt ees e ee et e st s e s e et e s e eaneeaaeeen 182
FIFXCREP: FORTRANEXTENDED CHARACTER REPRESENTATION. ...uuivuittitniitnitneetieesesnsssnseseesernnsensesnns 182
FIOBACK: BACKSPACE AFORTRANFILE ..ottt s et e e ee et s e ete et s semmt s an e saessnsesneasnsssnseentases 183
FIOBFOUT: BUSINESSFORMAT OUTPUT . .ituittiiiteiteiteitesressasessssssaesssssssssnnnssssssssssnessnsesnessnsiennersnsees 183
FIOCLOSE: CLOSECURRENTFORTRANFILE ...utiit ittt ceemt ettt rreee it e s e et e et e ra s et e srnn 185
FIOCPATH: CONVERT PATHNAME ..t tituttttittietttttttesn e trmssessatssttesaestastsneetstaentatsneststrrsnsetnessisanssessneetaeranns 185
FIODTOS: CONVERTDOUBLE VALUE TO STRING. ...uuittiiitiittiiitiettttiasesssesnesstissneesnessnssnsstssssessssnessnesinnrans 186
FIOERROR: PERFORMFORTRANI/O ERRORPROCESSINGccuuiiitiiiiiieiei s ieemieeeeeieeseeie e st e sas s eessaneees 186
FIOFDATA: FORTRANFILE DATA .ottt eeeet et e et e et e st rere e s s s e sb e s st e s st s s anmaa e s san e sensss 187
FIOFEND: END FORMAT PROCESSINGcuuiitiitiitettieetieemttettasstestestsssessnseessasstssteestessniessesrnnseesneseniees 188
FIOFFLD: GETNEXT FREEFORM FIELD .. cvuiitiiitiiieiee et eee e e e ee et s et s e s st s s sasssaessa s e snessnssennnssensaen 189
FIOFINI: INITIALIZE A FORTR AN ORMAT ... ittt ittt et teme et e et et e et et b eeamta e ran s et s et et s et e sanrnrans 189
FIOFINP : FORMATTED INPUT . .ceuiittiitiiiteii ettt seeeet et e et et esa e et s s mee st s saa s et s s s s et ssba s snmnassansetssebnseansersenen 190
FIOFINQU: INQUIRE ABOUT FILE DATA ...ttt et eeeee ettt s et e e s e e e e e e e e e eeeeesannneeeeeeenen 191
FIOFMTYV: COMPUTEFORMAT VALUE ..ottt ettt ee et e e e st s e tae s mme s sa s e ea s s eaessn e snessnssennnsensaen 192
FIOFOUT: FORMATTED OUTPUT OPERATIONS.ittittttteettiettettiaessssssettesstsstessssiasesssessessssssnsesnessnesnns 192
FIOFVINQ: INQUIREABOUT FILE VALUEciittiiiiiiiit e ettt s s e e e et s e e e eat s e et e vnmme st s e e e e staneeeeetan e sannseeesnen 193
FIOFWSP: SKIP FORMAT WHITE SPACE . .euiiitittiitiieit ettt tieees e et e st e st e et et e s amasesa e et s san s et e st s eanssannneetaerans 194
FIOINTU: ESTABLISH FORTRANINTERNAL UNIT 11ttt ree et e et e st set e st s smmnssassnsesnessnsannns 194
FIOITOS: CONVERTINTEGER TOSTRING......uittuiittiitettettesiteeesestestessesesesnessnnsssssssnsesnessssesnessnsiennsssneees 195
FIOLREC: POSITION AFORTRANFILE ON A RECORDcuuiitiiitiiiiiiie it eeemt et et s etie st e et sssinentaiesnassnesnees 195
FIOLTOS: CONVERTLONG INTEGER TOSTRING. ...ucuuiittiitniitetteetisreeassteenessnssstesnssasessssensesnsrenresnesrnesens 196
FIOLUN: ESTABLISH FORTRANUNIT NUMBER.cuutitutitnittiiteetieeeet et e eaest e st seaesrmreesassasetsersesensesnees 196
FIONAME: ESTABLISH FORTRANUNIT BY NAME ..ottt ettt eemes et e et et e eane st s san s srman s et s sanseanestneeans 197
FIONXTF: GET NEXT FORMAT SPECIFICATION ...utituituiiitieen et eteecesmtaeesnssanseansttnsran et smenssnsssnseasstseraasesesnns 198
FIOOPEN: OPENCURRENTFORTRANFILE ...uiitiiteeiee et ee e eee e e e e et e e e et e st seemta s e s s anseaneeanssensesnneees 198
FIORALPH: READ ALPHABETIC INFORMATIONuituittttttteeneetneeescesmsaeesnssanssan st san et smensansssnseaseteraessnsesnns 199
FIORBIV: FORTRANREAD BINARY VALUESuittiitiiiiiiitiettee it ieesttesttiettesstesttsssasssnnesstsestesstesstsesnessnsssnns 199
FIORCHK: CHECK FIXED-FORM INPUT FIELDuivuiiiiiiiiiii et ee e ceemia et e s e et e et e s e s s eesaessaseaneesnesansean s vmnns 200
FIORDB: READ FORTRANBOOLEAN VECTOR....uctuuiititttitiettestisessssstieenessnssneesnssiasessnsssneesnsrsneesnesineee 200
FIORDC: READ FORTRANCHARACTER VECTOR. ..cuuiittiittitiitettssisesstessessttssntesnessnssmnstssnsesesseeanesrneees 201
FIORDD: READ FORTRANDOUBLE PRECISIONVECTOR.cctuiitiitiitettettieenttestssseetesnesssessnnressessnsssns 201
FIORDF: READ FORTRANFLOATING POINT VALUES. .. .ottt i itieei e eemee s e et e s e e e st snemtassbneeanesbaeeen 202
FIORDI: READ FORTRANSHORTINTEGERVECTOR. .. ceuitutttittntttteenirmeesnstantessttnssesetnseentssssesnsetnerans 202
FIORDL: READ FORTRANLONG INTEGERVECTOR. .. ccuiitutittiittittnteeneirmeesnstensessstnssen et seentsssnseansetnerans 203
FIORDS: READ FORTRAN STRING. .. tttutitiiitit et et eesmte et e et e st s eaa s et seeattssassasstseasesssrreersenasenseees 203
FIORDT: READ FORTRANTRUTHVALUE VECTOR. .. cuutttuittntiteetettsiemeseaetteraesstsesnsssnssramassssesiessssensees 204
FIORDU: READ FORTRANUNSIGNED CHAR VECTOR. ... cuuittniittitetteeteeemtsetetaessasesssssassssmentssesnessnsesnseen 204
FIORDX: READ FORTRANCOMPLEX VALUES ...uuiitiitiiiiitie et isesetsitiesnesstessnessnssisessnsssnsssnsssnsesnessneeen 205

Vi

PromulaFortran Translator User's Manual

6.139
6.140
6.141
6.142
6.143
6.144
6.145
6.146
6.147
6.148
6.149
6.150
6.151
6.152
6.153
6.154
6.155
6.156
6.157
6.158
6.159
6.160
6.161
6.162
6.163
6.164
6.165
6.166
6.167
6.168
6.169
6.170
6.171
6.172
6.173
6.174
6.175
6.176
6.177
6.178
6.179
6.180
6.181
6.182
6.183
6.184
6.185
6.186
6.187
6.188
6.189
6.190
6.191
6.192
6.193
6.194
6.195

FIORDZ: READ FORTRANDOUBLE COMPLEXVALUES ...coutiittitiitieeet e esieeeee e teeeet e s eaeseetnessammnnesssnneesennns 205
FIOREC: POSITION AFORTRAN FILE ON A RECORD.......uiiiueiiiiieeit e eieee e st e s eeeaaeesea s eseesaneesanseesnneeees 206
FIOREW: REWIND A FORTRANFILE ..ottt e e e e e e e st e s semmea e s eaae e s b e e saa e e eanseeeesaansenrnss 206
FIORLN: READ FORTRANEND-OF-LINEuiiiitiiii it eeeee e e e e et e s mm e e st e e eaa s e s aa e e sbn s sneneeaanas 207
FIORNDY: ROUNDVALUE ...ouuiiitiiiiti ittt ee et eeees st e et eeeaae e s et ees s eseaa s e s aaa s e s ta e saba e emmtanssebassessnsseaneresnnn 207
FIORNL: PROCESFFORTRANREAD DATALIST STATEMENT ..vuiittiiiiiiii e eeemt s et e e ea s et e saaneneans 208
FIORPATH: READ PATHNAME CONVERSIONINFORMATION ...cvuuittiiitettittestsrmnessnessssnessnsesnessnsiennsessnseens 208
FIORTXT: READ NEXT TEXT RECORD.....ituiitiitiitieiii et ieeett et e et et e st s at et essaa s st s sbessasstsesnsssnnnssnsensaes 210
FIORWBYV: FORTRANREWRITEBINARY VALUESutiitiiitiiitiiiit it e rmes s eei e st eeae s e san s semansasa s e eaneebaesans 211
[(OIS o [1= WS 1 11 T = = 211
FIOSHR: SHIFT STRING RIGHT ..ttt ittt ee et et e e et e s ee s e et et e ea s et e eb s mmnssa s st esassnaanans 211
FIOSPACE: SKIP WHITE SPACE INRECORD.......uiiitiiiiii ettt et e e e st e s remmea e e saae e s ea e e san e s eansneneseas 212
FIOSTATUS: SETFORTRANI/O ERRORSTATUScotutiiiiiiitiieie ettt sesess s e s settesesssabasessssemmsssaeessssransesssesans 212
FIOSTIO: ESTABLISH FORTRANSTANDARD /O ...cvuuiiiiiiiee e eeeee ettt s e e e e s et e e e e e b 212
FIOSTOD: CONVERTSTRING TODOUBLE.ciiuuiiiiiieiie e et ieees e e s et e e eaae e s eaa e e s sbmm e e saa s eesansesannsesansssennsaneeen 213
FIOSTOI: CONVERTSTRING TOINTEGER.cccuutiittieetieeetetieemeeaesetessaaeseaaessssasaeessasssssansssseeesssessnnnnneerrans 214
FIOUWL: ESTABLISH FORTRANUNFORMATTED WRITE LENGTH...eutiiuiiiiiiiniiiiieeeteeeeee s e eeanssaneean s mnns 214
FIOVFINI: INITIALIZE A VARIABLE FORTRANFORMAT . cuuiitiie et seemt e e et e e st e s ee s s s s ansas 214
FIOWALPH: WRITE ALPHABETIC INFORMATION ...euuiittettetttettietae st eessssesaessnssensesnsssnsssmnnsssnsesnsssnsesnsesnsransn 215
FIOWBIV: FORTRANWRITE BINARY VALUESuituiiiiiitniiii ittt ieeeetn et s et s st e st sstsesbmneesasssasstsestassnsesseen 215
FIOWDBL: WRITE DOUBLE PRECISIONV ALUEuitutitniiitietnetineteniesmsa et ssanssansstnsran st isesssnsssnsssssstseranssnesnns 216
FIOWEF: FORTRANWRITE END-OF-FILEutiitiiiiiiiiei et eeees et e e e s et e st s et s sema s st ssan s st stbnssansstssenntaees 216
FIOWHEXO: WRITE HEXADECIMAL OR OCTAL CONSTANT ... itutitiiteiteetettnesrmeeesnestnessneetnestnessnssnnnestaeranns 217
FIOWLN: WRITE FORTRANEND-OF-LINE ... ittt iem et e st e et eeemt s s s et e st s st s et e s sanenrans 217
FIOWNL: PROCESSFFORTRANWRITE DATALIST STATEMENT ..evuuiiiiniiieieeeteeeetieesessansessteesansessanessnnns 218
FIOWRB: WRITE FORTRANBOOLEAN VECTOR. ...uuittiitittiiitiettssieesssiesnessttssneesnessnsssnsstssnsesssseesneesnnrans 218
FIOWRC: WRITE FORTRAN CHARACTER VECTOR. ...cttittiiitiiitietiititiesmsaiestesttsssteesnestnsssnsnnnsestnsssnsesnestnesans 219
FIOWRD: WRITEFORTRANDOUBLE PRECISIONVECTORuuttuiitiittieiettneermeeesnestnessneetesiessnssnnnestnessnns 219
FIOWRF: WRITE FORTRANSINGLE PRECISIONV ECTOR ...uituiitniitiiietiesetieestteeasstessssnessssessnsesnessnsssns 220
FIOWRI: WRITE FORTRAN SHORTINTEGERV ECTOR.....cuuiitniitiitiiteitieemtsttetastssestesnsssieensssersessnsesnseen 220
FIOWRL: WRITE FORTRANLONG INTEGERVECTOR .. .ccuuittiitiettitttetnermntessnssansesnestnsssnsetnimentasssnsesnesineees 221
FIOWRS: WRITE FORTRANYECTOR OFSTRINGS .. cuuiituiitniitttieneitne s ees st seasttssasstssssssnmsssassnsesnessnassnnes 221
FIOWRT: WRITEFORTRANTRUTH VALUE VECTOR .. .euituiittiittet et e e st et e st seass st ssnssenmnssnsesnessnsenss 222
FIOWRU: WRITE FORTRANUNSIGNED CHAR VECTORuctuiitittiiitiitneitnieemtaessnsssnestnessnsstnessnenssnseanessneees 222
FIOWRX: WRITEFORTRANCOMPLEX VECTOR ...uuittiittttiittiettssisesssesnessntsneesnessnssnsstssnessaessnessnestnerans 223
FIOWT XT: WRITE TEXT RECORD.......iitiitiiitiiitiii e mee e ee e e e et e st e e e e s emas e s aa e san s eaa e s taseansetnsannta st eanesbaren 224
FIOWVAL: WRITE FLOATING POINT VALUE ...uiittiitiiii it ee et temt s e e e te st e e te st s s aaseemsasesaesanssanessnsssnesnnnnees 224
FIOWVB: WRITEFORTRANBOOLEAN V ALUEciuuiitiiieiitieitee et isesste st seetesatesanessnssaaessnsssnsssnsssneesnesrneeen 225
FIOWVC: WRITE FORTRANCHARACTERV ALUE .. ituiiitiitiiieiieet s ee st e e st e st sstsesbssnmnseassnsesnassneennns 225
FIOWVD: WRITE FORTRANDOUBLE VALUEccuiitiiiiee it eee e eeeeta et s et s e s ttsesae st mres st s e saessnesensesaessnsssnns 226
FIOWVFE: WRITE FORTRANFLOAT VALUE ...ttt e e e e et e et e s seemea s e e s e s e e e s s sensesneeen 226
FIOWVI: WRITE FORTRANSHORTINTEGERV ALUE ... cvuieeiitneieeet et ieme s e et et s et s b s e senmnssnsesnasnsenss 226
FIOWVL: WRITE FORTRANLONG INTEGERVALUEivuiieniiin ittt iem st e et s et st s e srmmaassnsesneaensenss 227
FIOWVS: WRITE FORTRANSTRING VALUE ...uituiieiit ettt eeemt et et e s e et s et s s aenessan s et ssassansstsrassrmnns 227
FIOWVT: WRITE FORTRANTRUTHV ALUE «.uuitniiiiiteie ettt eeemt et et e s et s et e saeseesan s et ssanssanseteranssrmnns 228
FIOWVU: WRITE FORTRAN CHARACTERV ALUE .. ittt ittt et ee st e e et s et e et s smm s sassa e saassneanans 228
FIOWVX: WRITE FORTRANCOMPLEX VALUE . ..uituiiiiiiiiii ettt ieeest et e sas st e st sstsssbmeesbseasstiestassnessaen 229
FIOWVZ: WRITE FORTRANDOUBLE COMPLEX VALUE ...uuiitiiiiiiiieiiieitee et ieesttee st setiestesetessssesnnnnesnssnssnnes 229
FTNADS: FORTRANADD STRINGSuuiiituiiittiettt ettt ceeee st eesa e e st s esta s es s sstassetatstanssstn s ienmttesransesens 230
FTNALLOC: ALLOCATE DYNAMIC MEMORYituiiuniitiitntiteitiemmteiteetettetaestessiaenssnsstesteraasetiernssrnnnes 230
FTNBACK: FORTRANBACKSPACE STATEMENT ...ituiitttitettette st simeestassaasstaessaesae st renseransstestaeraaeeseees 231
FTNBLKD: FORTRANBLO CK DA T A ittt et ee et e e et a s et smme s et e et e s s snseeasesnssennnssenseen 231
FTNCLOSE: FORTRAN CLOSE STATEMENT «euuituitnittnettasetnettsseemtastansetstsssastsesaimeeransetstreeresensernssmes 232
FTNCMS: FORTRAN COMPARE STRINGS .. .cuituittitetietatttnteemasesa st sta ettt ean s ann sttt sttt iennteres 232
FTNFREE: FREEDYNAMIC IMEMORY ..uiuuiuiuieititeaesesmeeraeaseataseatssesesesmmarseaseasessessessessesssmmernsensensenns 233
FTNINI INITIALIZE FORTRANPROCESSINGituitniiteitttte it ceemtstaneetsttstasetssasaeeransetsstesresetseressmsens 233
FTNLUN: ESTABLISH FILE FORLOGICAL UNIT NUMBER.cuuiitiitiiieiis it ieeeet e e et e et s et s s eesb e easeaeees 234

viii

PromulaFortran Translator User's Manual

6.196
6.197
6.198
6.199
6.200
6.201
6.202
6.203
6.204
6.205
6.206
6.207
6.208
6.209
6.210
6.211
6.212
6.213
6.214
6.215
6.216
6.217
6.218
6.219
6.220
6.221
6.222
6.223
6.224
6.225
6.226
6.227
6.228
6.229
6.230
6.231
6.232
6.233
6.234
6.235
6.236
6.237
6.238
6.239
6.240
6.241
6.242
6.243
6.244
6.245

FTNOPEN: FORTRAN OPEN STATEMENT . .etttitetttettteeett s eesseeeee s taeestasesaanesetn s ssmmnsassesnessssseranesssnseeenrennss 234
FTNPAUSE: FORTRAN PAUSE STATEMENT ..euuiitiiiiteeetteeete e eeeeseseeeanessansessseessmesessnnsessnaeessnsersnnsseennts 235
FTNREAD: FORTRANREAD STATEMENT ...ittttietttteitteeetiees maes st ssstassesasssssassenmsseessnesesaeerensessssimeeesens 235
FTNREW: FORTRANREWIND STATEMENT .uutiituiitttieettetetneiesmtssessanesssaeesassessssimsessssnsessnsesssnsesssneesrmnnss 237
FTNSAC: FORTRANSTOREA CHARACTER STRING. ...cuutiitutieitiieeteieesimessetaeesstnesssssesssnssenmsssessansesenneesenns 237
FTNSALLO: FORTRANSTRING ALLOCATION ...uuittittitittetneetntteniesmsseesnsssnssansttnsrsn st imanssnsssnsssssstaeraessnesmns 238
FTNSCOMP:FORTRANSTRING COMPARISON.cuuiittiitittettestisensssssesnessntssnesnssiasessssssseesnersnresnerinee 238
FTNSCOPY:FORTRANSTRING COPY...cutiitiiitiiiiiiitii et ieeee e sttt sttt e st ettt s e st s maessasssaessaastnesnessnsiennssssneens 239
FTNSLENG: FORTRANSTRING LENGTH 1uuiitiittiiitiiii ettt eesmes e eetesa s st esaassan s samss st ssansstssssnsesnsssssanntseees 239
FTNSUBS: FORTRANSUBSTRINGEVALUATION ...ituiittiiiniii it it e teee s e et s et et s et s s s semn s san s et ssbnseansenaeees 239
FTNSTOP: FORTRAN STOP STATEMENT .t tittittittettttttieststeatesstestesassaesaetntenntstttestesstieseesnttsnimentaeen. 240
FTNWEF: FORTRANEND FILE STATEMENT ..etuiiitit ittt ettt es et s eeeerete e e eaa e st eesaasessasessansssanseetnserennssennnts 240
FTNWRIT: FORTRANWRITE STATEMENT .utiittiiittieitteeetaeeeemstsessssesstasssassesssssssenssssersssessssessneeessimseaees 241
FTNXCONS: FORTRANEXACT REPREENTATION CONSTANT .uutiittcieteeeetesetneeiemmeseessnesesneerenesssnineeessns 242
P77GETU:PRIME FORTRANT77FUNCTION F77EGETU.....cuviiiiiiie et eeemmra e 243
P77NLENA: PRIMEFORTRANT77 SUBROUTINENLENSA.ooiiiitiiiei et 243
P77TNOUA: PRIMEFORTRAN77 SUBROUTINE TNOUAttt vem s naaas 243
PDPASSN:PDPFORTRANSUBROUTINE ASSIGN. ..cuuitttiiteiteiteetssiressssesteesnssntesnessnssmstssnsessssnresnesineees 244
PDPCLOSE:PDPFORTRAN SUBROUTINE CLOSE. . .uuituiitniittiitniitnetiesstnssansttssassssssssssnnsssaessssesnessnsesnns 244
PDPCVTIM: PDPFORTRANEXTERNAL FUNCTION CVTTIM .ouiiiniii ettt eenma e 245
PDPGTIM: PDPFORTRANEXTERNAL FUNCTION GTIM . .oiiiiiiiiii ettt 245
VIMSCLS: CLOSEVIRTUAL FILE .ovtiitniiuiii ittt eeeei et et e ettt e et s et eaeata s et e sae s st s sa e sa st essa e enssnssnsenns 246
VMSDEL: CHANGE VIRTUAL INFORMATION ..uuuituiitutitettetteetienntsstessesstesneesssssimensssessessnsesneesnsssnsesnnnees 246
VMSGLOB: VIRTUAL GLOBAL A CCESS. .. tttituiittiittitttitttermatssneetttsntesettersn ittt 247
VMSLOAD: LOAD A VIRTUAL VECTOR ..ituttutitiittiteitetiteeetsettestestasstestssnnssssisstiestessnieseesniiennossieen 247
VMSOPN: OPENA VIRTUAL MEMORY FILE ..uuittiiitiiiiiiiiiie it ceemt st e et et e s s et e sbinees s sean s st s san s et essnsssnnneen 247
VMSPTR: GETVIRTUAL BYTE POINTER. .. tttttuiittiiitiiiitieermesssteettetat et estassanssrnssestasssneesnsstnsssnestnimnntasssnes 248
VMSRBL: REMOVE VIRTUAL BLOCK ..ittiiitiiiiiiiiii ettt ieees et e sttt s et e st s s smses s s e s aa s s saeesaestassanssnnnssesnsssnseen 249
VMSRDB: READ FORTRANVIRTUAL BOOLEAN VECTORuituiitniitniitneitneiemeraneetnersnsetetsn e ssennnssnesnnns 249
VMSRDC: READ FORTRANVIRTUAL CHARACTERVECTORivuittiittiitniitneitniesmensetnstsnsetesterasesinennsseennnn 250
VMSRDD: READ FORTRANVIRTUAL DOUBLE PRECISIONVECTOR. .. .cuuiitittiiitieineetnsiemnesensesnesinsesnsesneeannn 250
VMSRDF: READ FORTRANVIRTUAL FLOATING POINT VALUEScutiitiiiiiieeeee e e et s et s e e e eemans 251
VMSRDI: READ FORTRANVIRTUAL SHORTINTEGERVECTOR iutittittiienietnssimeesensesnessnssensesnessnssameeees 251
VMSRDL: READ FORTRANVIRTUAL LONG INTEGERVECTOR.....uiituiitiiteiieitetimeeiteeansstnessnsesessnsrnnnees 252
VMSRDS: READ FORTRANVYIRTUAL STRING ...vuiittiitiiitiiit et eseaeestteesteestesstsesnestassennsssneesnessnsesnessnssanns 252
VMSRDT: READ FORTRANVIRTUAL TRUTH-VALUE VECTOR......cttuiitiitiiieiteiimeeiteeaestestnsesnessnssnnnnees 253
VMSRDU: READ FORTRANVIRTUAL UNSIGNED CHARACTER VECTOR......ivuiiiiiitniiteiineeiieeessnesiesaneenesnnns 253
VIMSSAVE: SAVE A VIRTUAL VECTOR ...ttt itttittieitietiestteimatteeteesttssttestesstsstsrnntessntsstiesestteeneesinrnrseean. 254
VMSUSE: USEVIRTUAL INFORMATION. ...ttt ttuiitntttnettnettnetemesaneetsestnsessstsesansenntasstesssstestaessasstimenrssernnees 254
VMSVECT: VIRTUAL VECTORINPUT/OUTPUT .. .cituteiteeeee e e ete e e eemte s et et et eesaaesesan s saestsasesaaeesansesannsessanan 255
VMSWRB: WRITE FORTRANVIRTUAL BOOLEAN VECTOR.....cuuiitieiiiettieeteeetieentaesetesaessnseneesnssineessneenns 255
VMSWRC: WRITE FORTRANVIRTUAL CHARACTER VECTOR . ..cuuittiitettieitieeiessees et eetessnsssnsesnesensssnnesenss 256
VMSWRD: WRITE FORTRANVIRTUAL DOUBLE PRECISIONVECTORccutittiiitiettietniienieemtaseeneesersneesnessnns 256
VMSWRF: WRITE FORTRANV IRTUAL SINGLE PRECISIONVECTOR. .. .cutiitittiiitieeneetnsiemnesensesnesinseanseinesannn 257
VMSWRI: WRITE FORTRANVIRTUAL SHORTINTEGERVECTOR. . ..uuituittiietietneitneeimesseneesnssansesnessnessnseennns 257
VMSWRL: WRITEFORTRAN VIRTUAL LONGINTEGERVECTOR.....uuituiiitiiitieiniiiicimeeesneetnesansetnesinesanssenans 258
VMSWRS: WRITE FORTRANVIRTUAL VECTOR OFSTRINGS....ucuuiittiitiiitiiitietninenttssnesneesnissneesnesssessnsens 258
VMSWRT: WRITE AVIRTUAL LONG TRUTH VALUE VECTOR. ... ituiittiiiiiieii et ceemtn e et e ste et e st esaseninennsesanan 259
VMSWRU: WRITE FORTRANVIRTUAL UNSIGNED CHARACTER VECTOR....cuuiitiiiiitieiieeiiieieneeeiteeeaeeeneenns 259
VMSWVB: WRITE AVIRTUAL BLOCK ...ttt et eee et e e e e et e s s e s s e e et e s s et e et e saseamaasabananss 260

PromulaFortran Translator User's Manual

PLEASE READ THIS SECTION

There are three fundamentally different ways of using PFC:
1. As a FORTRAN compiler;

2. As a tool to produce maintainable C source code from a FORTRAN source which corregpéimeloriginal as
closely as possible so that it can be maintained by the original authors;

3. As a tool to produce a maintainable C source code from a FORTRAN source which is logically equivalent to the
original, but which uses conventional C notatiord standard C functions as much as possible.

These three views are referred to as the "optimized”, "FORTRAN", and "C" biases respectively. The default bias for PFC
is the FORTRAN bias. The C and optimized biases are, however, fully supported by Pir@yalnel activated by the Bc

and Bo command line switches. In addition, the PFC configuration file can be easily changed to make either the C or the
optimized bias the default.

Please evaluate your own reasons for applying PFC to your FORTRAN codes knthmappropriate bias selection. If

you are still not satisfied with the output from PFC, please look at the chapters in this manual which discuss the command
line switches available and the use of a configuration file. Virtually every aspect ofotheflthe output can easily be
controlled by you. If you are still not satisfied, please contact our user support staff. We feel very strongly that PFC ca
support any reasonable objective or bias, and would like the opportunity to prove it.

PromulaFortran Translator User's Manual

1. INTRODUCTION

The GREAT MIGRATIONS FORTRAN to C Translator generates C code which can be compiled by a standard C
compiler to produce executable code. It is operational on a wide variety of platforms. More than just a tr&fizadr,
MIGRATIONS FORTRAN adds alue to the code during the translation: virtual memory logic, dynamic memory logic,
references to external databases and application management systems, and integration with other operating environments.
Finally, GREAT MIGRATIONSFORTRAN has a dialect magement component which allows the customization of the
package in terms of both the FORTRAN dialect to be accepted by the translator and the form of the C translation output.

The source code processing componentgwiFortranis completely compatible wit the one used by th&REAT
MIGRATIONS FORTRAN Compiler. The manual for t@REAT MIGRATIONSFORTRAN Compiler is included with

this manual. That manual contains a description of the FORTRAN language supported, controlling runtime behavior, the
GREAT MIGRATIONS interface, and error messages. That discussion applies diregigRortranas well and will not

be repeated in this manual.

1.1 User Support

If you are a licensed and registered use6BEAT MIGRATIONSFORTRAN, you are entitled to user suppoadn Great
Migrations LLC

If you encounter a problem that you cannot resolve on your own by referring to this User's Manual, you may call or write
us:

Great Migrations LLC
PFC Support

7453 Katesbridge Ct
Dublin, Ohio 43017
(614) 7619816

Your commentsad suggestions about the product are always welcome.

If possible, we will provide help over the telephone. However, if the problem involves an apparent translation problem or a
runtime library problem, we will probably need a copy of your source FORTR¥&will protect the full confidentiality
of any sample codes that you send to us.

If the problem does uncover a problem either with the translator or with the runtime library, you will be supplied with a
corrected copy ofGREAT MIGRATIONS FORTRAN and/or ie Runtime Library as soon as we have made those
corrections.

All purchasers oGREAT MIGRATIONSFORTRAN will be notified of any revised versions, and will be given the option
to purchase them at a nominal update cost.

At your requestGreat Migrations LC staff will also provide technical consulting services to assist you in software
conversion projects.

1.2 What isGREAT MIGRATIONS FORTRAN?

GREAT MIGRATIONS FORTRAN is a compiler which will process FORTRAN codes of almost any dialect on almost
any pldaform that supports a standard C compiler. It is also a comprehensive FORTRAN to C translator which converts
FORTRAN code to clean, portable, and maintainable C code while allowing extensive control over the translation process.

PromulaFortran Translator User's Manual

No matter how old or howxtended your FORTRAN dialect §REAT MIGRATIONSwill process it by first compiling

it to the more versatile and more portable C language. Yourdstablished FORTRAN programs do not have to be
maintenance burdens running inefficiently on old platforméth PROMULA, you can give them new life on
contemporary platforms where you can take advantage of new technology options, including the option of program
maintenance in either FORTRAN or C.

1.3 Compiler Advantages

As a FORTRAN compilerGREAT MIGRATIONS FORTRAN offers a number of advantages over other FORTRAN
compilers:

Portability Compile to C rather than machine code. Maintain a single FORTRAN source code on n
platforms. Port and process your applications on almost any platform that supptatsiard C
compiler.

Multi -Dialect Compile standard FORTRAN 66 and FORTRAN 77 dialects as well as various other ex
Processing dialects, such as VAX, IBM VS, PDP, PRIME, Honeywell, and Data General FORTRAN.

Multi -Platform Achieve reproducible results on multiple platforms without having to maintain separate
Availability codes on each platform. When you migrate from one platform to another, bring your FOR
applications with yod including your FORTRAN compiler.

GREAT MIGRATIONS FORTRAN is available for several platforms: IBM PC, Ap
Macintosh, VAX/VMS, VAX/ULTRIX, SUN/UNIX, IBM/AIX, 386/UNIX and other UNIX
workstations, as well as IBM mainframéSREAT MIGRATIONS FORTRAN is a portable (
program and can be installed via slmted source code on platforms not listed above, prov
they support a standard C compiler.

Run-Time GREAT MIGRATIONSFORTRAN comes with an extensive runtime library which reprodi

Library in C the full functionality of FORTRAN (FORTRAN 1/O, complexithmetic, etc.). The librar
is available in C source code and can be recompiled with any standard C compiler. Thit
that you can us&REAT MIGRATIONS FORTRAN as a crossompiler, i.e., translate yot
FORTRAN code to C in one platform usi®REAT MIGRATIONS FORTRAN, then compile
link and run the translated C code on a second platform using a C compiler.

Validation The compiler has been tested on several platforms with Version 2.0 of the FORTRAN cc
Validation System from the Federal Softealesting Center and passed the test at the
validation level on all platforms.

Integration Upgrade your FORTRAN applications by integrating them naturally with GUI libraries and
C-based software on new platforms.

Debugging Extensive ewr checking is done at three steps of the process:
(@) During compilation of the FORTRAN to C, KYREAT MIGRATIONSFORTRAN.

(b) During compilation of the translated C code, by the C compiler. In principle, ai
successful Step (a) above, thigsyields no compilation errors.

(c) During execution, by the debugger of the C compiler. For UblhXed systems, the dI

debugger may be used and it can reference either the translated C code or the lin
original FORTRAN source code.

1.4 Translator Advantages

PromulaFortran Translator User's Manual

As a FORTRAN to C translatoGREAT MIGRATIONSFORTRAN offers a number of advantages over other FORTRAN
to C translators:

Multi -Dialect Translate the standard FORTRAN 66 and FORTRAN 77 dialects as well as various

Processing exterded dialects, such as VAX, IBM VS, PDP, PRIME, Honeywell, and Data Ge
FORTRAN. A particular FORTRAN dialect is selected at the time of purchase. Addil
FORTRAN dialects may be purchased later.

CrossPlatform Translate your code ame platform for compilation, linking and running on a second platforr
Availability

Completeness The syntax processor handles almost all existing standard and extended FORTRAN dig
also supports a number of Fortran 90 features, such as structures aed \ariables. On the
execution side, its comprehensive runtime library covers the full functionality of all of the i
FORTRAN dialects (full FORTRAN /O, complex arithmetic,c, NAMELIS
DECODE/ENCODE, DEFINE FILE, BFORMAT, %VAL, %REF, %DESCR, STRUCTURE
RECORD, embedded and inline comments, etc.)

Correctness Since GREAT MIGRATIONS FORTRAN compiles to C, i.e., performs both a syntactic ar
semantic transformation to C, the translated C code is both compilable and "correct," th
yields reprodcible results. See Validation above.

Language Translate FORTRAN to maintainable C. Migrate to C for source code maintenance and
Migration development.

The C code generator actually offers three output options (or biases):

(a) The FOR'RAN bias generates C output which is as close to the original FORTRA
possible and is aimed at easing the transition of those users who are presently FO
programmers but wish to (or must) become C programmers.

(b) The C bias generates C outputtich looks much like a standard C program and is aime
those users who are C programmers but must now take over the maintenanc
FORTRAN code.

(c) The optimized bias generates C output which is designed to compile as quickly as f
and b produce an efficient as possible executable module. This output is not very re
and is aimed at those users who wish to continue to program in FORTRAN. For thess
the C output is of no importance as such. It is merely an intermediate stepraesl as inpu
to the C compiler.

Error When a FORTRAN error occurs, an error message is issued and the user has the option
Processing continue processing. A commatide switch allows the user to select from five different et
handling gtions:

(a) Stop translation when the first error is encountered

(b) Translate all errors into necompilable FORTRAN ERROR statements

(c) Translate all errors into nedinkable FORTRAN ERROR function calls

(d) Translate all errors into exelle printerrormessage statements

(e) Translate all errors into warning comments.

PromulaFortran Translator User's Manual

Conversion As part of our standard maintenance agreement, if after translating a working FOR

Support application withGREAT MIGRATIONS FORTRAN you find that itdoes not yield the sam
results in C as it does in FORTRAN, we will gladly revise or extend our translator and
runtime library until you achieve complete reproducibility of results. This guarantee applie
to pure FORTRAN applications; hybridpglications that contain external, possibly nc
FORTRAN, components, are outside the scope of our standard maintenance agreemen
handled as part of our system conversion services on a consulting basis, upon request.

Documentation According toa Computer Languageeview (October, 1988), "the documentation GREAT
MIGRATIONS FORTRAN is excellent. It meticulously details the translation process,... a
runtime library routines, and more." In addition, the language reference component
documentation describes the actual FORTRAN dialect@EAT MIGRATIONS FORTRAN
supports.

1.5 HowGREAT MIGRATIONS FORTRAN Works

The GREAT MIGRATIONS compiler is based on the proven FORTRAN to C translator which was released to the PC
market almost si years ago as Version 1.0 &REAT MIGRATIONS FORTRAN and has shown in a number of
FORTRAN code migration projects that reproducible results can be achieved almost automatically without lengthy and
expensive manual recoding work.

GREAT MIGRATIONS FORTRAN translates FORTRAN code to C code which is then compiled via any standard C
compiler and linked with th&REAT MIGRATIONSFORTRAN runtime library to produce efficient executable code. The
resultant executable code produces the same results on a tatfgetpds the original code does on the source platform.

In designingGREAT MIGRATIONS FORTRAN we took the position that the only difference between a translator and a
compiler should be that a compiler converts the source code into machine language tveridator takes it to a higher

level language.GREAT MIGRATIONS FORTRAN compiles the FORTRAN source language into a low level
pseudocode. This pseudode is much like the output produced by the first, or second, pass of contemporary compilers.
Secondjt optimizes that code using the same techniques as used during the optimization pass of a compiler. Third, it does
code generation; but the code generated is not machine code, it is C.

A more detailed description of the design and methodologyREAT MIGRATIONS FORTRAN appeared in a series of
three technical papers in theurnal of C Language Translation

1. "Design of a FORTRAN to C Translator,” Fred K. Goodman, Vol. 1, December, 1989 and March, 1990.
2. "FORTRAN to C: Numerical Issues," Fred K. Goaan, Vol. 2, June, 1990.

3. "FORTRAN to C: Character Manipulation,"” Fred K. Goodman, Vol. 2, September, 1990.

1.6 Rationale for DevelopingGREAT MIGRATIONS FORTRAN

Since the beginning of FORTRAN there has always been a prablédf®RTRAN is not transptable from machine to
machine or even from one operating system to another.

In contrast, the C language is unique in that it is available for almost every type of codpiiten home computers to
supercomputers. It is extremely efficient, modular, padable. It is presently the language of choice for many operating
system programmers and compiler designers.

In addition to authorin@SREAT MIGRATIONSFORTRAN, we have been developing FORTRAN development tools and
FORTRAN applications for clients sinc967. In converting FORTRAN programs from one platform to another, our
typical problem was not that we could not find a good FORTRAN 77 compiler for the target platform, but rather that we
were confronted by FORTRAN programs that were almost always miittenonstandard, nomachinetransportable

PromulaFortran Translator User's Manual

FORTRAN dialects. The typical mainframe FORTRAN program is not written in standard FORTRAN and makes
assumptions about the machine and operating system for which it was originally written. FORTRAN prograsiqate |
portable.

GREAT MIGRATIONS FORTRAN was designed to deal with actual FORTRAN programs, written by Starctured"”
FORTRAN programmers who took advantage of every possible special feature of their particular vendor's compiler, and
who had never kown or cared that there was a standard, or two, available.

If you have a relatively small FORTRAN 77 program and wish to use it on a new platform in a C environment, then you
have a variety of compilers and/or translators available to you, but weGHREBIRT MIGRATIONS FORTRAN will give

you the best results. However, if you have a serious FORTRAN program and you do not wish to do any changes by hand,
then we know thaBREAT MIGRATIONSFORTRAN is your only current alternative.

We originally developedsREAT MIGRATIONS FORTRAN for use in our own consulting business because we were
unable to find a FORTRAN compiler which would effectively and accurately process the typical FORTRAN programs
which we wished to migrate to the PC or other workstations. Havingdewsdoped the translator, we discovered that far
more than just translation could be achieved during the conversion. Many other problems could also be solved by
translating to C.

1.7 Downsizing Mainframe Codes for Use on the PC DOS Platform

Many FORTRAN programs are written with the assumption that a very large memory is available. This is because most
machines above the PC class have virtual operating systems. A standardréefroranslation of a statement like the
following:

DIMENSION A(10000,20),B(10000,20)

would be:

static float a[20][10000],b[20][10000];

The fact that this is syntactically ertfsee is of little significance since no C compiler presently available for the PC will
accept it. Faced with this problem, what do you do? In theelforce approach, you would probably go through the code

0 maybe all 10000 lines of @ and change the references to arrays A and B to some sort of disk reference. You would
probably also analyze how these arrays are referenced so that you coulthendikk ticcesses as efficient as possible.

In processing large programs on the limited memory model of thB@E€ platform,GREAT MIGRATIONSFORTRAN

takes a virtual memory approach.GREAT MIGRATIONSFORTRAN, you can tell the translator that all varegblarger

than a certain number of bytes should be treated as virtual memory disk variables. The runtime library has a very efficient
set of virtual memory management routines, and the translator replaces references to the specified variables with function
calls to the virtual memory functions. The subscript calculations are replaced by virtual memory address calculations.

Thus, GREAT MIGRATIONS FORTRAN allows you to bring an entire class of FORTRAN programs to the PC which
cannot now be processed easilyany other product available.

1.8 Dealing with FORTRAN Dialect Problems

Other translators deal primarily with FORTRAN 77, require that tokens contain no blanks and be separated, and treat
FORTRAN statement names as reserved words. FORTRAN codes etingribese specifications must be changed by the

user manually. Our experience has been that many FORTRAN programs are written in FORTRAN 66 or in some mixed
dialect of FORTRAN 66 and FORTRAN 77. Since FORTRAN has no keywords and explicitly ignoreandd lirh its

source statements, many perfectly readable FORTRAN programs do not meet the above requirements.

PromulaFortran Translator User's Manual

GREAT MIGRATIONS FORTRAN translates FORTRAN 66 as well as FORTRAN 77 programs. The user can control
those aspects of the two languages which atirfly selecting options in the translation process.

The translator accepts split tokens, token sequences without separators, blank lines, comment lines within continuation
sequences, and other potential translation ambiguities. You do not have to "pletre wode" to useGREAT
MIGRATIONS FORTRAN. So, if you have an old 66 program punched on a 026 keypunch with a drum card on as few
cards as possible and you can get it onto a @REAT MIGRATIONSFORTRAN can process it for you.

Also, GREAT MIGRATIONSFORTRAN knows the difference between
DO010I=1,5 and DO10I=1.5

or
DO101=15and DO101=15

and translates them all correctly.

GREAT MIGRATIONSFORTRAN deals with all of the "violations" of standard character manipulation including hiding
charactewalues in arithmetic variables, mixing character and noncharacter variables in COMMON blocks, equivalencing
character variables with arithmetic variables, and assuming that CHARACTER*N and CHARACTER*1(N) have the same
memory representations.

Finally, in cases where different versions of FORTRAN have conflicting features or conventions a dialect selection option
switch can be used to select the desired set. The particular dialects which the compiler supports are as follows:

1.9 Dealing with C Types and BRTRAN Types
GREAT MIGRATIONSFORTRAN gives you access to all of the following standard C types:

signed char
unsigned char
short signed int
short unsigned int
long signed int
long unsigned int
float

double

and to float complex and double complex stroetitypes.

Though GREAT MIGRATIONS FORTRAN has the usual set of default FORTRAN types, you can specify which
FORTRAN type should connect to which C type. If your dialect of FORTRAN includes nonstandard types such as
BOOLEAN or BYTE or INTEGER*3, then yogan include these. In addition, FORTRAN compilers differ as to whether
logical types are bit sequences or simply TRUE/FALSE values. You may also select this. If bit sequences are assumed, the
"logical" operators become hibanipulation operators.

1.10 Daling with FORTRAN Input/Output in C

The approach taken to FORTRAN input/output statementSREAT MIGRATIONS FORTRAN is straightforward: the

C programs should behave identically to their FORTRAN counterparts. All standard I/O statements are achagiteyl in

long FORMAT statements. These tend to be rejected by C compilers because their initialization strings exceed the compiler
limit on the length of individual static strings. C input/output is managed via calls to functions in the C library. C has no

PromulaFortran Translator User's Manual

input/output statements as such. FORTRAN input/output statements are translated into calls to functioBREBAfhe
MIGRATIONS FORTRAN runtime library. These functions perform input/output the way FORTRAN does.

Though the general form of input/outputtstaents is quite standard throughout the FORTRAN dialect community, no two
FORTRAN compilers have the identical set of options. This is the major area in which dialects differ. VGREAG
MIGRATIONS FORTRAN dialect manager you may describe the indafidaptions associated with your particular
dialect. In addition, you may specify the form of the function to be referenced in the translation. Then you can simply write
the needed function and include it in your version of the runtime library.

1.11 Runtime Library

The GREAT MIGRATIONSFORTRAN runtime library is a set of approximately 250 functions designed for use with the
GREAT MIGRATIONS FORTRAN translator. It may also be used by those FORTRAN programmers who wish to
program in C, but who do not wisb give up the input/output conventions, formatting controls, and intrinsic functions

which they have grown used to.

Initially, C codes using this library can be produced by translating FORTRAN programs into C usiGdRE®ET
MIGRATIONS FORTRAN translatorOnce in C, the programs may then be maintained by using these functions.

If there is one certainty, it is that no two FORTRANs behave in the same way, especially with regard to their runtime
libraries. Thus, if your conventions differ from the ones ulerk, you may alter the library code. Alternatively, your
version of FORTRAN may contain statements which require runtime support not included in this library. In this case, you
can add the additional functions needed.

1.12 Dealing with Common Blocks

If there is any aspect of FORTRAN that can destroy the validity of a translation, it is COMMON dlaesecially when
combined with EQUIVALENCE statements. Every storage trick ever conceived gets used in the nuances of changing
COMMON block definitions thwugh a large FORTRAN program. There is no best way to translate COMMON blocks.
Some compilers, for example, insert extra bytes to achieve various types of alignments, and programmers using these
compilers will take that fact into account without any wagnim comment for the user.

GREAT MIGRATIONS FORTRAN translates COMMON blocks in one of four ways. It is up to you to select the
appropriate one depending upon your needs and preferences:

1. The default is to declare the COMMON block identifiers simplyeaternal void pointers and then to assign them
locally to a structure pointer whose members are defined in the same manner as the COMMON definition in the
routine. This technique works in all cases except where alignments are needed.

2. In cases where QO@MON blocks are always defined in the same manner, the common blocks are simply defined as
external structures. This gives more efficient code than the technique above.

3. The most efficient technique can be used when no games are played with the cdoukemtall. Then, the blocks
themselves are removed and the variables within them become external variables directly.

4. The final technique is used when an exact block layout is required. The COMMON block is declared as an external
pointer to a char. fie variable positions within the block are calculated with -sgpplied alignment and size
specifications. Actual variable references then become references to the COMMON block name plus the calculated
position.

1.13 Allocation of Local Variables

PromulaFortran Translator User's Manual

Most FORTRAN compilers allocate a fixed unique storage location to all variables, be they COMMON or local. The
equivalent allocation in C is called "static", and by default all variables in the translation are declared as sta¢is. \@yiabl
however, has twodilitional storage allocation methodlsauto and dynamic.

Auto variables are stored on the program stack automatically when a function is called and are automatically removed when
the function is exited. The advantage of these variables is that theyyaoeupory only when needed and their physical
allocation is quick and transparent to the C program. The disadvantage of auto variables is that the program stack tends to
be quite short; thus, the number and size of auto variables are very limited.

Dynamicvariables are stored on the heap via explicit calls to a function and must also be freed explicitly via a function call.
The disadvantage of dynamic variables is that their allocation is slow as compared to auto variables, and the alltication itse
must bedone explicitly. The advantage is that the heap is generally quite large.

UsingGREAT MIGRATIONSFORTRAN you have complete control over the allocation of variables in the translation.

1.14 A Sample Translationto C

The output frorGREAT MIGRATIONSFORTRAN does not look like machine translation. To present some of the design
features of the translator, consider the following example program which computes the mean and variance of a set of
values.

Input Output Notes
SUBROUTINE EX001(VAL,N,XBAR,VAR) void ex001(float *val,int n,float *xbar,float *var) 2)
DIMENSION VAL(N) {
XBAR=0.0 auto int j;
VAR=0.0 auto float s;
DO 10J=1,N *xbar = *var = 0.0;
XBAR = XBAR + VAL(J) for(j=0; j<n; j++) *xbar += *(val+j); 2)

10 CONTINUE *xbar /= n; 3) -(6)
XBAR = XBAR/N for(j=0; j<n;) { 5)
DO15J=1,N s = *(val+j) - *xbar; 3) @)
S=VALQJ) - XBAR *var += (s*s);

VAR = VAR + S*S } (5)

15 CONTINUE *var /= (n -1); @)
VAR = VAR/(N - 1) } (5)
RETURN
END

Note (1) that the parameteiis not declared as a pointer, since it is not changed within the roBGREAT MIGRATIONS
FORTRAN uses what are called "prototypes” of subprogram arguments so that it can generate optimal calling sequences.
These "prototypes” may be specified by theruse may be determined internally by the translator. The above was
internally determined by the translator.

Note (2) that C allows multiple assignments to the same value to be written together. The translator looks for such
assignments and combines thelmewever possible.

Note (3) that in FORTRAN the default base for a subscript is 1. Thus, all DO loops which generate subscripts tend to start
at 1. In C, however, subscripts start at zero. This fact makes for much more efficient code. The transldimr ioks

loops whose only purpose is to move through array subscripts and reduces their range to start at zero, thus producing a very
natural looking forstatement and optimizing subscript expressions.

Note (4) that C has "++" and-" operators which takadvantage of the fact that most computers have increment and
decrement operators. The translator uses these operators whenever possible.

Note (5) that C has operators like "+="3", "*=" "/=" etc. The use of these operators ensures that the addithesleft
handside of the assignment will only be computed as often as neceGsBAT MIGRATIONS FORTRAN uses these
operators.

PromulaFortran Translator User's Manual

Note (6) that the DO loop running to statement 10 in the FORTRAN code is collapsed into a single compound statement,
and thathe now unneeded statement label is removed.

Note (7) that though the DO loop statements in loop 15 cannot be reduced to a single statement, the statement label can still
be removed.

In summaryGREAT MIGRATIONS FORTRAN looks for every opportunity tansplify and optimize the translation and
to make it look as natural as possible in the C language form.

10

PromulaFortran Translator User's Manual

2. COMMAND LINE

To usegmFortranin its simplest mode, type its name, pfc, followed by the name of the FORTRAN file that you wish to
process and tmepress the [Enter] or [Return] key. This operation assumes that the following files are stored either in the
default path, or more typically, in the path specified via the operating system:

pfc[.exe] = ThegmFortranexecutable

pfc.pak The description oftte FORTRAN and C dialects to be used.

To compile codes you need to use whatever conventions are appropriate for the C compiler that you are using. Typically
this means that the file

fortran.h

should be copied into the same directory or disk which amnthe other include files for the compiler, and the appropriate
gmFortranruntime library file

pfcmsc.lib or libpfc.a or pfcvms.olb
should be copied into the same directory which contains the other library files for the linker.

Note that details on ¢hinstallation and placement of tgenFortranfiles are included with the installation instructions
which accompanied thgmFortranproduct.

There are three ways in which to modify the behaviograf-ortran The easiest way is via command line switchdss T
chapter discusses the usegaiFortranvia its command line switches.

In addition, you may supply a configuration file which gives you detailed control over particular aspects of the translation
process and specifies how individual parameters asedcieth particular subroutines and functions are to be processed.
The use of configuration files is discussed in Chapter 3.

Finally, you may replace the entire dialect description file

pfc.pak

that is controlling thgmFortrantranslations. Special diedt definition files may be obtained fro@reat Migrations LLC
upon request.

2.1 Command Line Syntax

The syntax for usingmFortranfrom the operating system level is as follows:
PFC filename optl opt2 opt3

Where:

filename is the name of theRTRAN file to be converted, optionally preceded by a drive and path specification. If
no extension is supplied, an extensionfaf is assumed.

11

PromulaFortran Translator User's Manual

opti is a single character or group of characters (in upper or lower case) indicating a particular shitetd fol
by any particular information to be associated with that switch. The switch letter(s) plus its associated
information may contain no embedded blanks. The various options are separated by blanks.

The following is an alphabetic listing of the commdim@& switches, the number of the section in which each is discussed,
and a brief description. The remaining sections of this chapter will discuss these switches in detail.

Switch Options Section Characteristic effected by switch

B c,f,o 2.2 Specifyyour C output

C l,s 2.3 Treatment of short arithmetic

C 0,1,2 2.3 Casting level

CF num 2.4 Details of C output format

CH d,r,s,v 2.5 Treatment of character variables

CM 0,1,2 2.6 Appearance of comments in C output

D C,r 2.7 Treatment of data initiatations

DB 2.8 Debugging information in C output

EL 0,1,2,3 2.9 Error message level

EP 2.9 Echo pseudeode produced

ER 0,1,2,3,4 2.10 Treatment of syntax errors

ES 2.9 Annotated listing of source code

ET 2.9 Annotated listing of C output

EX 2.9 Echo symbol references by line number
EZ 2.9 Intermediate symbols table

F snumb,t,f,v,9 2.11 Input format used

Fl s, 2.12 FORTRAN INTEGER type

G name 2.13 Specify a globals file

G v,s,p,r,d,a 2.14 COMMON variable convention

G pc,ps,pl,pd 2.14 Overall alignment control

I name 2.15 Inline functions file

I s, 2.16 Target C int type

K a,s 2.17 Treatment of internally generated constants
L num 2.18 Maximum output line width

L m,s 2.19 Link time processing of COMMON initializations
L n,o 2.20 Inclusion of line numbers for debugging
M dialect 2.21 Source language dialect

N * num 2.22 Nesting indentation to be used in output
NC num 2.23 Inline comments C output margin width
NU 0,1,2 2.24 Upper braces placement convention in C output
NL 1,2 2.24 Lower braces placement convention in C output
0] name 2.25 Name of file to receive the C output

0] m,s 2.26 Splitting of C output into separate files
P numb 2.27 Miscellaneous prototyping controls

P+ numb 2.27 Additional prototyping control

PA name 2.28 Listing append filename

PH numb 2.28 Listing file page height

PN name 2.28 New listing filename

PW numb 2.28 Listing file page width

Ql numb 2.29 Size of compacted statement storage
QE numb 2.29 Size of the line number table

QD numb 2.29 Size ofa data block

QX numb 2.29 Size of external information storage

QH numb 2.29 Size of include file information storage
QW numb 2.29 Word size of source platform

R name 2.30 Specify a configuration file

SA num 231 Auto storage threshold

12

PromulaFortran Translator User's Manual

Switch Options Section Characteristic effected by switch

SD num 2.31 Dynamic storage threshold

SS num 231 Static storage threshold

S} num 2.31 Virtual storage threshold

Sz num 2.31 Dynamic virtual threshold

T 0,1,2 2.32 FORTRAN dialect DO loop assumption

T a,s 2.33 Treatment of internally generated temporaries
UpP num 234 PUNCH statement unit number

UR num 2.34 READ or ACCEPT statement unit number
uw num 2.34 WRITE or PRINT statement unit number

W name 2.35 Name of file to receive prototype definitions
Y 1,2 2.36 Miscellaneous control flags

XY a 2.37 Treatment of raltiple assignments convention
XY b 2.38 Treatment of single statement nesting brace
XY C 2.39 Constants reduction optimization

X, Y ch 2.40 Character optimization

XY d 241 Treatment of FORTRAN "D" debugging statements
XY f 2.42 Use of printfstyle formatting

XY i 2.43 Initialization check for auto variables

XY I 2.44 DO loop counter reduction optimization

XY p 2.45 Subprogram argument type checking

X,Y r 2.46 Single precision real arithmetic

X,Y s,sv,sf 2.47 Subscript pointer notation

XY u 2.48 Unformatted write optimization

X,Y % 2.49 Subprogram calby-value arguments

X,Y $ 2.50 Dollar signs as initial symbols in identifiers

4 name 2.51 Location of FORTRAN files to be included

2.2 Specifying your C output bia®d Bc, Bf, Bo

In the October, 1988 issue @omputer LanguageMark Davidson reviewsSREAT MIGRATIONS FORTRAN and

declares it the clear winner over its competitors; however, he says "Although the code produced by the translator is not
immediately understandable ... ".nB¢ that review, we have surveyed the user6REAT MIGRATIONS FORTRAN

extensively to determine how they feel the output code can be made as understandable as possible and have found no clear
consensus. However, users can be divided into three broadmeseg

1. Those who want to continue using their present FORTRAN dialect as their programming language. For those users the
C output is of no importance as such. It is merely an intermediate step. It should be designed to compile as quickly as
possible ad to produce an efficient as possible executable.

2. Those who are presently FORTRAN programmers, but who want to (or must) become C programmers. For them the C
output should be as close to the original FORTRAN as possible to ease the transition.

3. Those who are C programmers who must now take over a FORTRAN code. For them the C output should look as
much like a standard C program as possible.

This general issue is referred to as "user bias". Those users who want optimized code have the "optimiteaebiaho

want FORTRANIike code have the "FORTRAN" bias, and those who watlik&Ccode have the "C" bias. When using
GREAT MIGRATIONSFORTRAN this output bias can be selected via a single command line switch. The default bias is
the FORTRAN bias whiclean be selected via the Bf switch. The C and optimized biases are, however, fully supported by
GREAT MIGRATIONSFORTRAN and may be activated by the Bc and Bo command line switches.

13

PromulaFortran Translator User's Manual

When one of the bias switches is used, it should always go first czothmand line, since it controls the selection of
various other switch values. Mixed bias can be produced by following the bias switch itself with other switches.

Regardless of the user bias, the outpuGBEAT MIGRATIONS FORTRAN does not look like machértranslation. To

present some of the design features of the different biases, consider the following example program which computes the
mean and variance of a set of values. The figure below shows the original FORTRAN source code along with the default
translation produced bBREAT MIGRATIONSFORTRAN for the FORTRAN and C biases.

FORTRAN SOURCE FORTRAN BIAS TRANSLATION NOTES
SUBROUTINE EX001(VAL,N,XBAR,VAR) void ex001(val,n,xbar,var) 1,23
DIMENSION VAL(N) long n; 4

float val[],*xbar,*var;
static long j; 525
static float s; 6’
WRITE(OUTPUT VFMT,"(1x,a,//)",CSTR,"ANALYSIS",0); 7
*xbar = 0.0;
WRITE(*,'(1x,a,//)") "ANALYSIS" *var = 0.0;
XBAR = 0.0 for(j=0; j<n; j++) { 4,8 -11,13
VAR =0.0 *xbar = *xbar +vallj];
DO 10J=1,N } 12.13
XBAR = XBAR + VAL(J) *xbar = *xbar/n; ll’
10 CONTINUE WRITE(OUTPUT,VFMT,"(6H Mean=,F10.3)",REAL4,*xbar,0); 6
XBAR = XBAR /N for(j=0; j<n; j++) { 3913
WRITE(*,'(6H Mean=,F10.3)")XBAR s = val[j] - *xbar; 4' !
DO15J=1N *var = *var+s*s; 11
S=VAL(J) - XBAR } 1913
VAR=VAR+S*S if(*var != 0.0) *var = *var/(n -1); 10’11
15 CONTINUE WRITE(OUTPUT LISTI O,CSTR,"Variance = ",REAL4,*var,0); 5
IF(VAR.NE.0.0) VAR = VAR/(N -1) return;
WRITE(*,*) "Variance = ",VAR }
RETURN
END

FORTRAN SOURCE C BIAST RANSLATION NOTES
SUBROUTINE EX001(VAL,N,XBAR,VAR) void ex001(val,n,xbar,var) 1,23
DIMENSION VAL(N) long n; 4

float val* *xbar,*var;
static long j; 525
static float s; 6'

printf(* ANALYSIS \'n\ n\ n"); 7
*xbar = *var = 0.0;
WRITE(*,'(1x,a,//)’) "ANALYSIS"

XBAR =0.0 for(j=0; j<n; j++) *xbar += *(val+j); 48-11.13

VAR =0.0
DO 10J=1N
XBAR = XBAR + VAL(J) ﬁ’m
10 CONTINUE *xbar /= n: 6
XBAR = XBAR / N IR " .
WRITE(*,(6H Mean=,F10.3))XBAR ?c::?j‘:f%.“j"ﬁ?;g%o'sf A xbar); 2’9’13
S2VALQ) - X8AR S=X(als) - -sbar 1
Nl *var += (s*s); 12,13
VAR=VAR+S*S } 1011
15 CONTINUE : :
_ if(*var = 0.0) *var /= (n -1); 6
IF(VAR'NE'P'O) .VAR __VAR/(N,, -1 pri ntf("Variance = %16.6E \ n"*var);
WRITE(*,*) "Variance = VAR return:
RETURN '
END }

In general, the objective of the FORTRAN bias is to make the C output correspond as closely as possible to the FORTRAN
original, while still producing correct C. Extensive use is made of defined symbols to achieve this goal. In addition, every
effort is taken to keep the source and output statements in correspondence. The objectives of the C bias, on the other hand,
are to make theutput as dike as possible. No attempt is made to maintain a statement by statement correspondence and,
whenever possible, FORTRAN I/O statements, along with associated FORMAT specifications, are translated into
traditional C I/O statements.

The lines in the figure above are annotated with note numbers. The notes are as follows:

Note (1) that the parametar is not declared as a pointer, since it is not changed within the ro@REAT
MIGRATIONS FORTRAN uses what are called "prototypes" of subprogaaguments so that it can generate optimal

14

PromulaFortran Translator User's Manual

calling sequences. These prototypes may be specified by the user or may be determined internally by the translator. The
above was internally determined. Technically, all parameters in FORTRAN are passed as. paanteORTRAN codes

that make use of this fact and mix types across c@GREAT MIGRATIONS FORTRAN may be told to make all
parameters pointers. Alternatively, the user can specify individual prototypes via a separate file.

Note (2) that ANSI FORTRAN ragres that default integers and reals both occupy the same amount of memory, typically
4 bytes. Therefore, by defauBREAT MIGRATIONS FORTRAN declares FORTRAN integers as long. If on your
platform C ints are already long or if in your source FORTRAN dtalEORTRAN integers are shorGREAT
MIGRATIONS FORTRAN may be told to translate INTEGER as int or as short.

Note (3) that in C all symbols must be defined prior to their use; therGREAT MIGRATIONSFORTRAN declares all
parameters and local variablexplicitly. Even in the FORTRAN bias, no attempt is made to maintain a direct
correspondence between FORTRAN declarations and C declarations.

Note (4) that the declaration of thal vector differs between the C and the FORTRAN biases. In the FORTRANHga
C brackets notation is used which, though different from standard FORTRAN notation, is preferred by many to the
traditional C pointer notation used by the C bias. This notation may be controlled via command line switches.

Note (5) that most impleméations of FORTRAN treat variables as though they were sfatice., each variable is
assigned its own memory location which remains undisturbed even when the routine containing it is not active. The user
may specify that variables be declared as "auioieneral, the user @REAT MIGRATIONSFORTRAN has extensive

control over the allocation and memory status of variables.

Note (6) that C and FORTRAN have very different ways of specifying coded write conversions. For the FORTRAN bias,
all of the orighal FORTRAN machinery is maintained. The actual WRITE statement is translated into a C WRITE
statement which consists of a series of keywords followed by the parameters associated with those keywords. In the C bias,
FORTRAN WRITE statements are translatetb the C printf or fprintf functions whenever possible. When not possible,

the C bias uses the same translation as the FORTRAN bias. Note in the above that-bio#ctést and FORMAT

controlled statements are processed. For formatted statementpiivedent printf specification is used. For list directed
conversionGREAT MIGRATIONSFORTRAN uses a default set of specifications which may be modified by the user.

Note (7) that C allows multiple assignments to the same value to be written togetther thénC bias, the translator looks

for such assignments and combines them whenever possible. The FORTRAN bias does not by default perform these
combinations, since they destroy the correspondence between source and output statements. This featonérddlatde

via a command line switch.

Note (8) that in FORTRAN the default base for a subscript is 1. Thus, all DO loops which generate subscripts tend to start
at 1. In C, however, subscripts start at zero. This fact makes for much more efficienThedranslator looks for DO

loops whose only purpose is to move through array subscripts and reduces their range to start at zero, thus producing a very
naturatlooking for statement and optimizing subscript expressions. The DO loop reduction featnrfoisall biases by

default, but it may be turned off via a command line switch.

Note (9) that C has "++" and " " operators which take advantage of the fact that most computers have increment and
decrement operators. The translator uses these opevdtenever possible for all biases.

Note (10) that C allows any conditional statement to form a compound statement with a single statement, while FORTRAN
allows this only for the IF statement. In the C bias this compounding is performed whenever pogdsiblén the
FORTRAN bias a compound statement is formed only if the source was compound.

Note (11) that C has operators like "+="5", "*=", "/=", etc. The use of these operators ensures that the address of-the left
hand side of the assignment wilbthbe computed more often than is necessary. The C bias uses the operators, the
FORTRAN bias does not.

Note (12) that the statement labels and CONTINUE statements ending the two DO loops are not needed for any other
purpose. Unneeded statement labelssbsays removed.

15

PromulaFortran Translator User's Manual

2.3 Arithmetic Conversionsd CL, Cs, C0, C1, C2, C3

In C, if a binary operator like + or * has operands of different types the lower type is promoted to the higher type
automatically by the compiler. Alternatively, if operands of theeséype are combined then the result is of that type. As
GREAT MIGRATIONS FORTRAN processes source code, it keeps track of the types of all operands involved in
expressions and determines when any conversions need to be performed. Normally, howevershbwslythese
conversions in the C output if they would not be performed automatically by the C compiler.

Alternatively, the convention that operands of the same type are not promoted can cause trouble for short integer arithmetic,
since most FORTRAN copilers promote all short integer calculations to long.

Explicit conversions in C can be forced in any expression with a cast which looks as follows:
(type) expression
This cast converts the expression to the indicated type. The C casting levelabjotizsrone to control which casts are

"forced" in the C. Both aspects of promotion are controlled via this switch. The switch itself may occur more than once on
the command line. Its individual settings are as follows:

Setting Meaning
Co Specifieghat all promotions between operands of different types be forced in the C output.
C1 Specifies that all promotions between different operands involving any integer types be forc

that conversions between float and double not be forced.

Cc2 Specifies that only those conversions between fixed point and floating point be forced, but th
conversions not be forced.

C3 Is the default and specifies that only those casts needed to maintain the integrity of a calcul
maintained.

Cs Specifies that short integer calculations are to be done using short arithmetic.

CL Is the default and specifies that short integer calculations are to be done using long arithmetic

As an example, consider the following simple FORTReéode that computes the square of a weighted mean.

SUBROUTINE DEMO(VAL,NVAL, WEIGHT,SQ)
DIMENSION VAL(*)
INTEGER*2 NVAL,WEIGHT,POW
XBAR =0
POW =2
DO 10 | = 1,NVAL
XBAR = XBAR + VAL(l)
10 CONTINUE
XBAR = XBAR/(NVAL*WEIGHT)
SQ = XBAR * POW
RETURN
END

The default C output for this example looks as follows:

void demo(val,nval,weight,sq)
int nval,weight;
float *val,*sq;

16

PromulaFortran Translator User's Manual

static int Pow;
static long i;
static float xbar;
xbar = 0.0;
Pow = 2;
for(i=0; i<nval; i++) xbar += *(val+i);
xbar /= ((long)nval*weight);
*sq = pow(xbar,(double)Pow);

}

Notice that there are only two casts shown. The long cast on the product betaleeandweight is needed in case this
product exeeds the maximum value of a short integer. This topic is discussed below in a subsection on arithmetic with
short integer variables. The other cast is on the varidblein the exponentiation. Though exponentiation is a binary
operator in FORTRAN, it isat in C; therefore, in this cast the double is necessary in order to make the parameter for the
pow function have the proper type. TRiear parameter does not require a forced cast because C automatically promotes a
float to a double when it passes it alue.

The same output using the Cs switch is as follows:

void demo(val,nval,weight,sq)
int nval,weight;
float *val,*sq;

static int Pow;
static long i;
static float xbar;
xbar = 0.0;
Pow = 2,
for(i=0; i<nval; i++) xbar += *(val+i);
xbar /= (nval*weight);
*sq = pow(xbar,(double)Powy);

}

It is identical with the above except that the cast on the short integer conversion is hot shown. Be careful, this gktsion mi
produce an incorrect result. See the subsection below for a detailedsitiscof arithmetic with short integer variables.

Let us now go to extremes. The following is the same output using the CO cast which requests that all casts be explicitly
shown.

void demo(val,nval,weight,sq)
int nval,weight;
float *val,*sq;

{
static in t Pow;
static long i;
static float xbar;
xbar = 0.0;
Pow = 2;
for(i=1L; i<=(long)nval; i++) xbar = (float)((double)xbar+
(double)*(val+(short)i -1));
xbar = (float)((double)xbar/(double)((long)nval*(long)
weight));
*sq = (flo at)pow((double)xbar,(double)Pow);
}

In all likelihood you would never want to rddREAT MIGRATIONSFORTRAN in this mode unless you are interested in
seeing all of the "promoting” that actually goes on. Notice for example that all floating point cafsukatiopromoted to
double and then reduced back to float. Note that constants also get promoted; thusrin dtegement the value of 1
assigned to is now shown agL. Finally, note that the long cast forced mral by the CL setting in fact causedamg

17

PromulaFortran Translator User's Manual

cast onweight . This is how this convention forces short arithmetic to be done as long arithmetic. It might be instructive to
see this example again, not with CO but with Cs which will not force these long promotions.

void demo(val,nval,weight,sq)
in t nval,weight;
float *val,*sq;

{
static int Pow;
static long i;
static float xbar;
xbar = 0.0;
Pow = 2;
for(i=1L; i<=(long)nval; i++) xbar = (float)((double)xbar+
(double)*(val+(short)i -1);
xbar = (float)((double)xbar/(double)(nval*w eight));
*sq = (float)pow((double)xbar,(double)Pow);
}

The other effect of forcing the casts is that this process blocks the DO loop reduction algorithm. Thus, in the irtial versi

the loop was reduced to start at zero; but now it starts at onde¥itted to do this since forcing the casting level probably
means that you are very concerned about the arithmetic being performed. Since loop reduction performs additional integer
arithmetic, we turn it off. As one might fear, the cast to double isat@o The division is done at the integer*2 level and the
possibly overflowed result is promoted to double. Thus, using CO to fix the short arithmetic problem only shows us what
the problem is.

Moving up to C1, the following example shows the C outputguigie C1 casting level.

void demo(val,nval,weight,sq)
int nval,weight;
float *val,*sq;

static int Pow;
static long i;
static float xbar;
xbar = 0.0;
Pow = 2;
for(i=1L; i<=(long)nval; i++) xbar += *(val+(short)i - 1);
xbar /= (double)((long)nval*(long)weight);
*sq = pow(xbar,(double)Pow);

}

As specified, the floatiouble casts are no longer forced, but all fixed point casts are forced. At the C2 casting level, the
following is the result.

void demo(val,nval,weight,sq)
int nval,weight;
float *val,*sq;

{

static int Pow;

static long i;

static float xbar;
xbar = 0.0;
Pow = 2;
for(i=0; i<nval; i++) xbar += *(val+i);
xbar /= (double)((long)nval*weight);
*sq = pow(xbar,(double)Pow);

}

Now only the "mixedmode" cast is ford. Integer arithmetic is again free, so the loop reduction is also allowed.

18

PromulaFortran Translator User's Manual

2.3.1 Arithmetic with Short Integer Variables

In moving from one environment to another, one must always be concerned with the accuracy of floating point arithmetic;
however there is also a real problem with fixed point arithmetic even when dealing with identical word sizes. This section
concerns itself with short integer arithmetic in rort integer environments. There is a real semantics issue here: the
same program compd in different environments behaves differently even though these environments have the same word
size. Consider the following FORTRAN program which does short integer additions, multiplications, and divisions in a
variety of contexts.

PROGRAM VAR

INTEGER*2 11,12,13,14

INTEGER*2 ISUM,IPROD,IQUOT

INTEGER*4 JSUM,JPROD,JQUOT

REAL*4 RSUM,RPROD,RQUOT

REAL*8 DSUM,DPROD,DQUOT

11 = 20000

12 = 30000

13 =200

14 =300

ISUM =11 + 12 < d 0 Note addition overflow

IPROD=13* 14 < 0 0 Note multiplication overflow

IQUOT =(11+12)/14 < 0 0 Note intermediate overflow

JSUM=11+12

JPROD =13 * 14

JQUOT=(11+12)/14

RSUM =11+ 12

RPROD=13*1 4

RQUOT =(11 +12) /14

DSUM =11+ 12

DPROD =13 * 14

DQUOT =(11+12) /14

WRITE(*,'(24H Short Integer Results: ,3113)")
+ ISUM,IPROD,IQUOT

WRITE(*,'(24H Long Integer Results: ,3113)")
+ JSUM,JPROD,JQU OT

WRITE(*,'(24H Short Real Results: ,3F13.5)")
+ RSUM,RPROD,RQUOT

WRITE(*,'(24H Long Real Results: ,3F13.5)")
+ DSUM,DPROD,DQUOT

STOP

END

In running this example with various FORTRAN compilers, always on mashivith 16bit short integers (VAX, IBM
mainframe, IBM PC), we have obtained the following three results:

1. Universal promotion to long

Short Integer Results: - 15536 - 5536 166

Long Integer Results: 50000 60000 166
Short Real Results: ~ 50000.00000 60000.00000 166.00000

Long Real Results: 50000.00000 60000.00000 166.00000

2. No automatic promotion to long

Short Integer Results: - 15536 - 5536 -51
Long Integer Results: - 15536 60000 -51
Short Real Results: - 15536.00000 - 5536.00000 - 51.00000
Long Real Results: - 15536.00000 - 5536.00000 - 51.00000

19

PromulaFortran Translator User's Manual

3. Selective promotion to long

Short Integer Results: - 15536 - 5536 166
Long Integer Results: 50000 60000 166

Short Real Results: ~ 50000.00000 - 5536.00000 166.00000
Long Real Results: 50000.00000 - 5536.00000 166.00000

In reviewing these results, a negative nemineans that a short integer overflow has occurred. The typical FORTRAN
result is the first one. In this instance, the output of all integer calculations is a long. That result is then contierted to
desired result type. Notice that even the intermediddition in the division example is calculated as a long.

In the second case, the result of any integer calculation is also always short, regardless of the surrounding cogfext. This t
of result is unusual for mainframe FORTRANS and is common foFBRTRANSs. Note that Microsoft FORTRAN allows
the user to select which type of convention is to be followed as -&#&td of the "WORDSIZE" metacommand.

The third case is strange and difficult to deal with. The particular result above can be gottes fF@dRTRAN. Note that
in an integer context, universal promotion to integer is followed. Also, in all cases the intermediate addition result is
promoted to long. But for some reason the multiplication result is allowed to overflow while the additibis nesul

In designingGREAT MIGRATIONSFORTRAN we allow the user to select whether he wants universal promotion to long

or no automatic promotion to long. We have no provision for selective promotions. Note that selective and universal
promotion differ mly in overflow conditions, so users from such environments should use the universal promotion to long
convention. The default convention is universal promotion. No automatic promotion is selected via the "CS" command line
switch.

From a readability stamwint, the best convention is unfortunately not the cleanest one. In C, the results of all short binary
operators are short. The only way to force C to produce a long result is to convert the arguments to long prior to the
calculation. The C output for thessignments in the above FORTRAN program under the universal promotion convention

is as follows:

void main(argc,argv)
int argc;
char* argv[];

static int i1,i2,i3,i4,isum,iprod,iquot;
static double dsum,dprod,dquot;
static long jsum,jprod,jquot;
static float rsum,rprod,rquot;

ftnini(argc,argv);

i1 = 20000;

i2 = 30000;

i3 = 200;

i4 = 300;

isum = (long)il+i2;

iprod = (long)i3*i4;

iquot = ((long)i1+i2)/i4;

jsum = (long)il+i2;

jprod = (long)i3*i4;

jquot = ((long)il +i2)/i4;

rsum = (long)il+i2;

rprod = (long)i3*i4;

rquot = ((long)il+i2)/i4;

dsum = (long)il+i2;

dprod = (long)i3*i4;

dquot = ((lonQ)il+i2)/i4;

ftnopen(6,FILEN,"EX002.0UT",9,STATUS,"NEW",0);

fprintf(LUN(6)," Short Integer Res ults: %13d%13d%13d \ n",isum,iprod,iquot);
fprintf(LUN(6)," Long Integer Results: %131d%131d%13Id \ n",jsum,jprod,jquot);
fprintf(LUN(6)," Short Real Results: %13.5f%13.5f%13.5f \ n",rsum,rprod,rquot);
fprintf(LUN(6)," Long Real Results: %13. 5f%13.5f%13.5f \ n",dsum,dprod,dquot);
exit(0);

20

PromulaFortran Translator User's Manual

Note that in each case the Téfand argument is converted to long; thus, causing the entire expression to be evaluated in
that manner. The result of running this version is shown below.

Short Integer Results: - 15536 - 5536 166
Long Integer Results: 50000 60000 166

Short Real Results: ~ 50000.00000 60000.00000 166.00000

Long Real Results: 50000.00000 60000.00000 166.00000

Note that it grees with the universal promotion to long result shown above.
The simpler alternative is shown below. No conversions to long are made. Thus, overflows occur in every expression.

void main(argc,argv)
int argc;
char* argv[];

static int i1,i2,i3,i4,isum, iprod,iquot;
static double dsum,dprod,dquot;
static long jsum,jprod,jquot;
static float rsum,rprod,rquot;

ftnini(argc,argv);

i1 = 20000;

i2 = 30000;

i3 = 200;

i4 = 300;

isum = i1+i2;

iprod = i3*i4;

iquot = (i1+i2)/i4;

js um =il+i2;

jprod = i3*i4;

jquot = (i1+i2)/i4;

rsum = il+i2;

rprod = i3*i4;

rquot = (i1+i2)/i4;

dsum = i1+i2;

dprod = i3*i4;

dquot = (i1+i2)/i4;

ftnopen(6,FILEN,"EX002.0UT",9,STATUS,"NEW",0);

fprintf(LUN(6)," Short | nteger Results: %13d%13d%13d \ n",isum,iprod,iquot);
fprintf(LUN(6)," Long Integer Results: %131d%131d%13Id \ n",jsum,jprod,jquot);
fprintf(LUN(6)," Short Real Results: %13.5f%13.5f%13.5f \ n",rsum,rprod,rquot);
fprintf(LUN(6)," Long Real Results © %13.5f%13.5%13.5f \ n",dsum,dprod,dquot);
exit(0);

}

The result of running this translation is shown below.

Short Integer Results: - 15536 - 5536 -51
Long Integer Results: - 15536 - 5536 -51
Short Re al Results: - 15536.00000 - 5536.00000 - 51.00000
Long Real Results: - 15536.00000 - 5536.00000 - 51.00000

This result agrees with the no automatic promotion to long output from above, and is probably wrong for most applications.
It should benoted that all other FORTRAN to C translators for the PC that we have reviewed produced only the no
automatic promotion to long result.

If your program uses any short integer variables, be certain to consider this semantics problem.

21

PromulaFortran Translator User's Manual

2.4 Detailed C Outpu Format 8 CF1, CF2, CF4, CF8, CF16

Though the user has complete control over the actual content of the C output prodgadebhtyanby using various other
command line switches and by modifying the content of the configuration file (see the chatiterconfiguration file),
there are still a few miscellaneous aspects of the look of the C output that can be controlled:

(1) the use of whitespace surrounding operators

(2) the amount of whitespace to be used in the switch statement
(4) the case of iddifiers

(8) the amount of whitespace in structure and common definitions
(16) the display of constant parameters as constants

The values of the CF switches may also be combined to obtain composite effects; thus, any CF switch value between 0 and
31 isalid. The default setting is CFO.

Consider, for example, the following FORTRAN code fragment:

SUBROUTINE TEST
COMMON/ALPHA/IVAL,JVAL,KVAL
PARAMETER(13=3,15=13+2)
IVAL = JVAL + KVAL - 15
GOTO(10,20,30) IVAL

10 WRITE(*,*) 'IVAL = 1'

20 RETURN

30 STOP
END

The default translation for this fragment is as follows:

void test()

{
#define i3 3
#define i5 (i3+2)
extern char Xalphall;
typedef struct {
int ival,jval kval;
} Calpha;
auto Calpha *Talpha = (Calpha*) Xalpha;
Talpha - >ival = Tal pha- >jval+Talpha - >kval -i5;
switch(Talpha - >ival){case 1: goto S10;case 2: goto S20;case 3: goto S30;
default: break;}
S10:
WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
S20:
return;
S30:
STOP(NULL);
#undef i3
#undef i5

}

There is no whitgpace within the expressiomdlpha - >jval+Talpha - >kval -i5 ", the typedef and the switch statement
are horizontally written to reduce whitespace, the identifiers in C have all been reduced to lower case, and the definition o
i5 is still shown a$3+2 .

22

PromulaFortran Translator User's Manual

Thesame fragment with the CF1 switch is as follows:

void test()

{

#define i3 3

#define i5 (i3 + 2)
extern char Xalpha(];

typedef struct {
int ival,jval kval;
} Calpha;
auto Calpha *Talpha = (Calpha*) Xalpha;
Talpha - >ival = Talpha - >jval + Talpha ->kval - i5;

switch(Talpha - >ival){case 1: goto S10;case 2: goto S20;case 3: goto S30;
default: break;}
S10:
WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
S20:
return;
S30:
STOP(NULL);
#undef i3
#undef i5

}

Now the expressionBalpha - >jval + Ta Ipha ->kval - i5 andi3+2 have been widened, but the remainder of the
C output is as before.

The same fragment with the CF2 switch is as follows:

void test()

{

#define i3 3

#define i5 (i3+2)
extern char Xalpha(];

typedef struct {
int ival,jval kval;
} Calpha;
auto Calpha *Talpha = (Calpha*) Xalpha;
Talpha - >ival = Talpha - >jval+Talpha - >kval -i5;

switch(Talpha - >ival) {
case 1: goto S10;
case 2: goto S20;
case 3: goto S30;
default: break;
}
S10:
WRITE(OUTPUTLISTIO,STRG,"IVAL =1",8,0);
S20:
return;
S30:
STOP(NULL);
#undef i3
#undef i5

}

In this version blanks are not inserted in expressions, but the switch statement is now vertical. Note that the appearance of
the braces and indentation is contrdliéa the NU and NL switches, which are described in another section of this chapter.
The CF4 switch produces the following result:

void TEST()

23

PromulaFortran Translator User's Manual

#define 13 3
#define 15 (13+2)
extern char XALPHA[];
typedef struct {
int IVAL,JVAL,KVAL;
} CALPHA;
auto CALPHA *TALPHA = (CALPHA¥*) XALPHA,
TALPHA >IVAL = TALPHA - >JVAL+TALPHA >KVAL- I5;
switch(TALPHA - >IVAL){case 1: goto S10;case 2: goto S20;case 3: goto S30;
default: break;}
S10:
WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
S20:
return;
S30:
STOP(NULL);
#undef I3
#undef I5

}

Here all user supplied identifiers are shown in upper case (the traditional FORTRAN style) as opposed to lower case (the

contemporary C style).

Using the CF8 switch gives the following C result:

void test()

{
#defi nei33
#define i5 (i3+2)
extern char Xalpha(];
typedef struct {
intival;
int jval;
int kval;
} Calpha;
auto Calpha *Talpha = (Calpha*) Xalpha;
Talpha - >ival = Talpha - >jval+Talpha - >kval -i5;
switch(Talpha - >ival){case 1: goto S10;case 2: goto S20;case 3: goto S30;
default: break;}
S10:
WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
S20:
return;
S30:
STOP(NULL);
#undef i3
#undef i5

}

In this version the typedef statement used to define the structure of the COMMON block isv&nteally. Note again

that the appearance of the braces and indentation is controlled via the NU and NL switches, which are described in another

section of this chapter.
Finally, the CF16 switch produces the following result:

void test()

{

#define i3 3
#define i5 5

extern char Xalpha(];
typedef struct {

24

PromulaFortran Translator User's Manual

int ival,jval kval;

} Calpha;
auto Calpha *Talpha = (Calpha*) Xalpha;
Talpha - >ival = Talpha - >jval+Talpha - >kval -i5;

switch(Talpha - >ival){case 1: goto S10;case 2: goto S20;case 3: goto S30;
default: break;}
S10:
WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
S20:
return;
S30:
STOP(NULL);
#undef i3
#undef i5

}
In this version the definition a6 has been simplified to its simple valuesof

The effects of the switches may be caoned by adding their values. For example, CF11 = 1 + 2 + 8 could be used to
maximize whitespace. It produces the following result:

void test()

{
#define i3 3
#define i5 (i3 + 2)
extern char Xalpha[];
typedef struct {
int ival;
int jval;
intkv al;
} Calpha;
auto Calpha *Talpha = (Calpha*) Xalpha;
Talpha - >ival = Talpha - >jval + Talpha ->kval - i5;
switch(Talpha - >ival) {
case 1: goto S10;
case 2: goto S20;
case 3: goto S30;
default: break;
}
S10:
WRITHOUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
S20:
return;
S30:
STOP(NULL);
#undef i3
#undef i5

}

With this setting the expressions are widened with whitespace and the switch and typedef statements have a vertical form;
however, parameter values are sfibwn in their original form and identifiers are in lower case.

2.5 Treatment of CHARACTER Variables 8 CHd, CHr, CHs, CHv

By far the most difficult task to be faced by the processor is that of dealing with FORTRAN character manipulation. The
problem isthat, despite the efforts of the various standards committees, FORTRAN as a living computer language has no
unified approach to character manipulation.

FORTRAN was originally designed to do "formula translation”. It had little use for characters oth&w thbel the results
of calculations. FORTRAN 66 has no CHARACTER data type and has no character manipulation statements other than

25

PromulaFortran Translator User's Manual

formatted 1/0 operations. Character data is simply hidden in whatever variable is convenient. Once a programmer stores
chaacter data in a "numeric" variable it is up to him to ensure that he does not use that variable for anything else.

As the language matured, a CHARACTER type was added and some minimal machinery was included to manipulate these
types of variables. Howevesince there were many FORTRAN 66 programs still in existence, the use of the new
CHARACTER type did not preclude using the old character management techniques as well. Things such as equivalencing
numeric variables and character variables were comphedity.

When the 77 FORTRAN standards were established, the committee rightly concluded that the way in which languages like
IBM FORTRAN level H had implemented characters was clearly not machine transportable and was not acceptable.
Therefore, they madall FORTRAN 66 techniques of hiding character data in numeric variables illegal. In addition, they
placed several restrictions on the placement and handling of character variables, all intended to improve the portability of
the language.

After the FORTRAN 77 standard came out, however, no compiler vendor felt that he could afford to lose his customers by
telling them that they had to convert all of their FORTRAN programs into the new standard; therefore, all compiler vendors
put features into their compils which allowed existing programs to still operate. The standards committee, however, had
totally ignored the problem of what to do with existing programs. An aside here is that we first attempted to write a
processor which would take older dialects &fFFTRAN to the 77 standard. This effort proved impossible. The languages
are simply incompatible. FORTRAN 77 does not have the openness of C.

Since there was no standard mixed-6@ FORTRAN, all the vendors created their own. Still today, as new compile
created, even for the PC, they differ in how they deal with this problem of 66 versus 77 FORTRAN. The problem is now
compounded in that particular programs are being written not for either standard but rather for the incompatible hybrid
combinations

In designinggmFortranwe decided that the major barrier to using existing FORTRAN programs in a new machine
environment was this incompatibility. If a program were written in pure FORTRAN 77, then any one of the existing
compilers could probably proce# with no problem. Unfortunately, few programs are written in pure 77 FORTRAN, and
as time passes the possible hosts for these programs disappear.

Our treatment of CHARACTER data attempts to deal with all of the dialects with which we are famdiprotfram hides

its characters in numeric variables, no problem. If a program mixes character addanacter variables in COMMON

blocks or across subroutine parameters, no problem. If a program assumes that a CHARACTER*20 in one place is a
CHARACTER*1(20) in another place, no problem. If it worked in the original, then it will work in the C version.

A character variable is treated simply as a sequence of chars. It has no other structure. A CHARACTER*4 is identical to a
CHARACTER*2(2) or a CHARACTER*1(4pr a sequence of characters hidden in an INTEGER*4. The elements of a
CHARACTER array are stored one after another with no intervening NULL characters or character counts or intermediate
character pointers. This storage of character data is simplelans &ie easy simulation of the various "tricks" allowed by

the various dialects.

If FORTRAN had no subprograms there would be no problems. Unfortunately, FORTRAN subprograms allow for variable
length characters, and the various system operations altothefdotal mixture of character strings of any length. To deal

with a variable character string, the length of that string must be known, since the storage technique for characser variable
itself does not have this information. This is an especiallycdiff problem, since the length of a given character string is
defined not globally, but rather by the context of its use.

The solution is difficult to accept, but appears to be dictated by the needed generality of the translation. If a gaman progr
doesnot use variable length characters (CHARACTER*(*)) in subprograms, then there is no problem. Programs using
FORTRAN 66 conventions and programs using FORTRAN 77 conventions can both be handled straightforwardly by
translating character variables into @ags of char. If a program does use the CHARACTER*(*) construct, however, then

all references to character variables in the FORTRAN program are translated into a pair a valpester to the start of

the characters being manipulated and an integeievahich defines the length of the character string at that point in the
code. To distinguish these two cases the user musgrtefortranwhat assumptions his program is making about the

26

PromulaFortran Translator User's Manual

availability of character string length information. In additiore tiser must specify whether he is mixing character and
non-character variables across subprograms.

To make life more difficult, there are three alternative ways in which the character address and character length can be
joined:

(1) The address and lengthn become an ordered pair when the character information is passed to a subprogram;
(2) The character lengths can be saved and passed together at the end of each call;
(3) A separate entity, termed a "descriptor”, can be formed which contains thesagdddength.

The second approach above is the default one takegm®ortran It is the most common approach used by other
FORTRAN processors.

The CHr (CHaracter raw) command line switch tegiisFortransimply to translate FORTRAN character variable® iC
arrays ofchar . When this switch is active, references to variable length character strings in subprograms cause a syntax
error.

The CHs (CHaracter string) command line switch tghtgFortranto treat all references to character variables as ordered
pairsd a pointer and a length. These two values are always showbysilde. This allows full use of variable length
character strings, but makes the translations more complicated and difficult to maintain.

The CHd (CHaracter dynamic) switch, whichtlie default, is a more complicated approach than the one above. Though
CHs is able to deal with all uses of variable length character strings, it is not able to deal with arbitrary mixtures of
character and neoharacter subprogram arguments. Using CHuracter string lengths are collected at the back of
subprogram calls, rather than being paired with their sources directly. In addition, string concatenations are dynamically
allocated to allow for arbitrary complexity across subprograms, and substpressions are calculated via a temporary in

some cases. Though CHd conversion does make the relation between FORTRAN source and C output more complex than
do the other two switches, its result is highly readable and produces correct results in allataseh#tve seen. The CHd
approach is sufficiently robust to deal with all situations and is therefore the default setting.

The CHv (CHaracter vector) switch, is by far the most complicated approach. It has all the robustness of the CHd setting. It
differs from CHd in that intermediate "descriptor" variables are created which contain the address and length information.
The addresses of these intermediate variables are then passed as arguments. This approach has the advantage that there i
oneto-one correpondence between arguments in the FORTRAN and the C. The disadvantage is that additional logic is
needed to create the descriptor variables.

In the following subsections a series of examples are presented to show how the four switches CHr, CHs, CiHid, and
treat FORTRAN character manipulation.

2.5.1 Initializing Character Values

The first example shows how character variables are initialized. It presents a CHARACTER type declaration with
associated initializations. Though character initialization ésfggmed in the same manner via the four character
manipulation switches, the technique required brings home the difference between the approaches to character strings
between FORTRAN and C.

The following FORTRAN code simply initializes a character amayEwith the name<harles , Frederick , Andrew,
Mary, andMary again. Note that the notation used is straightforward, and that a simplified notation can be used to give the
last two names the same value.

SUBROUTINE DEMO
CHARACTER*10 NAME(4:8)/ 'Charles','Frederick’
+ ,'Andrew',2*'Mary'/

27

PromulaFortran Translator User's Manual

WRITE(**) NAME
END

The default C representation for this example is shown below.
void demo()

static char name[50] = {

‘chyalrlet's) S E e d
‘e','r ek VAR e 'w
UMal ey M''a’
e

WRITE(OUTPUT,LISTIO,DO,5,STRG,name,10,0);
}

Note first thathame is simply declared as an array d¢fac containing 50 entries. All structure has been reduced to a simple
vector. The compiler itself, however, remembers the structure and uses it when necessary.

Note second that the initialization of theme array shows up one of the quirks of C. Theredsvay to specify a sequence
of characters without using cumbersome notation, because the notation

"Charles"

would generate a nuterminated string and the notation

‘Charles’
is not accepted by many compilers, even though it seems completely daearaanbiguous.

Note third in the initializations another point about which more will be said in other sections. The definititamyof

must be repeated twice, since C has no equivalentvafue notation used in FORTRAN. Note also that FORTRAN
characte strings are always padded with blanks and not nulls as is the convention in C. It is this fact that makes C and
FORTRAN character manipulation completely incompatible. For C then, a FORTRAN CHARACTER variable is treated
simply as an array afhar and notas a C string.

The discussion in this chapter of the Dr (Data runtime) flag presents an alternative approach to the above, in which a small
amount of runtime efficiency can be sacrificed to improve the readability of the above.

2.5.2 Subprogram Argumens

The subsection above highlighted that aspect of character manipulation which is common to all four approaches to
character manipulation. This subsection describes the major way in which the three approaches differ.

Consider the following simple FORTRWcode fragment which calls the FORTRAN system functiolex and a user
written functionjindex . Both these functions take two character string arguments.

SUBROUTINE DEMO(!,J)
CHARACTER*12 NAME
CHARACTER*4 INITIAL

I = INDEX(NAME,I NITIAL)
J = JINDEX(NAME,INITIAL)
RETURN

END

The simplest treatment of this code is obtained via the CHr flag. It is as follows:

28

PromulaFortran Translator User's Manual

void demo(i,j)

int *i,*j;

{

extern int jindex();

static char name[12],initial[4];
*| = fifindex(name,12, initial,4);
* = jindex(name,initial);
return;

}

In this version, notice first that the FORTRAN intrinsic functiodex is converted tdifindex which is thegmFortran

runtime library function equivalent. In addition, the lengths of the two claratrings are passed as well, sififi@ex

needs this information. The treatment of FORTRAN system functions is not affected by the CH flags. Under CHr, the call
to thejindex subprogram is quite different. Here the subprogram is simply passed pamnthe start of the two character
arrays. No length information is given.jilidex does not need this information, then the above is the cleanest treatment;
however, in most cases it is insufficient.

The treatment under the CHs flag looks as follows:

void demo(i,j)

int *i,%j;

{

extern int jindex();

static char name[12],initial[4];
*| = fifindex(name,12,initial,4);
* = jindex(hame,12,initial,4);
return;

}

Under this treatment thilndex subprogram is treated in exactly the same manndredsdiex function. The lengths of
the character strings follows directly after the pointers to their starting points. This treatment works in most casds, but n
the case where character and+gbaracter arguments are both passed to the subprogram.

The CHd result is shown below:

void demo(i,j)

int *i,*j;

{

extern int jindex();

static char name[12],initial[4];
* = fifindex(name,12,initial,4);
* = jindex(name,initial,12,4);
return;

}

This treatment differs from the one under CHr in tHaracter lengths are passed to the subprogram, and it differs from
CHs in that the lengths are not directly associated with their pointers; rather, they are collected and placed atttiee end of
call. Note again that the call to the system functidex is unaffected.

Finally, the treatment under the CHyv flag is as follows:

void demo(i,j)
int *i,*j;
{
extern int jindex();
static char name[12],initial[4];
static string T1 ={ NULL, 0 };
static string T2 ={ NULL, 0 };
*| = fifindex(name,12,initial,4)
Tl.a=name; T1l.n=12;

29

PromulaFortran Translator User's Manual

T2.a =initial; T2.n = 4;
* = jindex(&T1,&T2);
return;

}

In this version the temporary variables andT2 are introduced to contain the addresses and lengths. Note that the "string"
variable type can easily beplaced by a particular "descriptor" type as required by particular platforms. This topic is
discussed extensively in the chapter on the configuration file under the topic of "keyword replacement".

More complicated treatments of the character argumeatsttie CHs treatment are needed because of examples such as
the following:

SUBROUTINE DEMO1(1,J)
CHARACTER NAME*12,INITIAL*4
J = INDEX(NAME,INITIAL)

| = JIINDEX(NAME,INITIAL)
RETURN

END

SUBROUTINE DEMO2(1,J)
INTEGER NAME(3),INITIAL
J = INDEX(NAME,INITIAL)

I = JIINDEX(NAME,INITIAL)
RETURN

END

SUBROUTINE DEMO3(1,J)
CHARACTER NAME*12
INTEGER INITIAL

J = INDEX(NAME,INITIAL)

I = JIINDEX(NAME,INITIAL)
RETURN

END

In this example, the system functionlex and the user functiojndex are both called with CHARACTER arguments
and with INTEGER arguments in different places in the program. The CHs treatment of the above looks as follows:
void demol(i,j)
int *i,%j;

extern int jindex();

static char name[12],initial[4];
* = fifindex(name,12,initial,4);
* = jindex(hame,12,initial,4);
return;

void demo2(i,j)
int *i,%j;

extern int jindex();

static int name[3],initial;
* = fifindex(name,12,& initial,4);
* = jindex(name,&initial);
return;

}
void demo3(i,j)
int *i,*j;

extern int jindex();

static char name[12];

static int initial;
* = fifindex(name,12,&initial,4);
* = jindex(name,12,&initial);
return;

30

PromulaFortran Translator User's Manual

Note that no madtr how thgindex subprogram is treated, the above cannot hope to execute properly, since the ordering
of the arguments is destroyed via the placement of lengths following the character arguments. Again, notidgediat the
system function is unaffectdry these games. The CHd result below shows the best approach:

void demol(i,j)
int *i,*j;

extern int jindex();

static char name[12],initial[4];
* = fifindex(name,12,initial,4);
* = jindex(hame,initial, 12,4);
return;

}

void demo2(i,j)

int *i 2

{

extern int jindex();

static int name[3],initial;
* = fifindex(name,12,&initial,4);
*| = jindex(name,&initial);
return;

}
void demo3(i,j)
int *i,%j;

extern int jindex();
static char name[12];
static int initial;

* = fifindex(name, 12,&initial,4);
* = jindex(name,&initial,12);
return;

}

With the lengths all moved to the back, the callfniex at least always begin with the two pointers. Remember that we
are not dealing only with welkritten FORTRAN codes. Things such @ above often occur in "real” FORTRAN
programs.

Finally, the listing below shows the translation using the CHv switch.

void demol(i,j)
int *i,*j;

extern int jindex();

static char name[12],initial[4];

static string T1 ={ NULL, 0 };

static string T2 ={NULL,0};
* = fifindex(name,12,initial,4);
Tl.a=name; T1l.n=12;
T2.a =initial; T2.n = 4;
* = jindex(&T1,&T2);
return;

}
void demo2(i,j)
int *i,*j;

extern int jindex();

static int name[3],initial;
* = fifindex(name,12,& initial,4);
* = jindex(name,&initial);
return;

31

PromulaFortran Translator User's Manual

}

void demo3(i,j)

int *i,*j;

{

extern int jindex();

static char name[12];

static int initial;

static string T1 ={ NULL, 0 };
* = fifindex(name,12,&initial,4);
Tl.a=name; T1l.n=12;
* = jindex(&T1,&initial);
return;

}

As with CHd, this version at least keeps the argument positions correct.

2.5.3 Substrings

Once the CHd or CHv options are selected, the relation between character variables and their character lengths becomes
much more dynamic than with the other two approaches. As a result, various other minor problems associated with
FORTRAN character management can be solved. Consider the following code fragment:

SUBROUTINE DEMO1

CHARACTER NAME*12,INITIAL*4
INTEGER 1,J

INITIAL = NAME(5:8)

INITIAL = NAME(I:J)

INITIAL = NAME(INDEX(NAME, INITIAL):J)
RETURN

END

In this example a substring of theame variable is being stored in theitial variable. In the third statement a
complicatecexpression is used to compute the start of the substring. Under CHr or CHs, the C looks as follows:

void demol()

{

static int i,j;

static char name[12],initial[4];
ftnsac(initial,4,(name+4),4);

ftnsac(initial,4,(name+i -1),j -0 -21);

ftnsac(init ial,4,(name+fifindex(name,12,initial,4) -1),
j - (fifindex(name,12,initial,4) -1));

return;

}

The basic problem is that to use a substring both a starting position and length are needed. The starting position is simply
min - 1; while the length came computed asnax (min - 1). In the simple case where the substring range is constant,
gmFortranperforms the computation at compile time. When the range is not constant, the computation must be inserted in
the code. This can be seen in the second anddkanhples. The third example shows the problem. Since the vafie of

is needed twice in the computations, tiie expression is evaluated twice. This double evaluation is inefficient.

Under the CHd and CHv approach, the descriptor is used. This loftoas:
void demol()
static char name[12],initial[4];
static int i,j;
static string T1;
ftnscopy(initial,4,(name+4),4,NULL);

32

PromulaFortran Translator User's Manual

ftnscopy(initial,4,(name-+i -1),j -(-21),NULL);
T1.n=fifindex(name,12,initial,4) -1;Tl.a=name+T1.n;T1l.n5j -Tln;
ft nscopy(initial,4,T1.a,T1.n,NULL);

return;

}

Under this approach the two members of Theare computed using thein only once. In the following copy request the
members ofT1 are then used rather than the source. Notice that CHd and CHv also dranteedcter assignment
differently. This issue is discussed in the next subsection under character concatenation.

2.5.4 Character Concatenations

It is from its treatment of string concatenation that CHd (CHaracter dynamic) gets its name. Both CHisaitb\@br
static concatenations but deal only with simple examples involving concatenations done on the fly. Consider the following
FORTRAN fragment:

SUBROUTINE DEMO1

CHARACTER SUM*13,INITIAL*4

INITIAL = "ONE"

SUM=INITIAL // "PLU S " /I INITIAL
OPEN(1,FILE="C:"//[SUM)

CALL DEMO2(SUM // "PLUS THREE", SUM // "PLUS TWQO")
RETURN

END

This fragment shows not only a concatenation associated with an assignment, but also concatenations as passd to the
operationand as passed as subprogram arguments. The C for this fragment under CHs would be as follows:

void demol()

extern void demo2();

static char sum[13],initial[4];
ftnsac(initial,4,"ONE",3);
ftnsac(sum,13,ftnads(ftnads(initial,4,"PLUS ",5),9,initia 1,4),13);
OPEN(1,FILEN,ftnads("C:",2,sum,13),15,0);
demo2(ftnads(sum,13,"PLUS THREE",10),23,ftnads(sum,13,"PLUS TWO",8),21);
return;

}

In this code a simple functidtnads which returns a pointer tochar is used to perform all the concatéoas. Each call
to ftnads adds another string to a static array. In the case of the assignment statement, the temporariftrradsilt is
copied into the result variable immediately after it is computed. FaprENand the argument cases, however rdsilt is
left in ftnads . For theOPENthis does not matter, but in the case of the arguments the second foadd$o either
destroys the first argument or concatenates the second to it. Under eithdenea®evill not produce the right result.

The CHI approach is general. String concatenations themselves are simpler and dynamic allocations are allocated memory
at runtime. The following is the default CHd C output for the above:

void demol()

extern void demo2();

static char sum[13],initial[4];

stati ¢ string T1,T2;
ftnscopy(initial,4,"ONE",3,NULL);
ftnscopy(sum,13,initial,4,"PLUS ",5,initial,4,NULL);
ftnsallo(&T1,"C:",2,sum,13,NULL);
OPEN(1,FILEN,T1.a,T1.n,0);
free(T1.a);

33

PromulaFortran Translator User's Manual

ftnsallo(&T1,sum,13,"PLUS THREE",10,NULL);
ftnsallo(&T2,sum,13,"PLUS TWOQO",8,NULL);
demo2(T1.a,T2.a,T1.n,T2.n);

free(T1.a);

free(T2.a);

return;

}

In the case of assignment, tiescopy function replaces the combined effecftabds andftnsac as presented earlier.
The ftnscopy function tales a variable number of arguments, terminated IbyJBL It concatenates the second and
beyond strings directly into the first. In the case of dynamic allocationsttihg type introduced in the previous
subsection is combined with a functidinsallo . This function computes the length needed for the concatenation,
dynamically allocates memory for it, and then does the copies. The results are storettimgthetemporary passed as the
first argument. This approach is completely general. The only proisiehat, once the result of the concatenation is no
longer needed, its memory must be freed. This adds a bit of additional code.

The CHy translation of this fragment is as follows:
void demol()

extern void demo2();

static char sum[13],initial[4];

stat icstring T1 ={NULL, 0};

static string T2 = {NULL, 0 };
ftnscopy(initial,4,"ONE",3,NULL);
ftnscopy(sum,13,initial,4,"PLUS ",5,initial,4, NULL);
ftnsallo(&T1,"C:",2,sum,13,NULL);
OPEN(1,FILEN,T1.a,T1.n,0);
free(T1.a);
ftnsallo(&T1 ,sum,13,"PLUS THREE",10,NULL);
ftnsallo(&T2,sum,13,"PLUS TWO",8,NULL);
demo2(&T1,&T2);
free(T1.a);
free(T2.a);
return;

}

Notice that the call talemo2 now receives the descriptor pointers directly. This is the only context in whicGHke
formulation is simpler than the CHd one.

2.5.5 Character Treatment Conclusion

The default CHd flag does produce slightly longer translations in some complicated cases. Alternatively, the code it
produces is almost always faster. It is strongly ieoended that the CHr and CHs flags only be used in special cases
where a particularly simple conversion is being performed.

The CHeyv flag should only be used if external libraries or system functions which assume descriptors must be called. In this
case tk user can modify thetring type to reflect the actual required type. See the chapter on the configuration file for
more information on this topic.

2.6 Appearance of COMMENTS in C Outputd CMO0, CM1, CM2

GREAT MIGRATIONSFORTRAN translates both embeddatt inline comments. Embedded comments are FORTRAN
statements with a 'C' or an "*" in column 1. Inline comments usually are placed on the same line as a FORTRAN statement
starting to the right of an 'I' (VAX FORTRAN convention) or a '/* (PRIME FORTRAMwmtion) which indicates

where the statement ends and the comment begins.

34

PromulaFortran Translator User's Manual

The comment control switches CM0, CM1, and CM2 simply specify whether comments from the source program should be
included in the translation and what form to use if they arediecluThe CMO switch excludes comments; the CM1 switch
includes them and blocks comments which follow each other, while CM2 includes comments but does not block them.
Normally, for the optimized bias CMO is active; and for the other biases, includingfthdtd€EM1 is active.

To see the difference between CM1, which blocks comments, and CM2 which does not, consider the following code.
SUBROUTINE TEST(l,J,K)
C Compute the value of | using the following relation:
C J+K - 1=5

I1=J+K -5
END

The default C output, which uses CM1, produces the following output.

void test(i,j,k)

long *i,*j,*k;
/*
Compute the value of | using the following relation:
J+K - 1=5
*
* = *rk - 5L;
}

In this output, the comments associateith the statement have been grouped and combined into a single C multiline
comment. The alternative, using CM2, produces the following:

void test(i,j,k)

long *i,*j,*k;
/* Compute the value of | using the following relation:*/
F J+K - 1=5%
* = ¥k - 5L;
}

In this output, each FORTRAN comment line becomes an equivalent C comment line.

Note that the NCn switch described in another section of this chapter describes the conventions used for inline comments.

2.7 Treatment of DATA Initializations d Da, Dc, Dr

The FORTRAN language has an excellent notation for describing the initial values to be assigned to FORTRAN variables.
The following summarizes the FORTRAN syntax:

DATA nlist/clist/ [[,]nlist/clist/]...

Where:
nlist is a list of nameto be initially defined. Each name in the list can take one of the forms:
var is a variable name.
array is an array name.
element is an array element name (i.e., subscripted array name.)
substring is a substring of a character variable or array element.
dolist is an impliedDOlist of the form:

35

PromulaFortran Translator User's Manual

(dlist, i=init,term[,incr])

Where:
dlist is a list of array element names and implied DO lists. Subscript expressions
must consist of integer constants and active control variables from DO list.
i is an integewariable called the implied DO variable.
init is an integer constant, symbolic constant, or expression specifying the initial
value, as for DO loops.
term is an integer constant, symbolic constant, or expression specifying the
terminal value, as for DO &ps.
incr is an integer constant, symbolic constant, or expression specifying the
increment, as for DO loops.
clist is a list of constants or symbolic constants specifying the initial values. Each item in the list can take
the form:
¢, rc, r(cf.c...]), r((cl,c...))
Where:

c is aconstant or symbolic constant.

r is a repeat count that is an unsigned nonzero integer constant or the symbolic name of such a
constant. The repeat count can repeat the value of a single constant, or can repeat theaalues of
list of constants enclosed in parentheses. To specify repetition of a complex constant, another set
of parentheses must be used.

In addition to DATA statements themselves, the declaration of any variable be it in a DIMENSION statement, or a type
statemat, or a COMMON statement may be followed by a set of initialization values enclosed in slashes.

The biggest problem in the translation of initializations from FORTRAN to C relates to a limitation in C syntax. Simply
stated, there is no equivalent of th&value notation in FORTRAN. Thus, if you need to initialize a large array with a
single value, you must write that value over and over again. The other problem has to do with initializing a numeric
variable with a character constant, which C does notvaliats initializations.

The default setting foBREAT MIGRATIONSFORTRAN uses the C static variable initialization notation for FORTRAN

DATA initialization of local variables. This is the most efficient method and works for most cases. The altesrativeei

a combination of FORTRAN READ NAMELIST and internal file capabilities to set the data initialization values at
runtime. This method is less efficient because it requires the construction of tables in the code, and because it must be
executed. Thisnethod is always used for initializations to COMMON and when you use the DR (data runtime) switch on
the command line.

2.7.1 Overview of Initialization Problem

The following example shows a set of data initializations which highlight several imppdiats about DATA statements
in FORTRAN.

SUBROUTINE DEMO
DIMENSION B(5), X(5,5), C(10)
DATA A/4.2/,B(1)/5.4/
DATA ((X(3,1),1=1,3),J=1,5)/1,2,2,3*3,4*4 5*5/
DATA J/4/,(C(J),J=1,10)/10*2.0/
1 FORMAT(1X,10F10.1)
2 FORMAT(1X,110)
WRITE(*,1) A, B
WRITE(*,1) C

36

PromulaFortran Translator User's Manual

WRITE(*,2) J

DO10J=15

WRITE(*,1) (X(J,1),1=1,5)
10 CONTINUE

STOP

END

Note first in the initialization oK that the value of the dummy subscripis used as a termihpoint for the subscript.

This is allowed in DATA statements. Note next that, in the following DATA statement, a program varialdéven the
value of 4, and then a dummy variable the DATA statement is allowed to run from 1 to 10. Dummy varg@alnleDATA

statements are not program variables and are independent of them.

The listing below shows the default translation of the above example.
void demo()

static float b[5] = {
5.4,0.0,0.0,0.0,0.0

b

static float x[5][5] = {
1.0,2.0,3.0,4.0, 5.0,0.0,2.0,3.0,4.0,5.0,0.0,0.0,
3.0,4.0,5.0,0.0,0.0,0.0,4.0,5.0,0.0,0.0,0.0,0.0,5.0

b

static float c[10] = {
2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0

b

static float a = 4.2;

static long j = 4;

static long i;

static char* F1[] = {
"(1x,10f10.1)"

2
static char* F2[] = {
"(1x,i10)"

WRITE(OUTPUT,FMT,F1,1,REAL4,a,DO,5,REAL4,b,0);
WRITE(OUTPUT,FMT,F1,1,D0,10,REAL4,c,0);
WRITE(OUTPUT,FMT,F2,1,INT4,j,0);
for(j=1L; j<=5L; j++) {
WRITE(OUTPUT,FMT,F1,1,MORE);
for(i =0L;i<5L; i++) {
WRITE(REAL4 X[i][j - 1], MORE);

}
WRITE(0);

}
STOP(NULL);
}

Note that values not explicitly defined in the DATA statement are given a value of 0, blanks for character strings. Note also
that the initialiations ofX andJ are correct.

The following listing shows the same translation using the DR command line switch.

void demo()

static float b[5];
static float x[5][5];
static float c[10];
static float a;
static long j;
static long i;

37

PromulaFortran Translator User's Manual

static int ftnsiz[] ={1,1,5,1,1,25,1,1,10};
static namelist DATAVAR]] = {
"b",b,6,ftnsiz,"x",x,6,ftnsiz+3,"c",c,6,ftnsiz+6,
"a",&a,6,NULL,"|",&j,5,NULL

2
static char *DATAVAL[] ={

"$DATAVAR",
"b=5.4,4*0.0,x=1.0,2.0,3.0,4.0,5.0,0.0,2.0,3.0,4.0,"
"5.0,2*0.0,3.0,4.0,5.0,",

" 3*0.0,4.0,5.0,4*0.0,5.0,c=10*2.0,a=4.2,j=4,",
"$END"

h

static FIRST =1,

static char* F1[] ={
"(1x,10f10.1)"

s'tatic char* F2[] ={
"(1x,i10)"

if(FIRST) {
FIRST=0;
fiointu((char*)DATAVAL,0,2);
fiornl(DATAVAR,5,NUL L);

}
WRITE(OUTPUT,FMT,F1,1,REAL4,a,D0,5,REAL4,b,0);
WRITE(OUTPUT,FMT,F1,1,D0,10,REAL4,c,0);
WRITE(OUTPUT,FMT,F2,1,INT4,j,0);
for(j=1L; j<=5L; j++) {

WRITE(OUTPUT,FMT,F1,1,MORE);

for(i=0L; i<5L; i++) {

WRITE(REAL4,X[i]j - 1],MORE);

}
WRITE(0);

}
STOP(NULL):;
}

See the discussion of NAMELIST in the FORTRAN Compiler User's Manual for more information on namelist. In essence,
to do the data initialization at runtiméREAT MIGRATIONSFORTRAN invents a NAMELIST which contains all of the
variables involved in data initializations. This is done in the initializatiorftrefz ~ which contains the array bound
specifications, and in the initialization of the structure DATAVAR which contains theligtrapecification. Next, the data
guantity lists and values are converted into namelist read input format and stored in an internal character file called
DATAVAL. Finally, a variable FIRST is introduced which triggers the calls to the runtime procdasictipns needed to
initialize the actual data values. NAMELIST is a much neglected and maligned feature of FORTRAN which solves this
particular problem very nicely.

2.7.2 The Initialization Switches
As is discussed above, C is needlessly weak in tha af data initialization. Since we cannot change C, we must
accommodate this weakness in our C output conventions. The D command line switch specifies when data initializations

are to be performed and what storage type initialized variables should tisamdividual settings are as follows:

Setting Meaning

Dc This is the default setting, despite its problems. It requests that initialization produced
DATA statement to local variables be implemented at compile time. The initialization eaéu
actually placed in the C source code.

38

PromulaFortran Translator User's Manual

Dr This setting requests that data initializations be copied from the DATA statemen
NAMELIST form into an internal character file so that they can be read into the actual va
at runtime.

Da This setting modifies the behavior of the Dc flag by specifying that variables initializ

compile time should be declared as being "auto" as opposed to the default of "static".

A summary example is included here to show the effects of this switeh.following program contains several data
initializations.

PROGRAM DEMO
DIMENSION A(50)/10%0.0,40*1.0/
CHARACTER NAME*4(4)/4HFred,2*Mary',3HJoe/
CALL DEMO1(A)
STOP
END
SUBROUTINE DEMO1(A)
DIMENSION A(50)
DATA VAL/55.6/
DO 10 1= 1,50
10 A(l) = A(l) * val
RETURN
END

These initializations are performed either as part of the declaration or in an explicit DATA statement. The D switch treats
both types of initializations in the sam®&nner.

The following is the default translation of the example above.

void main(argc,argv)
int argc;
char* argv[];

extern void demol();

static float a[50] = {
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0 ,1.0,1.0,1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
1.0,1.0

2

static char name[16] = {
Fryed Myl ry MY AT Y,
‘J'Vo' e,
ftnini(argc,argv ,NULL);
demol(a);
STOP(NULL);

void demol(a)
float aJ;

static float val = 55.6;

static long i;
for(i=0L; i<50L,; i++) {
a[i] = a[i]*val,
return;
}

39

PromulaFortran Translator User's Manual

The two primary problems to note are that C has no equivalent oftiadue notation and that a nemull terminated
sequence of characters can only be written as individual elements enclosed in single quotes. Nonetheless, this way of
initializing variables is much more efficient than the runtime way and is the default.

The following shows the same translation with the Dr switch set.

void main(argc,argv)
int argc;
char* argv[];

extern void demol();

static float a[50];

static char name[16];

static int ftnsiz[] = {1,1,50,1,1,4};

static namelist DATAVAR]] = {

"a",a,6,ftnsiz,"name" ,name,16,ftnsiz+3

2

static char *DATAVAL[] = {

"$DATAVAR",

"a=10*0.0,40*1.0,name="Fred',2*'Mary','Joe’,",

"$END"

2
ftnini(argc,argv,NULL);
fiointu((char*)DATAVAL,0,2);
fiornl(DATAVAR,2,NULL);
demol(a);

STOP(NULL);

void demol(a)
floa taf];

static float val;
static long i;
static namelist DATAVAR]] = {
"val",&val,6,NULL
2
static char *DATAVAL[] = {
"$DATAVAR",
"val=55.6,",
"$END"
2
static FIRST = 1;
if(FIRST) {
FIRST=0;
fiointu((char*)DATAVAL,0,2);
fiorn I(DATAVAR,1,NULL);

}
for(i=0L; i<50L; i++) {
afi] = a[i*val;

return;

}

In this translatiorlGREAT MIGRATIONS FORTRAN has constructed logic and simple static initializations which allow
the variable values to be read into the attariables at runtime. Using this technique, the value strings can be kept simple.
Also, any problems having to do with webjlping or hiding characters are easily solved. This runtime initialization gives
us all the flexibility we need, but it does réguthat extra code be linked with the program, and that the value be stored
"twice".

Finally, the listing below shows the C output when using the Da switch:

40

PromulaFortran Translator User's Manual

void main(argc,argv)
int argc;
char* argv[];

extern void demol();

auto float a[50] = {
0.0 ,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0

2

auto char name[16] = {
'Fred UMyalL ey M al T Y,
‘JVo' e

ftnini(argc,argv,NULL);
demol(a);
STOP(NULL);

void demol(a)
float a[];

auto float val = 55.6;

static long i;
for(i=0L; i<50L; i++) {
a[i] = a[iJ*val,
return;
}

This version declares the initialized variablesa® . Note that many C compilers are unable to compile this version. The
effect of this auto declaration is that the variables are initialized at their specified values each time the functiomgcontai
them is entered.

2.8 Turn on Debugging Moded DB

When usinggmFortranas a compiler it is often convenient to use a debugger. The DB switch makes this possible. When
used, the debugger will refer to the original FORTRAN source code rather than to theeitisée C code. This flag is
actually only a macro for the following flag settings:

CMO: Turn comments off
Ln: Include line number information
LO: Do not generate newlines within statement output

Qe32000: Allow 32000 bytes for line number information

These flags are discussed in detail elsewhere in this chapter.

2.9 Echo Control Optionsd ES, ET, EX, EZ, EP, EL

Except for its initial bannegmFortranis normally silent, unless a fatal error is encountered. Messages are sent to standard
output and maye redirected or may be sent to a listing file (see section on the PN and PA switches). Note that error
messages themselves are discussed iGREAT MIGRATIONSFORTRAN Compiler manual. The echo control options

may be used to send additional informationtte listing output. This information includes the following:

Option Information sent to listing output

EL1 Warnings about potentially serious inconsistencies or usages in the FORTRAN source cc¢

41

PromulaFortran Translator User's Manual

EL2 Comments about possibly ngortable cod or about code that may be incorrect and
warnings from above

EL3 Notes about standard FORTRAN violations and other miscellaneous observatior
comments and warnings from above.

EP A listing of the intermediate pseudode produced by ¢ghcompiler.

ES An annotated listing of the source code.

ET An annotated listing of the C output code.

EX An alphabetical listing of the symbols used in the source along with a summary descrif

each and a croggference listing osymbol references by line number.

EZ A listing of the intermediate symbol information produced by the compiler.

2.9.1 Warnings, Notes, and Comments

The form and meaning of the warnings, notes, and comments are discusse@GREAE MIGRATIONS FORTRAN
Compiler manual in its chapter on error messages. Suffice to sagntirairtrandoes extensive syntax checks while it is
processing the source code and extensive consistency checks after it has processed each subprogram.

The following is a sampledting produced which shows the type of messages that might be produced at the EL1 level:

390: utest.for: W818: The argument "ia" is being defined with type integer*4 when it has been passed an argument of
type character.

The "W" appended to the error nber indicates a warning. Messages at this level can be ignored, but they typically
indicate potentially serious problems.

At the EL2 level the following additional types of messages are issued:

54: utest.for: C870: The array OBUF is being subscriptediniess than 1 expressions.

380: utest.for: C815: A data value of type character is being assigned to the variable 1A of type integer*4.
520: utest.for: C816: The binary type character is being used where type integer*2 is expected.

558: utest.for: C861: Data is being allocated to common storage via the variable SEATRD.

820: utest.for: C866: The real*4 type has previously been assigned to UC _.

At this level in addition to warnings other usages are isolated that should either be checked or that repeesaily p
serious portation problems.

Finally, at the EL3 level the following additional types of messages are issued:

37: utest.for: N858: The identifier THERMAZL with more than 6 characters is nonstandard.

184: utest.for: N864: Declarative statementsllowing executable statements is nonstandard.

223: utest.for: N851: The use of inline comments is nonstandard.

295: utest.for: N872: Equivalencing CBUF of type character*80 with IBUF of type INTEGER*2 is nonstandard.

343: utest.for: N853: The standard dieniter for a character constant is the single quote.

431: utest.for: N858: The identifier PRANDOM_INDX$ with more than 6 characters is nonstandard.

474: utest.for: N806: Omitting the comma after the | FORMAT specification is nonstandard.

545: utest.for: 1823: The COMMON block DIR1 has character*1 variable VFORMS and an unspecified variable
OPTEV.

722: utest.for: N801: The INCLUDE statement is nonstandard.

1: STRUCG.INC: N801The STRUCTURE statement is nonstandard.

42

PromulaFortran Translator User's Manual

800: utest.for: N833: The nonparenthetial form of the PARAMETER statement is nonstandard.

As can be seen, the EL3 level generates many messages and is primarily intended for those who are trying to write pure
standard conforming code.

2.9.2 Annotated Listing of Source Code
The following lising was produced via the ES option for a simple subprogram referencing a single include file:

GREAT MIGRATIONS FORTRAN Compiler V4.00 Date: 08/11/92 Time: 09:35 Page: 1
File: utest.for

1~ "SUBRO UTINE STRUC6

2 INCLUDE 'STRUCSG.INC'
1 1 STRUCTURE /DATE/
1 21 INTEGER*4 DAY,MONTH
1 31 INTEGER*4 YEAR
1 41 END STRUCTURE
1 5 C
1 6 C STRUCTURE /TIME/ APP_ TIME(2)
1 7 C LOGICAL*1 HOUR,MINUTE
1 8 C END STRUCTURE
1 9 C
1 10 C Thisis the same as:
1 11 C
1 12 C STRUCTURE /TIME/
1 13 C LOGICAL*1 HOUR,MINUTE
1 14 C END STRUCTURE
1 15 C RECORD /TIME/ APP_TIME(2)
1 16 C
1 17 STRUCTURE /TIME/
1 18 1 LOGICAL*1 HOUR,MINUTE
1 191 END STRUCTURE
1 20
1 21 STRUCTURE /A PPOINTMENT/
1 221 RECORD /DATE/ APP_DATE
1 231
1 241 RECORD /TIME/ APP_TIME(2)
1 251
1 261 CHARACTER*20 APP_MEMO(4)
1 271 LOGICAL*1 APP_FLAG
1 281 END STRUCTURE
1 2 9 RECORD /APPOINTMENT/ NEXT_APP,APP_LIST(7)
1 30 RECORD /DATE/ TODAY

3 WRITE(6,%) "***exek STRUCE.0UT'
4 DO101=17
51 CALL GET_DATE(I,TODAY)
6 1 WRITE(6,*) TOD AY.DAY,TODAY.MONTH,TODAY.YEAR
71 APP_LIST(I).APP_DATE = TODAY
81 TODAY.DAY = TODAY.DAY + 1
9 1 10 END DO
10 5 FORMAT(3I5)
11 NEXT_APP = APP_LIST(1)
12 OPEN(1,FILE=' STRUC6.BIN',FORM ='UNFORMATTED',STATUS="UNKNOWN)
13 WRITE(1) NEXT_APP
14 WRITE(L) APP_LIST
15 END

The heading which is printed at the top of each page contains the name of this compiler along with ityersioent
number on the lefhandside of the page. The rightaindside normally contains the name of the file being compiled, the

43

PromulaFortran Translator User's Manual

date, the time, and the page number relative to the file. In this case the page width was set to be narrow, so the& name of th
file is placed on a second line.

The annotated listing itself contains the include file number (If), the line number within the source file, the nestifg level

the statement, and the actual source code statement. The include file number is left bésalerfeents in the original

source file. The nesting level indicator is used with declaration statements when structures are being defined. It indicates
the level of nesting within the structure. For executable statements the nesting level indicatesititkcdegree of nesting

within DO and/or IF statements. If there is no current nesting then the nesting level is left blank.

2.9.3 Symbol Listing and Cross Reference Table

The following symbol listing and cross reference table was produced using thi&n. The table consists of 4 sections:
Include files, symbols referenced, symbol references by line number, and statement label types and references. In general,
in these tables all user defined symbols are shown in uppercase, while all descnipbetssyre shown in lowercase.

The include files section simply lists all include files encountered to date in the compilation along with the sequence
number assigned to them. Note that the base source file has a number of zero. If there are noesdlefiediiced in the
current subprogram, then this section is omitted.

The philosophy behind the design of the symbols referenced table is that the user will use this table when he wants
information about a particular symbol, whose status he may notrikafawith but whose identifier he knows or has seen
somewhere in the listing. The report consists of a single alphabetical list of each symbol referenced in the subprogram. For
each symbol its object type, its storage status, its binary type, and a sbarmerovided.

The object type is straightforward. There are thirteen possible entrigsistant, parameter, variable,

subroutine, function, intrinsic, namelist, entry, statefunc, structure, record, pointer , and

common These names correspond dired¢tlythe possible FORTRAN object types. It should be mentioned that members
within structure definitions are treated simply as variables or records. This convention is compatible with the approach of
using a single alphabetized list of all symbols.

The stoage status of a symbol can be one of four different things. For subprogram arguments it is speciiedeas .

For variables in common blocks, it is the hame of the common block containing the variable. For members of structures, it
is the name of striigre containing the member. For simple variables it is one of the follovsiagc, auto,

dynamic , orvirtual . See the Sa and Ss switches for a description of static versus auto storage. Dynamic and virtual
variables can be created via t6REAT MIGRATIONS interface described in th@REAT MIGRATIONS FORTRAN

Compiler manual.

The type of a variable is simply its type specification. For records it is the structure type of the record.

The comment associated with the symbol is a function of its object typeoRstant integer parametéysi.e, those that

may be used in other declaration stateméntthe comment specifies the value of the parameter as specified or computed.
For variables or records, the dimensionality is given and for arrays the total bigiesn For subprograms the number of
arguments is given along with the assumed type of each argument. Note that in the C tgadiantranmakes extensive

use of subprogram prototypes and always makes certain that argument types are consisterardfrbeyt issues a
warning.

The symbol reference by line number table is simply that. Along with the line number a use type code is also&pecified
'D' means 'defined’, 'M' means 'modified’, 'U' means 'used’, and 'P' means 'passed to a subpeogyamolihas multiple
references in a single statement, then only one reference is reported.

Note that if include files are involved, then the line number is followed by the include file sequence number. If irdude fil
are not involved, then a simpleggeence number is used.

GREAT MIGRATIONS FORTRAN Compiler V4.00 Date: 08/11/92 Time: 09:35 Page: 2
File: utest.for

Include files used in unit:

44

PromulaFortran Translator User's Manual

Seq Filename

1 STRUCG.INC
Symbols referenced in SUBROUTINE STRUC6
Identifier Obj ect Storage Type Comment
APP_DATE record APPOINTMENT DATE scalar
APP_FLAG variable APPOINTMENT logical*l scalar

APP_LIST record static APPOINTMENT 1d
APP_MEMO variable APPOINTMENT character*20 1d
APP_TIME record APPOINTMENT TIME 1d
APPOINTMENT structure

DATE structure

DAY variable DATE integer*4 scalar
GET_DATE subroutine 2 args(integer*4,
HOUR variable TIME logical*1l scalar
I variable static integer*4 scalar

MINUTE variable TIME logical*1 scalar
MONTH variable DATE integer*4 scalar
NEXT_APP record static APPOINTMENT scalar
TIME structure

TODAY record static DATE scalar

YEAR variable DATE integer*4 scalar

Symbol references by line

number in SUBROUTINE STRUC6

- array(679)
- array(80)
- array(4)

unspecified)

Identifier Line.If:u (D=defined, M=modified, U=used, P=passed)
APP_DATE 22.01:D 7.00:U
APP_FLAG 27.01.D
APP_LIST 29.01:D 7.00:M 11.00:U 14.00:U
APP_MEMO 26.01:D
APP_TIME 24.01:D
APPOINTMENT 21.01.D
DATE 1.01.D
DAY 2.01:D 6.00:U 8.00:U
GET_DATE 5.00:U
HOUR 18.01:D
I 4.00:M 5.00:P 7.00:U
MINUTE 18.01:D
MONTH 2.01:D 6.00:U
NEXT_APP 29.01:D 11.00:M 13.00:U
TIME 17.01:D
TODAY 30.00:D 5.00:P 6.00:U 7.00:U
8.00:M
YEAR 3.01:D 6.00:U
Statement label types and references by line number in SUBROUTINE STRUCG6
Label Type Line.If:u (D=defined, U=used, A=assigned)
5 format 10.00:D
10 statement 4.00:U 9.00:D

The statement label types and references table is a numerical listitng ctatement labels, along with their type,
statement or format , and a listing of the lines where they are referenced.

If the subprogram contains EQUIVALENCE statements, then a fifth table type is generated: the equivalence pairs table.
Given the code fgment below:

48 SUBROUTINE ANA1

49 INTEGER BUF1(2048), BUF2(2048), BUF3(2048)
50 BYTE OBUF(32767)
51 EQUIVALENCE (BUF2(1), OBUF(1))

45

PromulaFortran Translator User's Manual

52 EQUIVALENCE (BUF3, OBUF)
62 E ND

The following equivalence pairs table is produced:

Equivalence pairs:

Dependent Base Offset
BUF2 OBUF 0
BUF3 OBUF 0

Thebase variable is the variable whose storage is being used to contain the dependent variable. The offset is the byte offset
within the base variable of the start of the dependent variable.

2.9.4 Intermediate Compiler Tables

The EP and EZ switches can leed to generate a listing of the intermediate compiler té@bl&Z lists the symbol tables,
while EP lists the pseudmode generated. The following is a simple program along with the listing formed by the EP and
EZ switches.

PROGRAM TEST

INT EGER I,J,K

PRINT *, "I+J/K = ",(1+J)/K
STOP

END

Include files used in unit:

Seq Filename

Symbols defined in unit:

Base Identifier Obj Flag Inf2 Incf Typ Ref Normal Cref Tflags Adr Valsize

278 1 1 00 05 0 0 1 18 0 4
286 J 100 05 0 0 1 18 0 4
294 K 100 05 0 0 1 18 0 4

Pcode generated by unit:

Location Operation

00000 nop

00001 sto

00002 Ist

00003 Isc " I+J/K=",8
00006 wrv 17

00009 Ida i,278,1

00012 Idr i, 278, 1

00015 Ida |, 286, 1

00018 Idr j,286,1

00021 adi

00022 Ida k,294,1

00025 Idr Kk, 294, 1
00028 dvl

00029 wrv 5

00032 win

46

PromulaFortran Translator User's Manual

00033 ner
00034 nop
00035 stn

86837 &8

These tables show the detailed information generated to form the C translatietaildd discussion of the actual symbol
conventions and pseugmde is beyond the scope of this manual. Individuals desiring additional information may contact
Great Migrations LLC

2.9.5 Annotated

In addition to the an
following is the listin

Listing of C Output

notated tiisg of the source code, a similar listing can also be obtained for the C output produced. The
g produced with the ET flag during the processing of the code used earlier.

If Line# NI Translation

O©CoOoO~NOU~WNPR

app_flag;
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
321
33

#include "fortran.h"
void struc6()

{
typedef struct {

long day,month,year;
} Sdate;
typedef struct {

unsigned char hour,minute;
} Stime;
typedef struct {

Sdate app_date;Stime app_time[2];char app_memo[80];unsigned char

} Sappointment;
/*

STRUCTURE /TIME/ APP_TIME(2)
L OGICAL*1 HOUR,MINUTE
END STRUCTURE

This is the same as:

STRUCTURE /TIME/
LOGICAL*1 HOUR,MINUTE
END STRUCTURE
RECORD /TIME/ APP_TIME(2)
*/
extern void get_date();
static Sappointment next_app,app_list[7];
static Sdate today;
static long i,D2;
WRITE(6,LISTIO,STRG, ****++++* STRUC6.0UT",20 ,0);
for(i=1,D2=(7 - i+1); D2>0; D2 - i+=1){
get_date(&i,&today);

WRITE(6,LISTIO,INT4,today.day,INT4,today.month,INT4,today.year,0);

341
351
36
37
38
39
40
41

app_list[i - 1].app_date = today;
today.day = today.day+1L;
}

next_app = app_list[0];

OPEN(1,FILEN,"STRUC6.BIN",10,STATUS,"UNKNOWN",FORM,"UNFORMATTED",0);

WRITE(1,BYTE,&next_app,(int)(sizeof(Sappointment)),0);
WRITE(1,BYTE,app_list,(int)(7*sizeof(Sappointment)),0);

47

PromulaFortran Translator User's Manual

2.10 Treatment of Syntax Errorsd ERO, ER1, ER2, ER3, ER4

gmFortranis like any other FORTRAN compiler in that in order to translate the source code, it must also vaddate it
check it for any syntax errors. Syntax errors may arise for a variety of reasons:

(1) An actual syntax error

(2) Use of a dialectal feature not supported by the currently active language definition file.
(3) An improperly used command line switch.

(4) A problem with a subprogram parameter.

The basic assumption in the desigrgofFortranis that existing, valid FORTRAN programs are being processed; therefore,

a syntax error means that a mismatch of some sort exists bapweenrtranand the dialecbeing processed. By default,
therefore,gmFortranstops processing when a syntax error occurs. The switch ERO specifies this behavior. The switches
ER1 through ER4 specify that processing should continue despite the syntax error.

With gmFortran if procesing is to continue despite an error thggnFortranmust be told how to produce the C output

given a statement in the source program which it cannot translate. The ER1 through ER4 switches differ in how the error
statement appears in the C output. Condiderfollowing simple program which contains an illegal character in its second
statement.

PROGRAM TEST
I=J@K

STOP

END

The ER1 switch specifies that syntax errors block at C compilation time. In other words, when a synisceromuntered
a message is issued, but processing continues. The statement producing the error will be entered into the C output in the
form:

SYNTAX ERROR: errno, statement
Thus, the program above produces the following C code under ER1:

void ma in(argc,argv)
int argc;
char* argv[];
static long i,j;

ftnini(argc,argv,NULL);

SYNTAX ERROR: 145,"I =J @ K"

STOP(NULL);
}

Any attempt to compile the output will cause errors at that time. This setting allows you to see all your ermtarat,on
but blocks you from actually using the results.

The ER2 switch specifies that syntax errors block at link time. It behaves exactly like ER1 above, except that the following
is entered into the C output:

SYNTAXERROR(errno,"statement");
Thus,the program above produces the following C code under ER2:

void main(argc,argv)

48

PromulaFortran Translator User's Manual

int argc;
char* argv(];

static long i,j;
ftnini(argc,argv,NULL);
SYNTAXERROR(145,"1 = J @ K");
STOP(NULL);

}

This setting allows you to process all errors ateomand to go ahead with a provisional compilation; however, the
unsatisfied external SYNTAXERROR will block any attempt to link the program.

The ER3 switch specifies that syntax errors cause a runtime error to be issued. This switch behaves ex&tllafike E
ER2 above, except that the following is entered into the C output:

puts("ERROR errno statement");

Thus, the program above produces the following C code under ER3:

void main(argc,argv)
int argc;
char* argv[l;

static long i,j;
ftnini(argc,arg v,NULL);
puts("ERROR 145 1=J @ K");
STOP(NULL);

}

This setting allows you to process all errors at once, and to go ahead and form an executable; however, when you execute it
you will get error messages when the offending statements are enedunter

Finally, the ER4 switch specifies that syntax errors cause warnings only. This switch is like the ones above except that the
following is entered into the C output:

/* SYNTAX ERROR: errno, statement */

Thus, the program above produces the foitey C code under ER4:

void main(argc,argv)
int argc;
char* argv[l;

static long i,j;
ftnini(argc,argv,NULL);

/* SYNTAX ERROR: 145" =J @ K" */
STOP(NULL);

}

Obviously, this setting treats errors simply as warnings; however, the resultamiaé@evill not behave correctly.

2.11 FORTRAN Input Format Usedd Fsnum, Ft, Ff, Fv, F9

In the good old days the one thing that was always the same was the basic line format used to enter FORTRAN programs.
But all good things must end. Now there ardeast 5 different major variations of the FORTRAN entry format that we

know of. The F command line switch allows you to specify the entry format that you are using. There is an extensive
discussion of the different formats in tGREAT MIGRATIONS FORTRAN Gmpiler Manual. That discussion will not

be repeated here. The individual settings associated with this flag are mutually exclusive and are as follows:

49

PromulaFortran Translator User's Manual

Fsnum Selects the standard fixed format with an ending column of n. The default setting is Fs72ds\iltlyood
old format referred to above.
Ft Selects tab format which comes from the VAX FORTRANS.

Ff Selects the freéorm format which is relatively typical of those FORTRANS that accepted "terminal input".
Fv Selects the VS FORTRAN frderm format.
F9 Selects the Fortran 90 format

2.12 Source FORTRAN Integer Typed Fls, Fll

There is variation between FORTRAN compilers as to whether the default type of the INTEGER specification should be
INTEGER*2 or INTEGER*4. In fact, an interesting aspect of margdertn FORTRAN compilers is that the user may
specify whether the default integer type is to be a short 16 bit representation or a long 32 bit representation on tde comman
line.

The Fls and FIl command line switchesgimFortranallow for this specificatin. The Fls specification says that the default
integer type is short, INTEGER*2; while Fll specifies that it is long, INTEGER*4. The default setting for this switch is Fll
for the standard FORTRAN dialect.

2.13 Gnamed Name of File Containing Global Synhols
The GREAT MIGRATIONS application management system agrmdFortrancan be used in tandem to upgrade existing
codes. The interface between these two systems truly adds value to existing FORTRAN programs.

The global symbols file, whose default extendgmiglb' contains a list of program variables that are to be made "global" for
use by theGREAT MIGRATIONS Application Development System. The content of this file and the general topic of the
GREAT MIGRATIONSI nterface are described in detail in @REAT MIGRATIONS FORTRAN Compiler Manual.

2.14 Common Variables Conventio® Ga, Gd, Gp, Gs, Gr, Gv

That aspect of FORTRAN which has the highest likelihood of causing translation errors and/or user readability objections
is the COMMON statement. Every storafgiek and weakltyping trick imagined gets used in the nuances of changing
COMMON block definitions through a large program. There is no ideal way to deal with common lgodksttran
translates common blocks in one of six ways. These are controlletevi@ tommand switch. The individual settings
associated with this switch are mutually exclusive and are as follows:

Set Meaning

Gp Define common blocks via local pointers and varying typedefs. This is the default setti
particular, COMMON blok identifiers are declared simply as external char storage areas. Lt
the address of that storage area is assigned to a structure pointer whose members are defi
same manner as the COMMON definition in the subprogram being translatedeckrigjtie works
in all cases except where byte alignment adjustments are needed. The problem with this tec
that it is ugly and that it must use expressions of the folock - >var to refer to members in th
block. These expressions require poirddthmetic at rurtime and, therefore, produce inefficie
code, especially on the PC when "large" or "huge" memory models are in effect.

Gd This is a variation of the Gp option, except that it may produce better code for some enviro
Under Gplocal auto variables are introduced as structure pointers; while under Gd the
syntactic effect is achieved via a defined symbol.

50

PromulaFortran Translator User's Manual

Gs Defines COMMON blocks as static structures with varying internal composition. In particula
technique defias each occurrence of the COMMON block as an external structure whose m
are defined in the same manner as they are defined in the subprogram being translai
technique produces readable code and generates relatively efficient code. The rodemany
compilers consider redefining an external with a detailed structure repeatedly in different fu
to be a typing error. Some give warnings and others consider this a fatal error. If this te
works with your compiler, and if it doesonhoffend your own view of "symbol typing”, then tr
technique is highly recommended. Note that it can be used freely with the Om flag dis
elsewhere.

Gr Defines COMMON blocks as raw static vectors of char. This technique is used when driaota
layout is required or when the efficiency of the Gs technique is desired in an environment v
cannot be used. Here, the variable positions within the block are calculated using alignm
wordsize specifications that are supplied via théedtadefinition. Actual variable references th
become references to the COMMON block name plus the calculated position. The COI
variable identifiers within the block disappear. The code generated is efficient; however,
intend to maintain the ce in its C form, it is difficult to read. This technique is hig
recommended for those who are usgmFortransimply as a preprocessor to their C compiler, v
no real interest in the intermediate C output.

Gv Defines COMMON variables as indemlemt external symbols. This technique should only be
when you are building a function library or when all COMMON blocks are always defin
precisely the same way. This setting removes the COMMON blocks from the translation; th
the inverseof the technique above which removes the variables within the blocks. Witl
technique the variables themselves become external symbols. If appropriate, this setting |
very readable and clean code; however, if used in the wrong context it cac@itash.

Ga This treatment assumes that the user has himself allocated or assigned memory for the
areas; thus, the COMMON variable itself becomes a structure pointer as opposed to a str.
assumed by all other treatments. The COMMQ@mhisol itself is defined as an instantiated poir
to that structure; thus, giving a very clean looking translation.

Examples of the use of this flag are presented here. The following FORTRAN subroutine contains two COMMON blocks.

SUBROUTINE DEMO

CHARACTER C1*15,C2*10
COMMON/ALPHA/A(10,10),B(5),C,D
COMMON/BETA/C1(10),C2(5)
A1) =C

B(5) =D

C1(1)(3:12) = C2(4)

RETURN

END

Below is the default translation for this example which uses the Gp setting.

void demo()
{
extern char Xalphal],Xbeta[];
typedef struct {
float a[10][10],b[5],c.d;
} Calpha;
auto Calpha *Talpha = (Calpha*) Xalpha;
typedef struct {
char c1[150],c2[50];
} Cbeta;
auto Cbeta *Tbeta = (Cbeta*) Xbeta;
Talpha - >a[0][0] = Talpha - >C;

51

PromulaFortran Translator User's Manual

Talpha - >b[4] = Talpha ->d;
ftnscopy((Theta - >c1+2),10,(Tbeta - >c2+30),10,NULL);
return;

}
char Xalpha[428];
char Xbeta[200];

In the function itself, the COMMON blocksLPHAandBETAare defined simply as arrays dfar , note NOT pointers to

char. Next there are typedefs whose names are constructed by appending a C to the block name which defines the local
structure of the block. Next there is an auto pointer defined, name constructed by adding a T to the block name, which
points to the stardf the char storage area. This double definition with a typedef and then a variable of that type is needed
because the assignment of the address of the common storage area requires a cast to avoid a compiler error or warning. As
was said above, the big fmlem with this translation technique is that it must use-th@perator. This operator does

pointer arithmetic, which on the PC can be relatively inefficient with some memory models. Finally, the storage areas for
the blocks themselves are reserved abajlstorage areas with the maximum size defined for each block.

The translation below is produced via the Gd setting.

void demo()

extern char Xalpha[],Xbeta[];
typedef struct {

float a[10][10],b[5],c.d;
} Calpha;
#define Talpha ((Calpha*) Xalpha)
t ypedef struct {

char c1[150],c2[50];

} Cbeta;
#define Theta ((Cbeta*) Xbeta)
Talpha - >a[0][0] = Talpha - >C;

Talpha - >b[4] = Talpha ->d;
ftnscopy((Theta ->cl1+2),10,(Tbeta - >c2+30),10,NULL);
return;

#undef Talpha

#undef Theta

}
char Xalpha[428] ;
char Xbeta[200];

This translation is very similar to the one above except that the definition of the simelolis accomplished via a define
as opposed to a variable.

The translation below, which uses the Gs setting, is our favorite if you andgmpiler can accept it.

void demo()

extern struct {
float a[10][10],b[5],c.d;

} Xalpha;

extern struct {
char ¢1[150],c2[50];

} Xbeta;
Xalpha.a[0][0] = Xalpha.c;
Xalpha.b[4] = Xalpha.d;
ftnscopy((Xbeta.c1+2),10,(Xbeta.c2+30),10,NULL);
return;

}
char Xalpha[428];
char Xbeta[200];

52

PromulaFortran Translator User's Manual

This translation comes closest to looking like the original FORTRAN, and produces relatively efficient code. In addition,
there is no need to introduce extra symbols into the code. The problem is thatelsnically not valid code. At best it
would flunk an introductory course in C. The common blocks are being defined in different ways in different places in the
code.

The translation below has the same efficiency as the one above and is perfeciy padigtamming. It is produced with
the Gr setting.

void demo()

extern char Xalphal],Xbeta[];
(float)Xalpha = *(float*)(Xalpha+420);
((float)(Xalpha+400)+4) = *(float*)(Xalpha+424);
ftnscopy((Xbeta+2),10,((Xbeta+150)+30),10,NULL);
re turn;

}
char Xalpha[428];
char Xbeta[200];

Here the problem is that the COMMON storage has been stripped of all its variable names; thus, the code is difficult to
read. What iveta+150 for example. Use this flag if you are not interested in the inteateed output or if you require
special COMMON block layouts.

The simplest translation of this example is produced by the Gv setting and is shown below.

void demo()

extern float Xa[10][10],Xb[],Xc,Xd;

extern char Xc1[],Xc2[];
Xa[0][0] = Xc;
Xb[4] = Xd;
ftnscopy((Xc1+2),10,(Xc2+30),10,NULL);
return;

}
float Xa[100],Xb[5],Xc,Xd;
char Xc1[150],Xc2[50];

Here the COMMON variables themselves are the external symbols. If the COMMON was done carefully in the FORTRAN
or if you are intending to hid a library and wish to simplify the externals structure, then this setting gives a very clean and
efficient translation. We use it often, but be careful.

The final translation of this example is produced by the Ga setting and is shown below.
void demo ()

extern struct Xalpha {
float a[10][10],b[5],c.d;

} *Calpha;

#define Talpha (*Calpha)

extern struct Xbeta {
char ¢1[150],c2[50];

} *Cbeta;

#define Theta (*Cbeta)
Talpha.a[0][0] = Talpha.c;
Talpha.b[4] = Talpha.d;
ftnscopy((Theta.c1+ 2),10,(Tbeta.c2+30),10,NULL);
return;

#undef Talpha

#undef Theta

}

53

PromulaFortran Translator User's Manual

Note that we now have a simple pointer to a structure and no actual structures allocated. This technique is most typically
used when C code is already present in the application, en whecial techniques are being used to reference the
COMMON blocks.

A final comment on the treatment of common blocks has to do with the need to form multiple symbols from the original
COMMON identifier. By defaultgmFortranuses 'T', 'C', and 'X' prefs. These conventions can be easily changed via a
configuration file as discussed in the following chapter. Remember in establishing these conventions, however, that many
versions of FORTRAN allow local symbols or even COMMON members to have the samtiieidas a COMMON

block.

2.14.1 Overall Alignment Control with Gpd Gpc, Gps, Gpl, Gpd
In examining the translation of the sample code under the Gp option, note that the common structures are defined as simple
arrays ofchar with the appropriate lengtt the end of the compilation:

char Xalpha[428];
char Xbeta[200];

These declarations are needed to force the linker to allocate sufficient space for each common area. Now most, but not all,
linkers will allocate such areas on an appropriate byte boundansure that no alignment errors will occur relative to the

first byte. For those linkers which do not perform this allocation automatically, the modified Gp switch can be used. The
Gpc switch is the default for Gp which says to declare the extereas @s simple arrays of char. Gps declares them as
arrays of short, thus forcingl®ste alignment; Gpl declares them as arrays of long, thus foreimgedalignment; and Gpd

declares them as arrays of double, thus forcibgt® alignment.

2.15 Inamed Name of File Containing Inline Functions

Various C compilers have conventions which allow you to mark certain functions as having special properties. A typical
such marker isnline which, when it precedes a function declaration, indicates that the codlgafdfunction is to be
compiled inline. There are other such markers as well in other C environdnegpecially the Macintosh and Windows.

An inline functions file simply contains a list of function names, each entered on a separate line. Thozesfaneti
assigned the special marker. Thus, as an example, consider the following inline functésnifile

ialpha
when used via the command line switelst to process the following FORTRAN program:

PROGRAM TEST
| = IALPHA(J)

K= JALPHA(J)
STOP

END

FUNCTION IALPHA(J)
IALPHA = J* 6
RETURN

END

FUNCTION JALPHA(J)
IALPHA=J + 6
RETURN

END

The translation produced is as follows:

void main(argc,argv)
int argc;
char* argv[];

54

PromulaFortran Translator User's Manual

_Inline extern long ialpha();

extern long jalpha();

static long i,j,k;
ftnini(argc,argv,NULL);
i = ialpha(&j);
k = jalpha(&j);
STOP(NULL);

_Inline long ialpha(j)
long *j;
static long ialpha;

ialpha = **6L;
return ialpha;

}

| ong jalpha(j)

long *j;

static long jalpha,ialpha;
ialpha = *j+6L;
return jalpha;

}

Note that the functiofALPHA has been assigned the special marker, while the funiidPHA has not.

The actual markerinline can be easily changed via a dgnfation file as discussed in the following chapter.

2.16 Target C Int Typed Is, II

An interesting and excellent feature of C is the way in which it defines fixed point integer values as:
short meaning a relatively narrow range of values but requigsg storage
long meaning a relatively wide range of values but requiring more storage

int meaning the most efficient fixed point storage technique which might be short or long, depending upon the
machine.

FORTRAN has no real equivalent of tme type Its integers are either short or long.gmFortran therefore, integer
declarations are translated as eitblesrt or long , with int being used instead of the appropriate one. The | command
switch tellsgmFortranwhetherint is short or long. Its settiys are mutually exclusive and are as follows:

Is Specifies thaint is short.
Il Specifies thaint is long.

The default setting for this switch depends upon the environment in whi€lortranis implemented. Environments with
short ints have Is as thaefault; while environments with long ints have Il as a default. This switch should be changed
ONLY if crosscompilation is intended. Specifying the wrong default int type will produce incorrect results.

The following FORTRAN code contains three type$NFEGER declarations.

SUBROUTINE DEMO
INTEGER*2 1,J
INTEGER*4 M,N
INTEGER K,L
WRITE(*,*) 1,J,K,L,M,N
RETURN

55

PromulaFortran Translator User's Manual

END

The C code below shows the translation which has an Is setting.

void demo()

{

static int i,j;

stati ¢ long m,nk,l;
WRITE(OUTPUT,LISTIO,INT2,i,INT2,j,INT4,k,INT4,l,INT4,m,INT4,n,0);
return;

}

In the translation the INTEGER*2 variables are showrinas sinceint is short . The Is setting has no effect on the
meaning oINTEGERas opposed tINTEGER*2 versusNTEGER*4. The binary type ofNTEGERIs defined via the FIs and
FIl switches.

The following shows the same FORTRAN translated with the Il setting.

void demo()

{

static short i,j;

static int m,n,k,l;
WRITE(OUTPUT,LISTIO,INT2,i,INT2,j,INT4, k,INT4,I,INT4,m,INT4,n,0);
return;

}

Notel andJ areshort and the rest anet . Everything else is the same. What has changed is only how the variables are
labeled.

2.17 Treatment of Internally Generated Constant® Ka, Ks

If GREAT MIGRATIONS FORTRAN encounters a constant subprogram argument which must be passed by address, it
introduces a variable to contain this value. The K switch allows you to control the storage type of these variables. The K
switch has two settings

Setting Meaning
Ks Declare internal constants as static (C bias default)
Ka Declare internal constants as auto (FORTRAN bias defa

Consider the following simple FORTRAN fragment:

SUBPROGRAM DEMO
CALL ALPHA(I,3.0)
STOP

END

Its default tanslation is as follows:
void demo()

extern void alpha();

static float K1 = 3.0;

static long i;
ftnini(argc,argv,NULL);
alpha(&i,&K1);
STOP(NULL);

56

PromulaFortran Translator User's Manual

}

In this translation a static variabl&l is introduced whose value contains the approgpré@instant. The address of this
variable is then passed to the subprogram. Keh&witch produces the above. Underthe translation is as follows:

void demo()

{

extern void alpha();

auto float K1 = 3.0;

static long i;
ftnini(argc,argv,NULL);
alpha(&i,&K1);
STOP(NULL);

}

In this translation the variabl€l is declared as being auto. Under this declaration its value will be refreshed upon each
invocation of the subroutine. In some cases the uga ahdKs can produce different results ¢he following discussion
explains.

A constant is a fixed value. Note that in most implementations of FORTRAN, including this one, the value of a constant
can be changed by passing it to a subprogram as a parameter. As an example, the followirlyprodece a sequence
of values from 2 to 11.

PROGRAM DEMO
DO 101=2,10
CALL ALPHA(1)
CALL BETA(1)
10 CONTINUE
STOP
END
SUBROUTINE ALPHA()
I=1+1
RETURN
END
SUBROUTINE BETA(I)
WRITE(**) |
RETURN
END

The default translation of this example is as follows:

void main(argc,argv)
int argc;
char* argv[l;

extern void alpha(),beta();
static long K1 = 1;

static long i;
ftnini(argc,argv,NULL);
for(i=2L; i<=10L; i ++) {

alpha(&K1);
beta(&K1);
}
STOP(NULL);

}

void alpha(i)

long *i;

{

* = *i+1L;
return;

}

57

PromulaFortran Translator User's Manual

void beta(i)
long *i;

WRITE(OUTPUT,LISTIO,INT4,*i,0);
return;

}

The reason for the sequence of values is that the valhe gonstant is stored in a constants table or, in the C translation,

in a static variable. Multiple occurrences of the same constant use the same constant storage point; thus, the constant ends
up behaving just like a variable. There are many waysnardhis problem, assigning the value to the vari&tdefor

example; however, most FORTRAN compilers do the equivalent of the above.

Though, presumably, no one would write code such as the preceding deliberately, such code sequences do occur. This is
one of those gray areas of FORTRAN that can cause problems that appear when any sort of migration is attempted.
Programs that seem to work great under one FORTRAN implementation suddenly malfunction under another.

2.18 Maximum Output Line Width 8 Lnum

A minor issue has to do with how long to make the C output when very long statements need to be written. The default
setting is 80 characters wide the width of a typical editor window. If desired you may select any value. This flag effects
the look of theoutput only.

A setting of zero specifies that all output associated with a given executable source statement should be placed on a single
line. This setting is used with the Ln switch which placestinmber directives in the C output listing. Notatteome C

compilers cannot process very long input lines. For these mse Wheremax is the longest line width which can be
accepted.

2.19 Link Time Processing of COMMON Data Module® Lm, Ls

There is a real problem in processing C via FORTRAN ptindo with the initialization of COMMON variables via
DATA statements. The FORTRAN standard clearly states that COMMON variables may only be initialized in BLOCK
DATA subprograms; however, most FORTRAN dialects allow usages such as the following:

SUBROUTINE TEST
COMMON/BLOCK/1,J
DATA 1,J/5,6/

PRINT *,1,J

STOP

END

in which the variables andJ in the COMMON blockBLOCKare initialized via a DATA statement.

The default translation for this subroutine looks as follows.
void test()

extern char Xblock[];
typedef struct {
long i,j;
} Cblock;
auto Cblock *Tblock = (Cblock*) Xblock;
static int FIRST = 1;
static namelist DATAVAR]] = {
"i* Xblock,5,NULL,"j",(Xblock+4),5,NULL
2
static char *DATAVAL[] = {
"$DATAVAR",
"i= 5,j=6,",

58

PromulaFortran Translator User's Manual

"$SEND"
b
if(FIRST) {
FIRST=0;
fiointu((char)DATAVAL,0,2);
fiornl(DATAVAR,2,NULL);

}
WRITE(OUTPUT,LISTIO,INT4,Tblock - >i,INT4,Tblock - >j,0);
STOP(NULL);

}

The details of this translation approach which weextension of the FORTRAN NAMELIST capability are discussed in
the section on the Dc and Dr command line switches. In essence, the effect of this approach is that the initialization values
will be assigned to the variablesandJ at the time that the iction TEST s first called.

The problem addressed by the Lm and Ls switches is that initializing these two variables at the Tig&Ttis4first called

may be incorrect. Many of the dialects that allow local data initializations to COMMON varialslesi@ghat those
initializations are performed at link time; or, at least, that they are performed prior to the execution of any of the user's
code. For these implementatiofBST need not even be explicitly called to obtain thendJ values.

Using the Is switch produces the following translation for the above.
void test()

extern char Xblock[];
typedef struct {
long ij;
} Cblock;
auto Cbhlock *Tblock = (Cblock*) Xblock;
static int FIRST = 1;
static namelist DATAVAR]] = {
"i",Xblock,5,NULL,"j",(Xblo ck+4),5,NULL
I3
static char *DATAVAL][] = {
"$DATAVAR",
"i=5,j=6,",
"$END"
if(FIRST) {
FIRST=0;
fiointu((char*)DATAVAL,0,2);
fiornl(DATAVAR,2,NULL);
return; <==== (1)

}
WRITE(OUTPU,LISTIO,INT4,Thlock - >i,INT4,Tblock - >j,0);
STOP(NULL):;

}
void ftnblkd() { <====(2)
test();

There are two important changes in this translation relative to the previous one. Note first that a return has been added to
the block of code that controls the initializations of the variables. This return allows us to perform an additional call to this
function, independently of any calls that may be made by the application itself. Note second that a functitimbtialled

has leen added to the bottom of the code which performs the initial cabtto.

The ftnblkd ~ function is the default BLOCK DATA subprogram which is called each time a program is started.
Consequently, the COMMON initializations withiast are now treated asn extension of the BLOCK DATA system
and behave in the same way as BLOCK DATA initializations.

59

PromulaFortran Translator User's Manual

Unfortunately, this approach only works if all COMMON initializations are performed in the same module. In cases where
multiple modules are being combined, s via libraries, to form a single executable, there will be multiékd

functions created. This multiple creation will then cause a linker error.

The Om switch is used to deal with this problem. The following translation is produced for the singv®m.

void test()

extern char Xblock[];
typedef struct {
long ij;
} Cblock;
auto Cblock *Tblock = (Cblock*) Xblock;
static int FIRST = 1;
static namelist DATAVAR]] = {
"i",Xblock,5,NULL,"j",(Xblock+4),5,NULL

b
static char *DATAVAL[] = {
"$DATAVAR",
"i=5,j=6,",
"SEND"
b
if(FIRST) {
FIRST=0;
fiointu((char)DATAVAL,0,2);
fiornl(DATAVAR,2,NULL);
return;
}
WRITE(OUTPUT,LISTIO,INT4,Thlock ->i,INT4,Tblock - >},0);
STOP(NULL);
}
void BD_test() { <====(3)

test();

In addition, the following message is set to standard output.
Creating COMMON data module: BD_test

With this approach, the initialization call within in each module is given a unique name, and the message alerts the user tha
he must providen ftnblkd ~ function which calls the individual module initialization control functions. Note that the
actual convention used to form the initialization names can be easily changed via a configuration file as discussed in the
following chapter.

2.20 Inclusion of Line Numbers for Debuggingd Ln, LO

For platforms that support the UNIX dbx debugger or its equivalent, FORTRAN codes can be debugged using the original
source FORTRAN lines. To activate this capability, the Ln switch is used. This switclyr#ilsrtranto include line

number and source file information in its intermediate C output so that it can later be used by the debugger. Forsbest effect
the following three switches should also be used: Bo, LO, Qe32000. See the relevant sections int¢hifocttgtailed
descriptions of these switches. Bo selects the optimized bias. This is needed gmBigranmaximum flexibility in
maintaining a clear correspondence between the source FORTRAN and the target C. LO specifies that no newlines should
beinserted in the listing. This is needed to maintain the line numbering system. Qe32000 allocates room for the emissions
table which is needed to generate the line number information.

2.21 FORTRAN Dialect Selection Flagé Mdialect

The gmFortranprocessoris a generapurpose, multdialect, and portable FORTRAN processor. It runs on multiple
platforms and supports both the ANSI FORTRAN 66 and ANSI FORTRAN 77 standard dialects, as well as a large number
of common extensions such as those found in thewioip commercial compilers: VAX FORTRAN, PDP FORTRAN,

60

PromulaFortran Translator User's Manual

PRIME FORTRAN, Data General FORTRAN, and Sun FORTRAN. Some Fortran 90 extensions are also supported. In

cases where different versions of FORTRAN have conflicting features or conventions, a dialdohsghtion switch can
be used to select the desired set. The particular dialect options which the compiler supports are as follows:

Option Dialect Reference

Mvax Vax FORTRAN Programming in VAX FORTRAMA-D034D-TE, September 1984,
Digital Equipment Corporation.

Mpdp PDP FORTRAN PDP-11 FORTRAN Language Reference ManA&l;1855D-TC,
December 1979, Digital Equipment Corporation.

Mp77 Prime FORTRAN 77 FORTRAN 77 Reference Gujdfth edition, Release T1-91.0, January
1988, Pnne Computer, Inc.

Mpiv Prime FORTRAN IV The FORTRAN Reference Guitd®®R3057, by Anthony Lewis, March
1980, Prime Computer Inc.

Msun Sun FORTRAN Sun FORTRAN Reference Manu8&p0341810, March 1990, Dun
Microsystems, Inc.

Mufn Unisys FieldData Sperry Univac Series 1100 FORTRAN V Level 4R1 Programmer

FORTRAN Referencegl979, Sperry Rand Corporation.

Mhny *Honeywell FORTRAN RCS FORTRAN Reference Manuaider Number DG75, Rev. 3
(GTEDS), December 1981, GTE Data Servicgeporated.

Mf90 *Fortran 90 Fortran 90, X3J3/S8.115, June 1990, The FORTRAN Technical
Committee of the American National Standards Institute.

Mdge *Data General FORTRAN 77 Reference Manu@9300016202, October 1983, Data

FORTRAN Geneal Corporation.
Mfn5 *Cyber FORTRAN 5 FORTRAN Version 5 Reference Manulily 1983, Control Data

Corporation.

* Indicates partial support only

This particular option should only be used if code is being moved directly from one of theseeonapiheGREAT

MIGRATIONS compiler.

2.22 Nesting Indentation to be Used in the Outpud N*, NO, Nn

The N*, NO, and Nn switches specify how nesting is to be indicated in the C output. The N* switch specifies that no nesting
indentation is to be used the output. This is the default setting for the optimized bias. The NO switch specifies that a tab
character is to be used for each nesting level. The advantage of this selection is that it minimizes the size of flee output f
while still showing nestingThe disadvantage is that tab characters are generally expanded to 8 characters, which makes
listings containing multiple nesting levels difficult to read. The Nn switch specifies the number of blanks to be used for
each output nesting level explicitlyh& default indentation setting for the FORTRAN and C biases is N4. This gives a
clean listing, but makes the output file somewhat larger than would be achieved via NO.

2.23 Inline Comments Output Margin Width & NCnum

The NCn switch controls the margim Ibe associated with inline comments when the CM1 or CM2 switches are active. The
default value for this switch is 35. This value specifies that the inline comment associated with a particular outpaot stateme

61

PromulaFortran Translator User's Manual

should be displayed on the same line as thtestent beginning at column position 35. If the statement is longer than 35
characters, the comment should begin immediately after the end of the statement. Other settings have equivalent meanings.
A switch setting of NCO will force all inline commentsftdlow their associated statements directly.

2.24 Upper and Lower Braces Caventionin Cd NUO, NU1, NU2,NL1, NL2

A major area of disagreement about the readability of C has to do with the placement of braces in nested structures. If the
brace placementonvention does not match your desired convention, you will probably have trouble feeling comfortable
with the output. By using the brace placement flags in conjunction with the indentation width switches, discussed in the
sections on Nnumb and NChum, aegasonable placement convention can be achieved.

The NUO switch specifies that the upper brace is to be on the same line with the statement causing the nesting increase.
The NU1 switch specifies that the upper brace is on the next line at the indeptatibused for the old nesting level.

The NU2 switch specifies that the upper brace is on the next line at the indentation point used for the new nesting level.

The NL1 switch specifies that the lower brace is on the next line at the indentatiofoptiiet previous nesting level.

The NL2 switch specifies that the lower brace is on the next line at the indentation point for the current nesting level.

The default is NUO, NL1 and generates the following:

conditional {
statement 1
statement 2

}

The user may also select the following styles:

NUO, NL2
conditional {

statement 1
statement 2

}
NU2, NL1
conditional

statement 1
statement 2

NU1, NL1

conditional

{

statement 1
statement 2

}
NU2, NL2
conditional

statement 1
statement 2

}

NU1, NL2

conditional

{

statement 1
statement 2

}

2.25 Name of the File to Receive the C Outpdt Oname

Normally, GREAT MIGRATIONS FORTRAN seds the intermediate C output produced to a file with the same name as
the input with its extension changed to "c". If some other file is to receive the C intermediate output, then use the O switc
to specify its name. There should be no whitespace betive€®" of the switch and the name of the file.

2.26 Splitting of Output into Separate File®d Os, Om

By default, GREAT MIGRATIONS FORTRAN writes all of its translated output to a file with the same name as the input
file, but with the extension changéa ".c". In some instances, if you are building a library or if you intend to do extensive
editing of the output, it is convenient to have the C code corresponding to each C function written to a separaténéle with t
same name as the function. The O slwigives you this capability. Its mutually exclusive settings are as follows:

62

PromulaFortran Translator User's Manual

Setting Meaning

Om Writes each function to a separate file with the same name as the functi
with the extension ".C".

Os Writes all output to the same file. iBhis the default.

Because of the fact that many C constructs, such as define and typedef, have module scope the Om flag can also be used tc
avoid a problem with the treatment of COMMON blocks as discussed in the section on the global variablei®cdiagent

The cleanest treatment can be achieved via the Gs switch which defines COMMON blocks as static structures with varying
internal composition. In particular, this technique defines each occurrence of the COMMON block as an external structure
whosemembers are defined in the same manner as they are defined in the subprogram being translated. This technique
produces readable code and generates relatively efficient code. The problem is that many compilers consider redefining an
external with a detailedtructure repeatedly in different functions to be a typing error. If you are using such a compiler,

then the Om switch can be used to overcome it.

2.27 Miscellaneous Prototyping Control Flag® Pnumb, P+numb

The P command line switch introduces 15 flégsuse in dealing with the prototypes and other output issues faced by
gmFortran What brings these flags together is that all are primarily focused on the differences in semantics between
FORTRAN and C. The flags and their values are as follows:

1 Include definitions of int functions when listing external function references.
2 Include ANSI prototypes with declarations of functions passed as arguments.
4 Exclude referenced function prototypes from the prototype output file.

8 Exclude defined functioprototypes from the prototype output file.

16 Ignore prototypes for definitions.

32 Treat user prototypes as system functions.

64 Write gmFortranstyle prototypes, not C type.
128 Write all function decls to header file.
256 Use ANSI C function dectations.

512 Make parameters always take explicit value type.

1024 Exclude undefs from the translation.

2048 Force variables to have explicit character type.
4096 Define equivalences via a #define.

8192 Use parameter identifiers in equivalences.
1638 Display include files separately.

Any combination of these flags can be obtained by summing the desired values and then associating that sum with the P
switch. Alternatively, individual flags may be turned on by using the P+numb form of the switch.

63

PromulaFortran Translator User's Manual

2.27.1 P10 Include Definitions of int Functions
The first flag forces the definitions of int functions when listing the external functions referenced within a given @rototyp
This flag is on by default. If a referenced function is not defined in a givedulmothen C assumes that it is an int;

however, many C compilers give a warning when this assumption is made. Consider the following simple FORTRAN
subroutine

SUBROUTINE TEST
J=99

I = IFUNC(J)

R = RFUNC(J)
PRINT %R

STOP

END

which references two external functioiffSUNC andRFUNC

The default translation for this subroutine is as follows.

void test()

extern int ifunc();

extern float rfunc();

static int j,i;

static float r;
j=99;
i = ifunc(&j);
r = rfunc(&j);
WRITE(OUTPUT,LISTIO,INT4,i,REALA4,r,0);
STOP(NULL);

}

Notice that botlifunc andrfunc are explicitly declared. By default the P1 flag is on. Turning the P1 flag off produces the
following.

void test()

extern float rfunc();

st atic int j,i;

static float r;
j=99;
i = ifunc(&j);
r = rfunc(&j);
WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);
STOP(NULL);

}

In this version, the fact thi#tinc is an int is assumed by the compiler, therefore, no explicit declaratiorers g

2.27.2 P2 Use ANSI Prototypes for Argument Functions

The second flag associates a full ANSI C prototype with external function declarations passed as arguments when those
functions contain arguments which are passed by value. This flag is nedgead very specialized cases where detailed
prototype checking is needed. By default this flag is off. Consider the following simple test program.

SUBROUTINE TEST(IFUNC,RFUNC)
R = RFUNC(99)

I = IFUNC(56.7)

PRINT %R

STOP

64

PromulaFortran Translator User's Manual

END

When processed using the Yv switch, which allowsleglalue arguments, the following C translation is produced.
void test(ifunc,rfunc)
int (*ifunc)();
float (*rfunc)();
{

static float r;

static int i;
r = (*rfunc)(99);
i = (*ifunc)(5 6.7);
WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);
STOP(NULL);

}

Notice that the types of the arguments are not specified in the declaratioifisdor and rfunc . Using the P2 flag
produces the following result.

void test(ifunc,rfunc)
int (*ifunc)(floa t);
float (*rfunc)(int);

static float r;

static int i;
r = (*rfunc)(99);
i = (*ifunc)(56.7);
WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);
STOP(NULL);

}

Now the function declarations use the full ANSI C form for the function declarations.

2.27.3 P4,P8 Exclude Referenced or Defined Prototypes

When processing a FORTRAN codgnFortranbuilds an internal table containing the prototypes for all subprograms
encountered either by reference or by definition. If desired, these prototypes cantée tard file via the W switch,
described elsewhere in this chapter. The P4 and P8 flags associated with the P switch block either those functions only
referenced via the code or those functions only defined in the code.

The following FORTRAN code

SUBROUTINE ALPHA(IA,GVAL)
R = RFUNC(IA)

I = IFUNC(GVAL)

PRINT *I,R

STOP

END

FUNCTION RFUNC(I)

RFUNC = | * |

RETURN

END

contains references to three subprogrdmaLPHA RFUNG andIFUNC. ALPHAIs defined only;RFUNGs both defined and
referenced; antFUNC is referenced only. Processing this code with the Wname switch will produce the following list of
prototypes.

float rfunc(long*);
long ifunc(float*);
void alpha(long*,float*);

65

PromulaFortran Translator User's Manual

All three subprogramare included. Now using the P4 switch produces the following two only, IsidseE, which was
not defined, is excluded.

void alpha(long*,float*);
float rfunc(long*);

Alternatively, using the P8 switch produces the following list

float rfunc(long*);
lo ng ifunc(float*);

in which ALPHAIs excluded since it was not referenced.

The effect of these switches can be most easily seen via the use of the Wname switch which actually writes out internally
generated prototypes; however, remember grmaFortrancan be asked to do extensive argument checking via other
command line switches and via its warning message system. The P4 and P8 flags control the contexts in which internal
prototypes are retained and therefore effect the operation of all of these functions.

2.27.4 P1@® Ignore Prototypes for Definitions

The P16 flag is used to modify the behavior of the Yp switch. The Yp switch is described later in this chapter. In essence,
the Yp flag ensures that passed subprogram argument types are consistent.ukhttes flag, prototypes are formed

when subprograms are first referenced or defined. When the first reference to a subprogram disagrees with the later
definition of that subprogram, the Yp switch must enforce the prototype. This can be seen iowieg®HORTRAN code

SUBROUTINE ALPHA(IA,GVAL)
R = RFUNC(IA)

| = IFUNC(GVAL)

PRINT %R

STOP

END

FUNCTION RFUNC(A)

RFUNC = ABS(A)

RETURN

END

in which the functiorRFUNGs called with an INTEGERrgument; however, when tReEUNCunction is later defined, that
argument is a FLOAT. The translation of this code under the Yp switch is shown below.

void alpha(ia,gval)

long *ia;

float *gval;

extern long ifunc();

extern float rfunc();

static float r;

static long i;
r = rfunc(ia);
i = ifunc(gval);
WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);
STOP(NULL);

float rfunc(a)
long *a; <==========

static float rfunc;
rfunc = fifiabs(*a); <=========
return rfunc;

66

PromulaFortran Translator User's Manual

Note tha the argumena is shown and is used as a long to agree with the earlier reference. If this behavior is not desired,
the P16 flag will block the Yp switch from changing defined function argument types. The translation of the test code using
both Yp and P& becomes the following.

void alpha(ia,gval)
long *ia;
float *gval;

extern long ifunc();

extern float rfunc();

static float r;

static long i;
r = rfunc(ia);
i = ifunc(gval);
WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);
STOP(NULL);

float rfun c(a)
float *a; <=====

static float rfunc;
rfunc = fifabs(*a); <=====
return rfunc;

2.27.5 P32 Treat User Prototypes as System Functions

When gmFortrantranslates a reference to an external subprogram which is not endysietion, it always includes an
extern declaration for that function. This is true even when user prototypes are being grafidoyran Consider the
following FORTRAN code

SUBROUTINE ALPHA(IA,GVAL)
R = RFUNC(IA)

| = IFUNC(GVAL)

PRINT *I,R

STOP

END

FUNCTION RFUNC(l)

RFUNC = ABS()

RETURN

END

when translated using the following prototype file

float rfunc(long);

produces the following C translation.

void alpha(ia,gval)

long *ia;

float *gval;

{

extern long ifunc();

extern float rfunc(); <====

static float r;

static long i;
r = rfunc(*ia);
i = ifunc(gval);
WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);
STOP(NULL);

67

PromulaFortran Translator User's Manual

float rfunc(i)
long i;

static float rfunc;
rfunc = fifiabs(i);
return rfunc;

}

Note that the functiomfunc is explicitly given an extern declaration. Many usergyofFortranuse the same prototype

files when they process FORTRAN codes and later when they compile the C outputs. In these cases the simple extern
dedaration ofrfunc can interfere with the full ANSI declaration. The P32 flag simply removes the extern declarations for
functions defined via user supplied prototypes. The same translation as above, with the additional use of P32, produces the
following translation.

void alpha(ia,gval)
long *ia;
float *gval;

extern long ifunc(); <====
static float r;
static long i;
r = rfunc(*ia);
i = ifunc(gval);
WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);
STOP(NULL);

float rfunc(i)
long i;

static float rfunc;
rfunc = fifiabs(i);
return rfunc;

}

In this translation note thitinc still has an extern declaration, but tifahc no longer has.

2.27.6 P64 Write PFC Style Prototypes, not C Type

As is discussed extensively in the section onttkatment of CHARACTER variablegmFortranmust add a character

length argument to the subprograms which use FORTRAN CHARACTER variables. As a result, the argument list for such
functions differs in their C form from their original FORTRAN form.

Considetthe following FORTRAN subroutine with two CHARACTER*10 arguments.

SUBROUTINE ALPHA(IA,GVAL)
CHARACTER*10 IA,GVAL
PRINT *1A,GVAL

STOP

END

The default prototype written for this function under the default CHd charactenéneiaswitch is as follows.
void alpha(char*,char*,int,int);
Alternatively, this prototype becomes

void alpha(char*,int,char*,int);

68

PromulaFortran Translator User's Manual

when the CHs switch is used. Depending upon the context, either of these prototypes would be appropriate for use with a
later C compilation; however, if the intent is to use the prototypesgwitfortran then the following is needed.

void alpha(string,string);

This prototype does not have the character treatment assumption already decomposed. This prototype is peodiheed wh
P64 switch is used.

2.27.7 P128& Write All Function decls to Header File
The following sample FORTRAN code shows a potentially serious problegmfBortran

PROGRAM DEMO

CALL IALPHA("Hello"," World")
STOP

END

FUNCTON IALPHA(IA,GVAL)
CHARACTER*(*) IA,GVAL
PRINT *,IA,GVAL

IALPHA = LEN(IA) + LEN(GVAL)
END

This code shows a function which writes the concatenation of two strings and then returns the length of that concatenation.
The only referece to this function is via a CALL statemedit i.e., the fact thatALPHA also returns a value is being
ignored.

The default translation for this code is shown below.

void main(argc,argv)
int argc;
char* argv[l;

extern void ialpha); <=== ===
ftnini(argc,argv,NULL);
ialpha("Hello"," World",5,6);
STOP(NULL);

}

long ialpha(ia,gval,P1,P2) <======

char *ia,*gval;

int P1,P2;

static long ialpha;
WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);
ialpha = P1+P2;
re turn ialpha;

}

This C code will generate a fatal error from most contemporary C compilers since the stapsof is first as a void

function and later as a long function. To avoid this probigmEortranmust be told to delay the writing of any furasti
declarations until the entire code has been read. Once the best information about each function is acquired, all prototypes
can be written to a file which can then be included.

The P128 flag provides this service. The translation of the above codehsiR128 flag is shown below.

#include "test.h" <======
void main(argc,argv)

int argc;

char* argv[];

ftnini(argc,argv,NULL);

69

PromulaFortran Translator User's Manual

ialpha("Hello"," World",5,6);
STOP(NULL);

}

long ialpha(ia,gval,P1,P2)
char *ia,*gval;

int P1,P2;

static long ialpha;
WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);
ialpha = P1+P2;
return ialpha;

}

Note that an include has been added to the front of the code and that the code itself contains no exteomsleCladile
test.h is as follows.

extern long ialpha();

This declaration ofalpha is correct and reflects the best information available.

2.27.8 P25@ Use ANSI C Function Declarations

By defaultgmFortranis designed to produce a C output whichl wompile on as many different platforms as possible.
Consequently, it uses the edtliyle function declaration form which is compatible with all C compilers rather than the ANSI
form which is compatible only with contemporary compilers. The default atims|for the following FORTRAN code

SUBROUTINE DEMO

CALL IALPHA("Hello"," World")
STOP

END

SUBROUTINE IALPHA(IA,GVAL)
CHARACTER*(*) IA,GVAL
PRINT *1A,GVAL

END

is as follows.
void demo() <=—=—====
extern void ialpha();
ialpha("Hello"," World",5,6);
STOP(NULL);
}
void ialpha(ia,gval,P1,P2) <=======
char *ia,*gval;

int P1,P2;

WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);
}

Note that the function arguments are listed and tiiped separately. The P256 flag will produce the following translation.
void demo(void)
extern void ialpha();
ialpha("Hello"," World",5,6);
STOP(NULL);

void ialpha(char *ia,char *gval,int P1,int P2)

{

70

PromulaFortran Translator User's Manual

WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG, gval,P2,0);
}

In this form, the argument list also contains the typing information.

2.27.9 P51 Make Parameters Always Take Explicit Value Type

There is a difference between various dialects of FORTRAN as to the treatment of untyped PARAMETERs. All
contemporary dialects require that PARAMETERS be typed in the same manner as other variable symbols; however, some
assign untyped PARAMETERS the type of the constant which they represent. Consider the following FORTRAN code.

SUBROUTINE ALPHA(IA,GVAL)
PARAMETER(AVAL = 99)
PARAMETER(IVAL = 10.2)

IA = AVAL

GVAL = IVAL

RETURN

END

Most compilers typeAVAL as a float constant anfAL as an integer constant. Adjustments are made to the constants
themselves to obtain therect type. To correspond to this practice,dh@ortrantranslation of the above is as follows.

void alpha(ia,gval)
long *ia;
float *gval;

#define aval 99.0 <====
#define ival (long)10.2 <====
*ia = aval;
*gval = ival;
retur n;
#undef aval
#undef ival
}
Note that the constants themselves have changed type to accommodate the typing of the PARAMETER symbols.

The P512 flag gives the opposite interpretation, as can be seen in the following translation.

void alpha(ia,gval)
long * ia;
float *gval;
{
#define aval 99 <====
#define ival 10.2 <====
*ia = aval,
*gval = ival;
return;
#undef aval
#undef ival

}

Under this translation the constants retain their original types and the PARAMETERSs are assignedstlud tiypse
constants.

2.27.10 P1024 Exclude undefs From the Translation

Examining the translations of the preceding part brings another fundamental difference between FORTRAN and C to light.
In FORTRAN, PARAMETERSs have scope only within the subprogianwhich they are defined; while in C the
corresponding #defines have file scope. Consequently, whenever PARAMETERS are translated via #defines they must also

71

PromulaFortran Translator User's Manual

be undefined via #undef at the end to simulate the FORTRAN scope. In those cases where FORGRANasns
correspond to files in C, the necessity for the #undef is removed.

The P1024 flag turns off the #undefs. The following is the same translation as presented above with the P1024 flag turned
on.

void alpha(ia,gval)
long *ia;

float *gval;

{

#defi ne aval 99.0
#define ival (long)10.2
*ia = aval;

*gval = ival;
return;

2.27.11 P204® Force Variables to Have Explicit Character Type
Another issue having to do with typing is the mixture of CHARACTER andamamacter information withinamn-integer
variables. The following FORTRAN code represents the sort of situation that can occur.

PROGRAM DEMO

INTEGER IA(2),1B(2)

DATA IA/5Hhello/

DATA IB/6H World/

IC = IALPHA(IA,IB)

PRINT *,IC

STOP

END

FUNCTION IALPHA(IA,GVAL)
CHARACTER*(*) IA,GVAL
PRINT *,IA,GVAL

IALPHA = LEN(IA) + LEN(GVAL)
END

A subprogram which explicitly assumes character variables has been intermixed with one that hides characters in
INTEGER variablesTo make the situation clearer, the lengths of the character arguments are explicitly used by the
subprogran® both in the freform PRINT and in the computation of the return value.

The default translation for this program does not produce correct results

void main(argc,argv)
int argc;
char* argv(];

extern long ialpha();

static long ia[2];

static long ib[2];

static long ic;

static int ftnsiz[] = {1,1,2,1,1,2};
static namelist DATAVAR]] = {
"ia",ia,5,ftnsiz,"ib",ib,5,ftnsiz+3
2

static char *DATAVAL[] = {
"$DATAVAR",

"ia="hell','0",ib=" Wor",'ld",",
"$END"

ftnini(argc,argv,NULL);
fiointu((char*)DATAVAL,0,2);

72

PromulaFortran Translator User's Manual

fiornl(DATAVAR,2,NULL);

ic = ialpha(ia,ib); <=====
WRITE(OUTPUT,LISTIO,INT4,ic,0);
STOP(NULL);

}

long ialpha(ia,gval,P1,P2)

char *ia,*gval;

int P1,P2;

{

static long ialpha;
WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);
ialpha = P1+P2;
return ialpha;

}

When thelALPHA function is calledgmFortrandoes not know that that function will expect theg#s of the character
vectors. One way to solve this problem is to provide an explicit prototype, as shown below.

long ialpha(string,string);
Using this prototype to augment the translation, produces the following translation.

void main(argc,argv)
inta rgc;
char* argv[];

extern long ialpha();

static long ia[2];

static long ib[2];

static long ic;

static int ftnsiz[] = {1,1,2,1,1,2};
static namelist DATAVAR]] = {
"ia",ia,5,ftnsiz,"ib",ib,5,ftnsiz+3

2

static char *DATAVAL[] = {
"$DATAVAR",

Iliazlhe”lllol ,ib:I WOF','|d',",
"$SEND"

2

ftnini(argc,argv,NULL);
fiointu((char*)DATAVAL,0,2);
fiornl(DATAVAR,2,NULL);

ic = ialpha(ia,ib,8,8); <=====
WRITE(OUTPUT,LISTIO,INT4,ic,0);
STOP(NULL);

}

long ialpha(ia,gval,P1,P2)

char *ia,*gval;

int P1,P2;

{

static long ialpha;
WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);
ialpha = P1+P2;
return ialpha;

}

This translation is correct and will probably produce acceptable results. There are two disadvantages to the prototype
approach.First, all the function prototypes must be knoén note that these can be produced gmFortran Once
produced, the translation can then be done a second time using them. The other problem is that theavanmabiesare

still being treated as integeariables, even though it is clear from the context that they are being used to contain character
values.

73

PromulaFortran Translator User's Manual

The P2048 flag forces variables to have an explicit character type when this appears to be obvious from the context. As is
true of many other flagand switches, this one is a translation @&idt is not guaranteed to produce correct results in all
cases. The translation of the above using P2048 without any additional prototype needed is the following.

void main(argc,argv)

int argc;

char* argv(];

extern long ialpha();
static char ia[8] = {

h
static char ib[8] = {

W d

I3

static long ic;
ftnini(argc,argv,NULL);
ic = ialpha(ia,ib,4,4); <====
WRITE(OUTPUT,LISTIO,INT4,ic,0);
STOP(NULL);

}

long ialpha(ia,gval,P1,P2)
char *ia,*gval;
int P1,P2;

static long ialpha;
WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);
ialpha = P1+P2;
return ialpha;

}

Note thatlA andIB are now treated as character variables. Tindiialization is quite natural. Note, however, that the
string lengths are allocated at their binary size, which is not the desired value in this context.

2.27.12 P409@® Define Equivalences via a #define

Another area in which C and FORTRAN differ is tindss aliasing". Basically, programs occasionally need to refer to the
same area of memory in different ways. In C, pointers are used. In FORTRAN, EQUIVALENCE statements are used. The
following FORTRAN program contains a simple example.

PROGRAM DEMO
INTEGER IA(10),IB(2)
EQUIVALENCE (IA(5),1B(2))
READ(* *) 1A

PRINT *,1B

END

Within this program the arrajB is being used to refer to the fourth and fifth members of the atrayrhe default
translation for this example i@ looks as follows.

void main(argc,argv)
int argc;
char* argv[];

static long ia[10];

static long *ib = (ia+3);
ftnini(argc,argv,NULL);
READ(INPUT,LISTIO,DO,10,INT4,ia,0);
WRITE(OUTPUT,LISTIO,DO,2,INT4,ib,0);

74

PromulaFortran Translator User's Manual

In this translation the variddIB is defined as a pointer which points to the fourth member of the iarréyote that C uses
zero based subscripts). This translation is relatively clean; however, it does introduce an additional pointer variable. This
translation is selected as thefalult because the symhal remains defined, thus making debugging simpler.

An alternative translation can be produced via the P4096 flag. This translation is shown below.

void main(argc,argv)
int argc;
char* argv[];

{

static long ia[10];

#define ib ((i a+3))
ftnini(argc,argv,NULL);
READ(INPUT,LISTIO,DO,10,INT4,ia,0);
WRITE(OUTPUT,LISTIO,DO,2,INT4,ib,0);

#undef ib

}

Notice thatlB is now implemented with a define. It is not an actual memory location in the final code. Alternatively,
repeatedises oiB might generate inefficient code if its value must be computed upon each use.

2.27.13 P8193 Use Parameter Identifiers in Equivalences

As discussed in the section on the P4096 flag, the processing of FORTRAN EQUIVALENCE into C is difficlitrasyl

at best. To complicate the situation, PARAMETER values are often used within EQUIVALENCE declarations. The
following is the equivalent of the code presented above, using PARAMETERS.

PROGRAM DEMO

PARAMETER(IAOFF = 5)

INTEGER IA(10),IB(2)

EQUIVALENCE (IA(IAOFF),IB(IAOFF - 3))
READ(* *) 1A

PRINT *,1B

END

In the default translation, to ensure that the positions are correctly computed, the values of the parameters are@sed in the
produced. This can be seenfie tfollowing default translation of the above.

void main(argc,argv)
int argc;
char* argv[];

#define iaoff 5

static int ia[10];

static int *ib = (ia+3); <=====
ftnini(argc,argv,NULL);
READ(INPUT,LISTIO,DO,10,INT4,ia,0);
WRITE(OUTPUT,LISTIO,DO,2,INT4,ib,0);

#undef iaoff

}

The pointer expression for tHB variable is the same as when constants were used. In most cases the actual parameters
forms can also be used. The P8192 flag forces this use. Using P8192, the following is produced.

void main(argc,argv)
int argc;
char* argv[];

#define iaoff 5

75

PromulaFortran Translator User's Manual

static int ia[10];

static int *ib = (ia+iaoff -2); <====
ftnini(argc,argv,NULL);
READ(INPUT,LISTIO,DO,10,INT4,ia,0);
WRITE(OUTPUT,LISTIO,DO,2,INT4,ib,0);

#undef iaoff

}

This formnow uses the #defined value f8IOFF; however, a different computation must be used.

2.27.14 P16384 Display Include Files Separately

Another issue which must be dealt with in translation has to do with include files. Ideally, FORTRAN include filds sho

be translated into C include files. The problems involved here ardotdioFirst, FORTRAN and C have very different

scope rules. In FORTRAN include files are typically included within subprograms, whereas in C they are included at the
front of files. The second problem is that it is often necessary to reorder the symbols when moving from FORTRAN to C.
This reordering is greatly complicated by the need to retain the content of each include separately. Consider the following
FORTRAN source along with twvinclude files.

TEST.FOR
PROGRAM DEMO
INCLUDE "TEST1.INC"
INCLUDE "TEST2.INC"

READ(*,*) IA
PRINT *,1B
END
TEST1.INC
C
C Define the needed sizes
C
PARAMETER(NA = 100)
PARAMETER(NB = 200)
TEST2.INC
C
C Define the common data
C

COMMON/ALPHA/IA(NA),IB(NB)
The default translation is shown below.

void main(argc,argv)
int argc;
char* argv[];
/*
Define the needed sizes
*
{
/*
Define the common data
*
#define na 100L
#define nb 200L
extern char Xalpha[];
typedef struct {
long ia[na],ib[nb];
} Calpha;
auto Calpha *Talpha = (Calpha*) Xalpha;
ftnini(argc,argv,NULL);

READ(INPUT,LISTIO,DO,(int)(na),INT4,Talpha - >ia,0);
WRITE(OUTPUT,LISTIO,DO,(int)(nb),INT4, Talpha - >ib,0);
#undef na
#undef nb

}

76

PromulaFortran Translator User's Manual

char Xalpha[1200];

In this translation the information from the include files has been incorporated into the translation.
Using the P16384 flag, three output files are creaéatdc , TEST1.h, andTEST2.h. These are shown below.

test.c
void main(argc,argv)
int argc;
char* argv[];

{

#include "TEST1.h"

#include "TEST2.h"
ftnini(argc,argv,NULL);

READ(INPUT,LISTIO,DO,(int)(na),INT4,Talpha - >ia,0);
WRITE(OUTPUT,LISTIO,DO,(int)(nb),INT4,Talpha - >ib,0);
}
char Xalpha[1200];

TEST1.h
#ifndef ICF_TEST1
/*
Define the needed sizes
*/
#define na 100L
#define nb 200L
#define ICF_TEST1
#endif #ICF_TEST1 */
TEST2.h
#ifndef ICF_TEST2
/*
Define the comm on data

*/
#endif ICF_TEST2 */
extern char Xalpha(];
typedef struct {

long ia[na],ib[nb];
} Calpha;
auto Calpha *Talpha = (Calpha*) Xalpha;
#ifndef ICF_TEST2
#define ICF_TEST?2
#endif /*ICF_TEST2 */

Thetest.c file corresponds precisely with the original FORTRAN insofar as the placement and order of the include are
concerned, since the include could well be included multiple times within a given file. Each file defines its own internal
variable to keep symbolsish as #defines from occurring multiple times. This convention, which is needed to overcome the
scope differences between FORTRAN and C, presents an excellent opportunity to do away with the #undefs discussed
earlier, at least insofar as the PARAMETERshivitinclude files are concerned.

To give some idea of how complicated the actual production of the above files is, the listing file produced is shown below.

If Line# NI Translation

1
2 #includ e "fortran.h"
3 void main(argc,argv)
4 int argc;
5 char* argv[];
6
7 #include "TEST1.h"
1 8 #ifndef ICF_TEST1
1 9 [
1 10 Define the needed sizes
1 11 *

7

PromulaFortran Translator User's Manual

12 #in clude "TEST2.h"

13 #ifndef ICF_TEST2

14 [

15 Define the common data

16 *

17 #define na 100L

18 #define nb 200L

#endif /*ICF_TEST2 */

20 extern char Xalpha[];

21 type def struct {

22 long ia[na],ib[nb];

23 }Calpha;

24 auto Calpha *Talpha = (Calpha*) Xalpha;
25 ftnini(argc,argv,NULL);

NNNNNNEREPEPRPNNDNDDN
[EY
(o]

26 READ(INPUT,LISTIO,DO,(int)(na),INT4, Talpha - >ia,0);
27 WRITE(OUTP UT,LISTIO,DO,(int)(nb),INT4, Talpha - >ib,0);
28

29 #define ICF_TEST1
30 #endif #ICF_TEST1 */
31 #ifndef ICF_TEST2
32 #define ICF_TEST2
33 #endif *ICF_TEST2 */
34 char Xalpha[1200];

NNN PP

Note thatthe writing of the three files is completely intertwined.

2.28 Listing File Control 8 PAname, PHnumb, PNname, PWnumb

As described earlier, the E flags produce various types of listing and reports about the code being thaiitslatedtent,
compiled brm, and its C form. The PA, PH, PN, and PW switches determine the characteristics of the file to receive the
listing.

PAname specifies the name of a file to which the listing currently being produced is to be appended. If no file with the

specified nameexists, then one is created. PNname, on the other hand, specifies the name of a new file to receive the
listing. If the named file already exists, it is truncated. If the specified name under either PA or PN has no extension, an
extension ofst is assumed

The PH and PW flags specify the desired output page height and width. The default setting for PH is 80 lines and that for
PW is 132 characters. The reports produced are quite large, and the minimum setting allowed for PW is 80 characters. Note
that thesymbol table widths are adjusted to fit into the specified page size; however, the source code listing is truncated if
the source line display becomes too wide.

2.29 Quantity Control Flagsd Qlnumb, QEnumb, QDnumb, QXnumb,
QHnumb, QWnumb

Generally, GREAT MIGRATIONS examines its environment to determine the resources and values that it assigns to its
internal processing controls. In some cases the user needs to be able to override the default settings for the quantities
assigned, in particular, the follomg settings may be controlled:

Flag Quantity controlled

Qlnumb Size of compacted statement storage
QEnumb Size of the line number table
QDnumb Size of a data block

QXnumb Size of external information storage
QHnumb Size of include file infomation storage
QWnumb Word size of source platform

78

PromulaFortran Translator User's Manual

2.29.1 QInumbd Size of Compacted Statement Storage

As GREAT MIGRATIONS processes the raw FORTRAN source it strips all blanks and comments and stores the resulting
compacted statement for compilatioThe size of the storage area for this compacted statement is 5120 characters. This is
sufficient for a statement with over 70 continuation lines. If extremely long statements are being processed or if memory is
at a premium, the size of this area maybanged via the QInumb command line switch.

Note that if the size of the compacted statement storage area is exceeded, the fatal error 522

Statement contains more than nnnnn characters -- use the QIn flag to increase this
value.

is generated.

2.29.2 QEnumb 0 Size of the Line Number Table

When line number information is being generated in the C output via the Ln or DB command line switches, this switch is
used to indicate the amount of storage to be allocated for this information. When Ln is gseditti is required; when

DB is used, the default value established for this switch is 32000. To change this default for DB the QEnumb switch must
follow the DB switch of the command line.

Note that if the size of the line number information table i®esled, the fatal error 532

The line number storage of nnnnn bytes is insufficient, use the QEn flag to increase
it.

is generated.

2.29.3 QDnumbd Size of a Data Block

WhenGREAT MIGRATIONS encounters data initializations, it must allocate memory etguihle size of the variable to

store these initializations. The values for all variables less than a data block threshold value are allocated intgtfixed len
blocks using PROMULA's standard internal variable length record processing logic. Variables site®xceed this
threshold are allocated their own storage areas from system memory. The default setting of this threshold value is 512. On
memory limited machines, large programs that do massive data initializations might want to change this value.

Since this is a tuning value, as opposed to an actual allocation value, no direct message pertaining to it is generated.

2.29.4 QXnumbd Size of External Information Storage

GREAT MIGRATIONS saves the names and types of external symbols that have beeredledta EXTERNAL
statements and that have been passed to other functions, but whose final type is not known. See the discussion of the P128
prototyping control flag for detailed information on this top8REAT MIGRATIONS also saves names of those
subprogams that have initializations for COMMON blocks. See the discussion of link time processing of COMMON data
modulesd the Lm and Ls command line switch&sfor a discussion of this storage.

The default setting for the QXnumb switch is 2000. If the extesyrmbols storage area is exceeded, the fatal error 519

The unresolved external symbol storage of nnnn bytes is insufficient, use the QXn
flag to increase it.

is generated.

2.29.5 QHnumbd Size of Include File Information Storage

79

PromulaFortran Translator User's Manual

When include files arbeing translated independently of the source codes containing them via the P16384 switch, a storage
area 512 characters large is allocated to control this process. See the discussion of the P16384 switch for a detailed
discussion of this topic. The QHnurslvitch can be used to change this value.

If the include file information storage area storage area is exceeded, the fatal error 531

The include file storage of nnnn bytes is insufficient, use the QHn flag to increase
it.

is generated.

2.29.6 QWnumbd Word Size of Source Platform

The typical word size for contemporary platforms is 32 bits with 8 bits per character. This information is internally encoded
as

(bits per word) * 100 + (bits per character)

Thus, the default word size specification valu8288. When translating source codes from platforms with different word
sizes, the word size value can be changed via the QWnumb switch. Note that moving codes between machines of different
word sizes is potentially very difficult. The C output producedl witain the characteristics of the source platform. If
explicit word size assumptions were made in the source, then those will probably not-faemed on the target platform.

2.30 Specify a Configuration Filed Rname
The R switch allows you to reatiditional configuration files. These files contain function prototypes and miscellaneous
other configuration information. The format and use of configuration files are discussed in Chapter 3.

Suffice to say here that the Rname switch will read conftguranformation from the files named. The Rname switch may
occur multiple times, to allow the reading of multiple files. If there is no extension supplied with the first file, then an
extension ofcnf will be assumed. If there is no extension suppliedafiditional files, an extension gfro is assumed.

The reason for this is that, typically, when multiple files are read the first contains the configuration informatiothyewhile
additional files contain function prototype information.

It should be nad that configuration files may contain command line switch information; thus, a common use of a
configuration file is to supply commonly used switches independently of the command line.

2.31 Storage Threshold Valued SAnum, SDnum, SSnum, SVhum, SZnum

One of the realities that has to be faced in using FORTRAN on small machines is that FORTRAN is extremely naive in its
use of memory. Though the FORTRAN 77 standards committee gave the new language a SAVE statement which was to
have helped, this statemeastrarely implemented. In essence, all variables in a FORTRAN program are assigned a unique
and fixed memory location. If you do not have enough memory on your machine to do this, then you are in real trouble.
GREAT MIGRATIONS takes this problem head on s as consultants, it is the one we have encountered most often in
"downsizing" mainframe codes to the PC. There are four types of memory made available to you via PROMULA.

First, there is static memory. This is the default memory for variables. luigsadent to the normal FORTRAN memory
allocation. It is wasteful in that local variables all have unique memory locations, but is simple to implement. Also, static
storage has memory between calls. This means that local variables can retain their takess dals to their code. This

is a trick that is often used by older FORTRAN source codes.

Second, there is auto storage. This storage is allocated to the stack each time a function is called. When the fynction exits
the storage is returned to the &tdar use by other functions. The advantages of auto storage are that it is fast, easy to use,
and economizes on total storage used. The disadvantages are that it has no memory and that it is very limited on PC
platforms where program stacks are typicglljte short and always less than 64K on the PC.

80

PromulaFortran Translator User's Manual

Third, there is dynamic storage. Dynamic storage is typically taken from that storage available on the machine which is not
already allocated to the program. This is generally called "the heap". In Ccitassad via thenalloc function and is

returned via théree function. The advantages of dynamic storage is that it is most likely to be abundant, and economizes
total storage used. The disadvantages are that it must be explicitly allocated each tictieraigiantered and freed each

time a function is exitedGREAT MIGRATIONSautomatically inserts the code to do this when dynamic storage is used.

Fourth, there is virtual storage. Virtual storage is actually maintained in a disk file. As it is adtessgzaged" into

memory. The advantages of virtual storage are that it is practically unlimited and, like static storage, has memory. Also
virtual memory is unique in the fact that it remains viable after the program has completed execution. Thi topic i
discussed in the chapter on tBREAT MIGRATIONSi nt er face in the FORTRAN Compi
disadvantages of virtual memory are that it is slower than the other memory types and that the code using it tends to be
difficult to read. Also, therare problems associated with utility functions which use both virtual andvirtaal pointer
arguments.

Such functions require two versions. This topic is discussed in the chapter on configuration prototypes which allow you to
deal with this problem.

The S switch allows you to specify storage threshold values for five different memory types. Its settings are as follows:
SA Specifies that no variables are to be stored as auto. This is the default setting for this storage tyj

SAnum Where num is gi@er than or equal to zero, specifies that any variable whose size in bytes is
than or equal to num but less than any other threshold setting should be stored as an auto varie

SS Specifies that no variables are to be stored as static.

SSnum Where num is greater than or equal to zero, specifies that any variable whose size in bytes i
than or equal to num but less than any other threshold setting should be stored as a static vari
default setting for this storage typeds0.

SD Specifies that no variables are to be stored as dynamic. This is the default setting for this storag

SDnum Where num is greater than or equal to zero, specifies that any variable whose size in bytes i
than or equal to num bless than any other threshold setting should be stored as a dynamic varie

Sz Specifies that no variables are to be stored as dynamic, but taken from the virtual file manager.

SZnum Where num is greater than or equal to zero, specifies tyatarable whose size in bytes is gree
than or equal to num but less than any other threshold setting should be stored as a dynamic ve
should have its values initialized via the virtual memory manager and should have its values ret
tha manager when freed.

SV Specifies that no variables are to be stored as virtual. This is the default setting for this storage t

SVnum Where num is greater than or equal to zero, specifies that any variable whose size in bytes i
than @ equal to num but less than any other threshold setting should be stored as a virtual varial

The effect of these settings is to allocate memory into size ranges. Variables are then allocated to a given stordge range. T
example below gives a summaof the storage switch use.

SUBROUTINE DEMO
DIMENSION A(10),B(10,10),C(10,10,10),D(10,10,10,10)
DO 101=1,10

C(L,1,)) = D(,1,1,4)

81

PromulaFortran Translator User's Manual

B(I,1) = C(l,1,1)
A(l) = B(1,3)

10 CONTINUE
RETURN
END

This example contains a variety of arrays haviog 40 to 40,000 bytes. The following is the default translation.
void demo()

static long i;
static float a[10],b[10][10],c[10][10][10],d[10][10][10][10];
for(i=0L; i<10L; i++) {
cli]filfil = 3]l
b[i]fil = c[OJLlIil;
afi] = b[2][i];

return;

}

On a PC platform this function would not compile becausedtleray is too large. Compiling the same example with
SD30000 produces the following result:

void demo()

static long i;
static float a[10],b[10][10],c [10][20][10];
auto float *d;
d=(float*)ftnalloc(40000L);
for(i=0L; i<10L; i++) {
c[il[iT[i] = *(d+i+(i+(i+30)*10L)*10L);
b{][] = clOJElf:
ali] = b[2][i];

}

goto ELP;
ELP:

ftnfree((char*)d);
}

The three vadbles with less than 30,000 bytes have been declared static; while the large array has been declared dynamic.
To define this dynamic array, logic has been added to the beginning and exit of the function to allocate and free the storage
for thed array. Noé thatGREAT MIGRATIONSadds this logic for you.

Now assume that we want everything to be dynamic. To do this use SS to turn off static and SDO to make everything
dynamic. The following is the result.

void demo()

auto long *i;
auto float *a,*b,*c,*d;
a=(float*)ftnalloc(40L);
b=(float*)ftnalloc(400L);
c=(float*)ftnalloc(4000L);
d=(float*)ftnalloc(40000L);
i=(long*)ftnalloc(4L);
for(*i=0L; *i<10L; *i+=1) {
*(c+*i+(*i+*i*10L)*10L) = *(d+*i+(*i+(*i+30)*10L)*10L);
*(b+ *i+**10L) = *(c+*i+*i*10L);
(a+) = *(b+*i+20);

goto ELP;

82

PromulaFortran Translator User's Manual

ELP:
ftnfree((char*)i);
ftnfree((char*)d);
ftnfree((char*)c);
ftnfree((char*)b);
ftnfree((char*)a);
}

This probably went too far. We really did not want siraple variablé to be dynamic. Try again with SS to turn off static,
SAO to use auto for small variables, and SD10 to make everything else dynamic. The following is the result.

void demo()

auto long i;
auto float *a,*b,*c,*d;
a=(float*)ftnalloc(4 oL);
b=(float*)ftnalloc(400L);
c=(float*)ftnalloc(4000L);
d=(float*)ftnalloc(40000L);
for(i=0L; i<10L; i++) {
*(c+i+(i+i*10L)*10L) = *(d+i+(i+(i+30)*10L)*10L);
*(b+i+i*10L) = *(c+i+i*10L);
*(ati) = *(b+i+20);

}
goto ELP;

ELP:
ftnfree((char*)d);
ftnfree((char*)c);
ftnfree((char*)b);
ftnfree((char*)a);

}

As a final example, do the same thing as above except replacing dynamic storage with virtual storage. To do this enter

SS SA0 SV10

The following is the result.
void demo()

auto long i;
static long a=32,b=72,c=472,d=4472;
for(i=0L; i<10L; i++) {
(float)vmsdel(c+(i+(i+i*10L)*10L)*4) = *(float*)vmsuse(d+(i+(i+(i+30)*

10L)*10L)*4);
(float)vmsdel(b+(i+i*10L)*4) = *(float*)vmsuse(c+(i+i*10L)*4);
(float)vmsdel(a+i*4) = *(float*)vmsuse(b+(i+20)*4);
}
return;

}

Now the variables have become long static values and references to the variables have been replaced with function
references.

2.32 FORTRANDialect Doloop Assumptionsd TO, T1, T2

Below is the syntax for the FORTRAN DO statement. It looks very simple; however, what you see is unfortunately not
what you get. FORTRAN compilers vary widely on how the DO statement is executed.

Syntax

83

PromulaFortran Translator User's Manual

DO [slab[,]] v=el,e2[,e3]
Where:

slab is the label of an executable statement called the terminal statement of the DO loop. If slab is omitted, the DO
loop is terminated via an END DO statement.

v is an integer, real, or double precision control variable.

el isaninitial parameter.

e2 is aterminal parameter.

e3 is an optional increment parameter; default is 1.

el, e2, ande3 are called indexing parameters; they can be integer, real, double precision, or symbolic constants,
variables, or expressions.

The DO statement differs widely between FORTRAN 66 and FORTRAN 77. In FORTRAN 66, the valués afot
compared with that o2 until the bottom of the loop; therefore, the loop is always executed once. In FORTRAN 77, the
comparison of is performed at theop of the loop; therefore, #1 exceeds2 initially the loop is never incremented.
Officially, do loops are to be executed as follows:

(1) The expressionsl, e2, ande3 are evaluated and then converted to the type of the control variableecessay,
yielding the valuesn1, m2 andm3

(2) The control variable is assigned the value oflL

(3) The iteration count is established as follows:

ic = MAX(INT((ms - m1+m3)/m3),mtc)

where mtc is the minimum iteration count and equals 0 if FORTRAN 66 eations are desired and 1 if
FORTRAN 77 conventions are desired.

(4) If ic is not zero, the loop is executed, else execution continues beyond the end of the loop.
(5) The control variable is incremented by the vahgic is decremented by 1, and exeountioops back to step 4.

To translate DO loops in the official manner then requires introducing two temporary variables for each DO loop: the
iteration counter and the value of the increment since this increment may be changed within the loop. ®ensider t
following FORTRAN subroutine:

SUBROUTINE DEMO
INTEGER V,E1,E2,E3
DO 10V = E1, E2, E3
WRITE(**) V

10 CONTINUE
RETURN
END

In this loop all of the controls are variable. The translation of this loop using the 77 conventions latlksvas f
void demo()
static int v,el,e2,e3,D01,D2;
for(v=el,D1=e3,D2=(e2 - v+D1)/D1; D2>0; D2 - v+=D1){
WRITE(OUTPUT,LISTIO,INT4,v,0);
}

return;

84

PromulaFortran Translator User's Manual

Note that there are two temporary variables introdubgaontains the value of the irement and2 contains the value of

the iteration count. Thus the first statement in tHerC loop performs steps 1, 2, and 3 from above. The second statement
in the Cfor loop performs the step 4 logic, and the last statement performs the step 5 adgithéN the calculations are
arranged in such a manner that none of the origiha¢2, ore3 expressions need to be evaluated more than once.

GREAT MIGRATIONS also performs two other simplifications witbr loops. First, if the body of the loop can be
reduced to a single statement, then the simple form dbthestatement is used. Also, the statement number is deleted if it
is only being used as the terminating point of the loop.

When 66 conventions are in effect, the loop must be forced to exdclgastonce. To implement this the C ternary
operator ?: is used. The following is the translation of the above, with the T1 command line option set, which requests 66
style DO loops.

void demo()

static int v,el,e2,e3,D1,D2;
for(v=el,D1=e3,D2=(D2=(e2- v+D1)/D1)>0?D2:1; D2>0; D2 -- ,v+=D1){
WRITE(OUTPUT,LISTIO,INT4,v,0);
}

return;

}

Since many are not familiar with this notation the expression
D2 =(D2=(e2 -v+D1)/D1)>0?D2:1

has the following value. UsinD2 as a temporary variédy set it equal to the value of the iteration count as before. If that
temporary value is greater than 0, Betequal to it; else séb2 equal to 1. Clearly this is the desired value. Note that other
approaches introduce an additional temporary varialiiech is set true initially and false on increment which forces
execution of the loop at least once. Clearly the approach here is cleaner.

Of course, the same logic as above holds for loops with floating point controls. The following is an example.

SUBROUTINE DEMO
DO 10V = E1, E2, E3
WRITE(**) V

10 CONTINUE
RETURN
END

This is the same as before, IElt E2, E3, andV are all floating point. The translation is as follows:

void demo()
static int D2;
static float v,el,e2,e3,D1;
for(v. =el,D1=e3,D2=(e2 -v+D1)/D1;D2>0;D2 -- wv+=D1){
WRITE(OUTPUT,LISTIO,REAL4,v,0);
}
return;

}

The result is almost identical except titat, the iteration count, is typed as a fixed point value as is required by the
specification. On the othdand,D1 which contains the increment is the same type as the iteration variable.

The above general translation is needed only if one of the following is true:

85

PromulaFortran Translator User's Manual

(1) The increment is a variable expression
(2) The maximum is a complex expression or iaraed inside the loop.
(3) The control variable is changed inside the loop.

Most DO loops do not meet the above criteria; therefore, a much simpler form of the loop can be used. Consider the
following which shows the same example as before, exceptdremient is fixed constant.

SUBROUTINE DEMO
INTEGER V,E1,E2
DO 10V =E1, E2, 3
WRITE(**) V

10 CONTINUE
RETURN
END

Now there is no need to introduce any temporary variables since the simplistic view of the DO loop gives the same result.
void demo()

static int v,el,e2;
for(v=el; v<=e2; v+=3) {
WRITE(OUTPUT,LISTIO,INT4,v,0);
}

return;

}

The final point to be made about DO loops is their close relation to array subscripts. In many instances the DO loop control
varialles can be reduced if the control variable is used only as an array subscript. The following example shows this.

SUBROUTINE DEMO
INTEGER V,E2
DIMENSION A(10,10)
DO 10V =1, E2
A(V,V) = 10.0

10 CONTINUE
RETURN
END

In this example theource of the array subscripts are DO loop counters and those counters are used only as subscripts;
therefore, the counters can be reduced, thus simplifying the subscript expression and simplifying the translation of the DO
loop. This particular optimizadn derives from a particular pattern in FORTRAN programs. It is unlikely that any
generalized optimizer found in a C compiler would detect or perform this optimization.

void demo()

static int v,e2;
static float a[10][10];
for(v=0; v<e2; v++) {
a[v][v] = 10.0;

return;

}

GREAT MIGRATIONS supports both FORTRAN 66 and FORTRAN 77 dialects. In most cases this merely means
ignoring various restrictions placed on the language in the 77 standard and then adding the 77 constructaoTeate is
conflict between the two dialects except for one tldngdDO statements. DO is probably the most used statement in the

86

PromulaFortran Translator User's Manual

language, except for assignment. What was in the minds of the committee? It must have been a very long night. Anyway,
with FORTRANG6 the following code fragment will compute a value of 1; while in 77 it will produce a value of zero.

IVAL =0

N=0

DO101=1,N

IVAL = IVAL + 1
10 CONTINUE

This is because in 77 a DO loop is not executed if at the initial entry the mnmawrceeds the maximum; while in 66 all
loops are always executed once.

The above is only half of the nightmare. As we have discussed earlier, when the 77 standard was announced, vendors had to
find a way to still support the older programs. Without fail, FORTRAN compilers vended since the 77 standard have
supported a control switch which tells the compiler what to do about the DO statement. As will be discussed here, T is our
switch. The problem is that control switches are rarely part of the actdej therefore, when you have in front of you a

code with logic like the above in it, you have no idea what the expected result is. There is no right translation. Did the
programmer do it intentionally or unintentionally? Did he know that there were &andastds? If he did, then which was he

using? If he did not, then what did the JCL that someone probably gave him have in it?

At any rate, if you are processing your own code, then you probably know which dialect you are using. If you are not
translatingyour own code, then make a guess. The individual settings associated with this flag are as follows:

TO The minimum DO statement trip count is zero as specified in the FORTRAN 77 standard. This is the default
setting for this switch.

T1 The minimum DO sti@ment trip count is one as specified in the FORTRAN 66 standard.

T2 The minimum DO statement trip count is zero as specified in the FORTRAN 77 standard. Always use the formal
FORTRAN 77 trip count computation when iterating through loops.

The DO statemd is, of course, translated via the for statement in C. The following is a simple translation to show the
difference between TO, T1 and T2.

SUBROUTINE DEMO

IVAL =0

N=0

DO10I1=1,N

IVAL = IVAL + 1
10 CONTINUE

RETURN

END

The following translation was produced using the default TO setting.

void demo()
{
static int ival,n,i;
ival = 0;
n=0;
for(i=1; i<=n; i++) {
ival = ival+1;
}
return;
}

This translation conforms with the 77 standard because C ctiezk®nditional part of the for statement prior to the first
execution. The following shows the same thing using the T1 setting.

87

PromulaFortran Translator User's Manual

void demo()

static int ival,n,i;

ival = 0;

n=0;

for(i=1; i==1 || i<=n; i++) {
ival = ival+1;

}

return;

}

To achieve the desired result, an extra condition has been placed into the for statement to force it through the tode at leas
once.

Finally, the following shows the same thing translated via the T2 switch.

void demo()

{
static int ival,n,i,D 2;
ival = 0;
n=0;
for(i=1,D2=(n - i+1); D2>0; D2 - i+=1) {
ival = ival+1;
}

return;

}

This switch forces the computation of the trip count variable as specified by the FORTRAN 77 standard.

2.33 Treatment of Internally Generaed Temporariesd Ta, Ts
During the processing of FORTRAN cod&REAT MIGRATIONS must occasionally introduce temporary variables. The
contexts which generate these variables are as follows:

(1) When a computed value must be passed by reference to aguapro
(2) When a DO statement must compute a trip count value to control the number of times it executes.
(3) When a variable DIMENSION contains a computed value.

All of these contexts are discussed elsewhere in this chapter. This section discusseageestatus of the temporary
variables generated. The following is a simple code that generates all three types of temporary variables.

SUBROUTINE DEMO(A,N,M,INC)
DIMENSION A(N+1,M+1)
INTEGER V
DO 10V = 1, M+1, INC
CALL TEST(A(V,V)/10.0)
10 CONTINUE
RETURN
END

The default C intermediate output for this example looks as follows.
void demo(a,n,m,inc)
int *n,*m,*inc;
float *a;

extern void test();

88

PromulaFortran Translator User's Manual

static int T1,T2,v,D4,D5;
static float T3;

T1 ="*n+1;

T2 =*m+1;

for(v=1, D4=*inc,D5=(*m+1 - v+D4)/D4; D5>0; D5 -- ,v+=D4) {
T3 =*@+v - 1+(v-1)*T1)/10.0;
test(&T3);

return;

}

The temporarie¥1 andT2 are introduced to contain the values of the variable dimensions for theaaifbg temporaries

D4 andD5 are introduced to contain the increment values and trip count value for the DO statement. Finally, the temporary
T3 is introduced to contain the temporary value whose address must be passed to subsoutiNetice that all of these
temporaries are agmed to static storage because the default storage for all variables is static (see the section on the storage
control flags). If the above example were compiled using a different storage convéntsay SS SAG then the

following output would be prodd.

void demo(a,n,m,inc)
int *n,*m,*inc;
float *a;

extern void test();
auto int T1,T2,v,D4,D5;
auto float T3;

T1 =*n+1;

T2 =*m+1;

for(v=1,D4= *inc,D5=(*m+1 -v+D4)/D4; D5>0; D5 -- ,v+=D4) {
T3 =*@at+v -1+(v-1)*T1)/10.0;
test(&T3);

}

return;

}

As requested, all variables including the temporary ones are now assigned to auto storage. The default setting of the
temporary storage flag Ts specifies that temporary variables have "standard" 8toragethat they be assignadstorage
class in the same manner as user defined variables.

The Ta flag requests that all temporaries be assigned to auto storage regardless of the rules being used to allocate other
variables. Using th&a flag, the following output is generated.

voi d demo(a,n,m,inc)
int *n,*m,*inc;
float *a;

extern void test();
auto int T1,7T2,D4,D5;
auto float T3;

static int v;
Tl =*n+1;
T2 =*m+1;
for(v=1,D4= *inc,D5=(*m+1 - v+D4)/D4; D5>0; D5 - v+=D4) {
T3=*at+v -1+(v - 1)*T1)/10.0;
test (&T3);
return;
}

Under this convention, the program variablés assigned to static storage using the standard storage rules; however, the
temporary variables generated internally are all assigned to auto storage.

89

PromulaFortran Translator User's Manual

2.34 Specifying Unit Numbersd UR, URnum, UP, UPnum, UW, UWnum

FORTRAN has a variety of contexts with I/O statements in which no explicit unit number is provided: PRINT, READ(*,
WRITE(*, PUNCH, ACCEPT, etc. There are a variety of conventions as to what actual units to associdbeseith
statement forms. The U command line switch allows you to control this number. Note tGREET MIGRATIONS
FORTRAN runtime library associates no significance to any particular unit number value. A unit number may be any
integer value.

The URnum comand line switch telllGREAT MIGRATIONS to use unit number num with READ or ACCEPT
statements for which no unit number is explicitly shown. The default setting of UR specifies that READ statements for
which no unit is explicitly shown should be directedstandard input.

The UWnum command line switch telSREAT MIGRATIONS to use unit number num with WRITE or PRINT
statements for which no unit number is explicitty shown. The default setting UW specifies the WRITE or PRINT
statements for which no unit nibber is explicitly shown should be directed to standard output.

The UPnum command line switch telBREAT MIGRATIONS to use unit number num with PUNCH statements for
which no unit number is explicitly shown. The default setting UP specifies that PUNGHhstds for which no unit
number is explicitly shown should be directed to standard output.

Note that many FORTRAN runtime systems attach special significance to certain unit numbeé vakiesnany assume

the unit 5 is standard input; while unit 6 i&rsdard output. Others assume that unit O is standard input. Especially
interesting is the Prime dialect which assumes that unit 1 is both standard input or standard output, depending upon the
context of its use. See the discussion in the FORTRAN compdeual on controlling runtime behavior for a discussion of

this topic.

The U command line switches establish unit numbers, they do not establish runtime unit number file connections. This is
done at runtime.

2.35 File to Receive Prototype Definitiond Wname

The W switch allows you to write function prototype files. These files are used to define the arguments and types of
functions being called with the FORTRAN being translated. The format of prototype files conforms to the ANSI C
standard.

The Wname witch will write prototypes either for functions referenced or defined or both. Which prototypes are written
are controlled by the "P" command line switch.

If there is no extension supplied with the name of the file, then an extensmo ofvill be assuned.

2.36 Miscellaneous Control Flagé Y1, Y2

There are various translation options which are difficult to classify under a general topic. The Y1 and Y2 switches control
these. The Y1 switch changes the treatment of entry points; while the Y2 swittblsadhne output form of parameter
identifiers.

Of course, as with the other numeric flags, the composite switch Y3 performs both operations.

2.36.1 The Treatment of Entry Point®d Y1

The following FORTRAN source code contains a main entry and two pnings. The parameters associated with the
entries all differ. In addition, the logic of the construct assumes that the vaugebikia the call t¢SET_BVALUE will be
remembered in the calls DOUBLEand toMULTIPLY_A.

CALL ISET_BVALUE(10)

90

PromulaFortran Translator User's Manual

WRITE(*, *) IDOUBLE(5),MULTIPLY_A(2,4)

END
INTEGER FUNCTION IDOUBLE(A)
INTEGER A,R,B

IDOUBLE = A *B

RETURN

ENTRY MULTIPLY_A(AR)
A=A*R

IDOUBLE = A *B
ENTRY ISET_BVALUE(B)
RETURN

END

We recently processed a large body of VRRRTRAN code which made extensiuse of this ability to successively set
argument values though independent entry points. The default translation produces the following C output:

void main(argc,argv)
int argc;
char* argv[l;

extern void iset_bvalue();

extern long idouble(),multiply_a();

static long K1 = 10;

static long K2 = 5;

static long K3 = 2;

static long K4 = 4;
ftnini(argc,argv,NULL);
iset_bvalue(&K1);
WRITE(OUTPUT,LISTIO,INT4,idouble(&K2),INT4,multiply_a(&K3,&K4),0);

}

static long EOOOO(IENTRY,a,r,b)

int IENTRY;

long *a ,*r,*b;

{

static long idouble;

switch(IENTRY) {

case 0: goto IDOUBLE;
case 1: goto MULTIPLY_A,;
case 2: goto ISET_BVALUE;

}
IDOUBLE:

idouble = *a * *b;

return idouble;
MULTIPLY_A:

*q = *g * *I';

idouble = *a * *b;
ISET_BVALUE:

return idouble;

long idouble(a)
long *a;
{
return E0000(0,a,NULL,NULL);

long multiply_a(a,r)
long *a,*r;

{
}

long iset_bvalue(b)
long *b;
{

return E0000(1,a,r,NULL);

return EO000(2,NULL,NULL,b);

91

PromulaFortran Translator User's Manual

}

This translation trea the individual entry points as if all argument values were reinitialized at each entry point. It is correct
for most FORTRANS, but is not correct for the assumptions made in the example above. Using the Y1 flag produces the
following:

void main(argc,arg V)

int argc;

char* argv[];

extern void iset_bvalue();
extern long idouble(),multiply_a();
static long K1 = 10;
static long K2 = 5;
static long K3 = 2;
static long K4 = 4;
ftnini(argc,argv,NULL);
iset_bvalue(&K1);
WRITE(OUTPUT,LISTIO,INT4,idou ble(&K2),INT4,multiply_a(&K3,&K4),0);

}

static long *EOa,*EOr,*EQb;
static long EO(IENTRY)

int IENTRY;

static long idouble;
switch(IENTRY) {
case 0: goto IDOUBLE;
case 1: goto MULTIPLY_A,
case 2: goto ISET_BVALUE;

}
IDOUBLE:

idouble = *EOa * *EQOb;

return idouble;
MULTIPLY_A:

*EQa = *EQa * *EOr;

idouble = *EOa * *EOQb;
ISET_BVALUE:

return idouble;

long idouble(a)
long *a;

EOa = a;
return EO(0);

long multiply_a(a,r)

long *a,*r;
EOa = a;
EOr=r,
return EO(1);
}
long iset_bvalue(b)
long *b;

EOb = b;
return EO(2);

Using this approach, each time the main entry point uses copies of the arguments for the other entries. This approach
produces the desired result for thiehmretation.

92

PromulaFortran Translator User's Manual

2.36.2 Output Form of Parameter Identifiersd Y2
Normally, GREAT MIGRATIONS converts all identifiers to lower case. Thus, the following code

SUBROUTINE DEMO(IV)

PARAMETER GoodBye =0, Hello =1

IF(IV .EQ. Hello) WRITE(*,*) 'Hello'

IF(IV .EQ . GoodBye) WRITE(*,*) 'GoodBye'
END

produces the following default translation:

void demo(iv)
long *iv;
{
#define goodbye 0
#define hello 1
if(*iv == hello) WRITE(OUTPUT,LISTIO,STRG,"Hello",5,0);
if(*iv == goodbye) WRITE(OUTPUT,LISTIO,STRG,"Good Bye",7,0);
#undef goodbye
#undef hello

}

Here, the parameter identifiers have been converted to lower case. It is occasionally desirable, at least for parasneter value
to retain the original notation. The Y2 flag produces the following C output.

void de mo(iv)
long *iv;

{
#define GoodBye 0
#define Hello 1
if(*iv == Hello) WRITE(OUTPUT,LISTIO,STRG,"Hello",5,0);
if(*iv == GoodBye) WRITE(OUTPUT,LISTIO,STRG,"GoodBye",7,0);
#undef GoodBye
#undef Hello

}

In this translation the parameters have the szamse conventions that they had in the FORTRAN source.

2.37 Treatment of Multiple Assignmentsd Xa, Ya

C allows multiple assignments to the same value to be written together. When the Ya switch is active, the processor looks
for such assignments and camdés them whenever possible. The Xa switch excludes this optimization. The Ya flag is
active for the C and optimized biases. The FORTRAN bias does not by default perform these combinations, since they
destroy the correspondence between source and oudpernsnts. Therefore, for the default FORTRAN bias Xa is active.

The following code shows a FORTRAN subprogram which contains multiple assignineings, theival andlval
vectors are both being set equal to 10.

SUBROUTINE DEMO
DIMENSION IVAL(10), JVAL(10)
DO 10 1 = 1,10
IVAL(I) = 10
JVAL(l) = 10

10 CONTINUE
RETURN
END

The default intermediate C output for this subprogram is shown below.

93

PromulaFortran Translator User's Manual

void demo()

static int ival[10],jval[10],i;
for(i=0; i<10; i++) {
ivalli] = 10;
jvalli] = 10;

return;

}

The C output maintains a ot@one correspondence with the FORTRAN original. The multiple assignments are not
simplified. The same fragment under the Ya flag produces the following.

void demo()

{
static int ival[10],jval[10],i;
for(i=0; i<10; i++) {
ival[i] = jval[i] = 10;

return;

}

Since Ya allows multiple assignments, the two assignment statements have been simplified into one. Notice that this
simplification precedes the braces removaragion. Thus, the subprogram above processed under Ya and Yb produces the
following result.

void demo()

static int ival[10],jval[10],i;
for(i=0; i<10; i++) ival[i] = jval[i] = 10;
return;

}

Now the two assignments have been collapsed intagesstatement and the for loop now contains only that statement.
Consequently under the Yb flag the braces can be removed. The Yb flag is discussed further in another section in this
chapter.

2.38 Treatment of Single Statement Nesting Bra@ Xb, Yb

C dlows any conditional statement to form a compound statement with a single statement, while FORTRAN allows this
only for the IF statement. When the YB switch is active, this compounding is performed whenever possible; while when the
XB switch is active, &ompound statement is formed only if the source was compound. YB is the default for the C and
optimized biases; while XB is the default for the FORTRAN bias.

The following simple subprogram contains a DO loop, a simple IF statement, and a block IFrdtateme

SUBROUTINE DEMO
DIMENSION IVAL(10), JVAL(10)
DO 101=1,10
IVAL(l) = 10
JVAL(l) =10
10 CONTINUE
IF(l .EQ. 10) WRITE(*,*) 'l equals 10'
IF(I .EQ. 11) THEN
WRITE(*,*) 'l equals 11'
END IF
RETURN
END

The default Gntermediate output for this subprogram looks as follows.

94

PromulaFortran Translator User's Manual

void demo()

static int ival[10],jval[10],i;
for(i=1; i<=10; i++) {

ivali -1]=10;

jvalli -1]=10;

}
if(i == 10) WRITE(OUTPUT,LISTIO,STRG,"l equals 10",11,0):
ifi ==11){
WRITE(OUTPUT,LISTIO,STRG,"l equals 11",11,0);
}

return;

}

In this translation only the simple IF statement is treated as a compound statement in C. The default C output attempts to
maintain a ondo-one correspondence between B@RTRAN original and the C.

Processing the above subprogram with the Yb flag produces the following C output.

void demo()

static int ival[10],jval[10],i;
for(i=1; i<=10; i++) {

ivalli - 1] = 10;

jvalli - 1] = 10;

}

if(i == 10) WRITE(OUTPUT,LISTIO,STRG,"l equals 10",11,0);
if(i == 11) WRITE(OUTPUT,LISTIO,STRG,"l equals 11",11,0);
return;

}

Now the block IF in FORTRAN has also been collapsed to a compound if in C. The Yb flag looks for every opportunity to
remove unneedelraces. The DO loop is not collapsed since it contains two statements. There is another switch, however,
Ya which allows multiple assignments to be collapsed into a single statement. This switch is discussed fully in another
section of this manual.

The Coutput using both Ya and Yb produces the following.

void demo()

{
static int ival[10],jval[10],i;

for(i=1; i<=10; i++) ival[i - 1] = jvalli - 1] =10;

if(i == 10) WRITE(OUTPUT,LISTIO,STRG,"l equals 10",11,0);

if(i == 11) WRITE(OUTPUT,LISTIO,STRG, "l equals 11",11,0);
return;

}

Now the for loop is also reduced to a compound statement, since it now contains a single multiple assignment.

2.39 Constant Reduction Optimizationd Xc, Yc

The FORTRAN input processor often generates sequences ombimeger calculations which can be reduced prior to
their output in the C. The Yc switch allows this simplification to be performed and is the default for all biases. The Xc
switch excludes this optimization.

As an example of this constant reductioreigtion, consider the following subprogram which contains various constant
subscripts.

SUBROUTINE DEMO(A,B,C)

95

PromulaFortran Translator User's Manual

DIMENSION A(10),B(6,7),C(3,4,5)
A(5) = 5.0

B(2,3) = 6.0

C(1,2,3)=7.0

RETURN

END

The default intermediate C form for this fragment is as falow

void demo(a,b,c)
float a[],b[71[6],c[5][4][3];
{

a[4] =5.0;
b[2][1] = 6.0;
c[2][1][0] = 7.0;
return;

}

Notice that in this output the values of the subscripts have been reduced by one over their FORTRAN original values. This
is becaus in FORTRAN subscripts have a default starting value of one; while in C they always start at zero. That this
reduction is in fact being performed can be seen via the Xc switch which blocks constant reduction. The C output with the
Xc flag active looks afollows.

void demo(a,b,c)
float a[],b[7][6],c[5][4][3];
{

a5 - 1] =5.0;

b[3 - 1][2 - 1] =6.0;
c[3-1][2 -1][1 -1]=7.0
return;

}

The subtraction by one is now explicit in the C output. This reduction process is even more obvious whengpafiitier
is used for array references. The Ys flag discussed in another section of this chapter generates pointer style subscript
expressions. Using this flag alone produces the following.

void demo(a,b,c)
float *a,*b,*c;

{
*(a+4) = 5.0;
*b+13)= 6.0;
*(c+27) =7.0;
return;

}

The values of "4", "13", and "27" are now computed from fairly complex expressions which can be seen in the ®llowing
produced using Xc and Ys.

void demo(a,b,c)
float *a,*b,*c;

{
*(a+5 -1) =5.0;
*(b+2 -1+(3 - 1)*6) = 6.0;
*(c+1l - 1+(2 - 1+(3 - 1)*4)*3) = 7.0;
return;
}

It is suggested that the Yc flag always be left active; however, if you want to see where some values such as those shown
above are coming from, then Xc is the appropriate flag to use.

96

PromulaFortran Translator User's Manual

2.40 Character Optimization Switchesd Xch, Ych

The FORTRAN CHAR and ICHAR functions convert between character representations and their integer values. In most
cases, no actual function reference is nedtlesimple assignments are sufficient. The default ¥afitch removes these
unneeded calls to these functions. Consider the following FORTRAN code

SUBROUTINE DEMO(IV)
CHARACTER*1 C

| = ICHAR(8)

C = CHAR(56)

END

with references to both functions.

Using the default Ych switch, the following is produced.

void demo(iv)
long *iv;

static char c[1];
static long i;
i='8,
*c = 56;
}

Alternatively, the Xch switch produces the following translation.

void demo(iv)
long *iv;

static char c[1];
static long i;

i = fifichar("8");

*c = *fifchar(56);
}

This version would only be needed if some special character conversion logic were needed.

2.41 Treatment of FORTRAN "D" debugging statements

In the default FORTRAN dialect supported, any FORTRAN statement with -avhitespace, nomumeric charactein

column 1 is treated as a comment. The Yd command line switch modifies this rule slightly. When Yd is active, statements
with a "D" in column 1 are treated as though the "D" were a biarile., they are not comments. This facility is used for
inserting debugging statements into a FORTRAN program. The default "Xd" flag treats "D" statements as simple
comments.

Consider the following simple FORTRAN subprogram, which contains a "D" type comment.

SUBROUTINE DEMO(A,B,C)

DIMENSION A(10),B(6,7), C(3,4,5)
D WRITE(**) 'Demo successfully entered'

A(5)=5.0

B(2,3)=6.0

C(1,2,3)=7.0

RETURN

END

The default intermediate C output for this subprogram looks as follows.

void demo(a,b,c)

97

PromulaFortran Translator User's Manual

float a[],b[71[6],c[5][4][3];
{

/*
WRITE(*,*) 'Demo successfully entered'
*/
a[4] =5.0;
b[2][1] = 6.0;
c[2][1][0] = 7.0;
return;

}

The "D" statement is literally transformed into a comment in the C. Using the Yd flag, however, produces the following
intermediate @utput.

void demo(a,b,c)
float a[],b[71[6],c[5][4][3];
{

WRITE(OUTPUT,LISTIO,STRG,"Demo successfully entered",25,0);
a[4] =5.0;

b[2][1] = 6.0;

c[2][1][0] = 7.0;

return;

}

In this treatment the statement is compiled as though ibbad a normal statement.

2.41.1 Treatment of Other Debugging Statement$ Ydstring

The D debugging feature, though it is very common among FORTRAN dialects, is not part of the standard; therefore, it is

fair game for alternative implementations. The trifg statement allows alternative ways of identifying debugging
statements. Consider the following FORTRAN code.

SUBROUTINE DEMO(A,B,C)
DIMENSION A(10),B(6,7),C(3,4,5)
? WRITE(,*) 'Demo successfully entered’
A(5)=5.0
B(2, 3)=6.0
C(1,2,3)=7.0
RETURN
END

Note that the *? is used to shift the statement left as well commenting it out. The default translation for this code is as
follows.

void demo(a,b,c)
float a[],b[71[6],c[51[4][3];
{

/*

? WRITE(**) 'Demo successfully entered'
*/

a[4] =5.0;

b[2][1] = 6.0;

c[2][1][0] = 7.0;

return;
}

Using the YD*? switch produces the following translation.

void demo(a,b,c)
float a[],b[71[6],c[51[4][3];

98

PromulaFortran Translator User's Manual

{
WRITE(OUTPUT,LISTIO,STRG,"Demo successf ully entered",25,0);
a[4] =5.0;
b[2][1] = 6.0;
c[2][1][0] = 7.0;
return;
}

2.42 Use of PrintfStyle Formatting 8 Xf, Yf

C and FORTRAN have very different ways of specifying coded write conversions. For the FORTRAN bias, all of the
original FORTRAN machinery is maintained. The actual WRITE statement is translated into a C WRITE statement which
consists of a series of keywords followed by the parameters associated with those keywords. In the C bias, FORTRAN
WRITE statements are translatedol the C printf or fprintf functions whenever possible. When not possible, the C bias
uses the same translation as the FORTRAN bias. The Xf switch turns the printf conversion off, while the Yf switch turns it
on.

The following short code contains a foriteal write statement and a tdirected write statement.

SUBROUTINE DEMO

1 FORMAT(1X,215,3F10.2)
WRITE(*,1) 1,J,AB,C
WRITE(**) 1,J,A,B,C
END

The default intermediate C output for this code is as follows.
void demo()

stat icinti,j;

static float a,b,c;

static char* F1[] = {
"(1x,2i5,3f10.2)"

WRITE(OUTPUT,FMT,F1,1,INT4,i,INT4,j,REAL4,a,REAL4,b,REALA4,C,0);
WRITE(OUTPUT,LISTIO,INT4,i,INT4,j,REAL4,a,REAL4,b,REAL4,c,0);
}

In this translation thgmFortranruntime library is used to perform the writes. The precise layout of the records produced
conform exactly to the FORTRAN standard specification. The C output using the Yf flag looks as follows.

void demo()

static int i,j;

static float a,b,c;
printf(" %5Id %51d%10.2f%10.2f%10.2f \ n",ij,a,b,c);
printf("%121d%12Id%16.6E%16.6E%16.6E \ n",i,j,a,b,c);

}

In this translation the FORMAT string has been converted into an equiyailght style string. In the listlirected form
printt elements have been selected dorrespond to each element in the list. Note that these elements are in the
FORTRAN dialect definition file and may be changed by you.

The Cprintf conventions are reasonable for simple formatting operations; however, they lack the power of the
FORTRANFORMAT string. The output produced by the Yf flag is an approximation only of that produced by the runtime
library. In particular, it does not conform to the FORTRAN standard specification. Use the Yf flag only if you are moving
away from FORTRAN completgland if your application does not require particular formatting conventions.

99

PromulaFortran Translator User's Manual

2.43 Initialization Check for Auto Variablesd Xi, Yi

Traditional FORTRAN programs assume that local variables maintain their values through calls to a given subprogram. As
a result of this fact the default treatment of all variablesSIREAT MIGRATIONS s to make them static. See the section

on the storage allocation switches for more information on variable allocation. For users who wish to declare variables auto,
the Yi flagcan be used to check for variables that are used before they are initialized. It is this class of variables that must
be static.

In essence, the Yi flag telBEREAT MIGRATIONS to override an auto storage allocation for a variable whose value
appears to besed before it is changed. The actual algorithm used is simplistic and does not pretend to catch all problem
variables.

As a simple example of the use of this variable, consider the following code in which the vai@bleing used without
being explcitly set.

SUBROUTINE DEMO
J=5

K=1+J

WRITE(**) 1,J,K
RETURN

END

The translation of this code using SS and SAO is as follows.

void demo()

auto long j,k,i;
=5
k = i+j;
WRITE(OUTPUT,LISTIO,INT4,i ,INT4,j,INT4,k,0);
return;

}

The variable is auto. In all likelihood codes having structures such as this would not produce the correct result with the

above translation. Using the Yi flag produces the following output, in whitds been forced tstatic.
void demo()

{

auto long j,k;

static long i;
i=5
k = i+j;
WRITE(OUTPUT,LISTIO,INT4,i,INT4,j,INT4,k,0);
return;

}

The Yi flag is not a complete solution to the problem of uninitialized variables and variables that are tbeitaalues;
however, it can help to avoid problems.

2.44 DO Loop Counter Reduction Optimizationd XI, YI

As is also discussed in the section on array subscript expressions and in the section on the DO statement, when the only
purpose of a DO loop coumtés to subscript arrays within the loop, that counter can be reduced to simplify the array
subscript expressions. The YI switch turns this optimization on and is the default for all biases. The Xl switch turns this
optimization off.

As an example of thisoptimization, consider the following simple FORTRAN code which performs a matrix
multiplication.

SUBROUTINE MATMUL(A,B,C)

100

PromulaFortran Translator User's Manual

DIMENSION A(10,15),B(15,20),C(10,20)
DO 151=1,10
DO 15 J = 1,20
C(1,3)=0.0
DO 10K =1,15
C(1,3) = C(1,J) + A(LK)*B(K,J)
10 CONTINUE
15 CONTINUE
RETURN
END

Notice that in FORTRAN subscripts normally start at 1; therefore, the loop variables in the above example also all start at
1. Now the default C output for this expla, with Y| active, is shown below.

void matmul(a,b,c)
float a[15][10],b[20][15],c[20][10];
{

static int i,j,k;
for(i=0; i<10; i++) {
for(j=0; j<20; j++) {

c[jIli] = 0.0;
for(k=0; k<15; k++) {
c[illi] = cillil+alK][*b[IkI;
}
}
return;

}

In C subscripts always start at 0; therefore, the DO loop counters themselves have been changed to start at zero. The listing
below shows the C output with XI| active.

void matmul(a,b,c
float a[15][10],b[20][15],c[20][10];
{

static int i,j,k;
for(i=1; i<=10; i++) {
for(j=1; j<=20; j++) {
cj -1Ji -1]=0.0;
for(k=1; k<=15; k++) {
ci -1]i -1]=c[j -1 -1]+alk -1]i -1P*b[j -1]k -1J;

}
}
return;

}

In this form, the loop variables have their original ranges; however, each reference to those variables must be decremented
by one to compensate for the difference in C and FORTRAN subscripting conventions.

2.45 Sulprogram Argument Type Checkingd Xp, Yp

Though the practice is never desirable, most FORTRAN compilers allow the user to pass variables of different types to the
same subprogram paramet&REAT MIGRATIONS follows the normal practice and does not perfolmreaks to make

certain that all parameters are consistent. The YP switch turns this checking on. If you have a program that is carefully
written, or if you want to check that all parameters are passed consistently, then the Yp flag performs this service.

Consider the following simple subprogram, in which the third parameter to furiztionis REAL*4 in one instance and
INTEGER*4 in another.

101

PromulaFortran Translator User's Manual

SUBROUTINE TEST
CALL DEMO(1,J,A)
CALL DEMO(1,J,K)
END

The default C output for this subpiragn, with Xp active, is simply as follows.

void test()
{

extern void demo();

static long i,j,k;

static float a;
demo(&i,&j,&a);
demo(&i,&j,&k);

}

In one placelemois called with a pointer to a long and in the other with a pointer to a floarnalively, with Yp active,
the following is produced.

3: test.for: E247: The argument K of type integer*4 has been entered where a call - by-
reference argument of type real*4 is required.

Alternatively, if the error checking level is set to 1 or abovénhie EL switch, the following warning is produced without
use of the Yp switch.

3: test.for: W814: The argument K of type integer*4 has been entered where an
argument of type real*4 has been used.

2.46 Single Precision Real Arithmeti@® Xr, Yr

Though he designers of C made a few strange decisions, their only real mistake was to omit single precision real
arithmetic. Even now the major barrier to the acceptancEREAT MIGRATIONS as a "pure" compiler is that its
benchmarks on single precision arithrogirograms are often slow. Fortunately, the newer ANSI C compilers do support
single precision real arithmetic. Unfortunately, they require that single precision real constants have an "F" appended to
distinguish them from double precision constants. Mider C compilers consider this "F" to be a syntax error; therefore,

you must tellGREAT MIGRATIONSthat your C compiler is capable of performing single precision real arithmetic. The
default Xr switch assumes that all single precision real arithmetibwilerformed as double precision, and that all single
precision reals will be promoted to double when passed by value.

The Yr flag, on the other hand, treats single precision real arithmetic completely separately from double. No automatic
promotion is asumed. In addition, single precision real constants have an "F" appended.

2.47 Subscript Pointer Notationd Xs, Ys, Ysv, Ysf

There is a difficult translation issue associated with array subscript expressions. In FORTRAN an array is a set of elements
idertified by a single name. The dimension of the array merely specifies how many elements there are and how they are
organized. The elements in an array are always stored contiguously in memory in row major order. That is, the leftmost
subscript varies the $test as elements are accessed in storage order. When a FORTRAN array is defined, its minimum and
maximum subscript bounds may be any value, positive or negative, just so long as the minimum bound is less than the
maximum bound. If no minimum bound is sjfix, a minimum of one is assumed.

In C there is a strong relationship between pointers and arrays. Though the array notation and pointer notation may be
mixed fairly freely, the pointer version will, in general, be more efficient. Multidimensionalsaamgystored contiguously

in memory in column major order. That is, the rightmost subscript varies the fastest as elements are accessed in storage
order. When defining an array, the user may only specify its size, the minimum bound is always assumeebto be

As can be seen from the above, there are considerable differences in the manner in which arrays are treated in the two
languages. For the C and optimized biases, because C programmers are familiar with pointer notation and because many

102

PromulaFortran Translator User's Manual

optimizationscan be achieved when using pointer notation, all FORTRAN arrays are defined in C as simple one
dimensional vectors and all array references are done using the pointer notation. Alternatively, for the FORTRAN bias C
brackets notation is used whenever passihowever, the order of the subscripts must be reversed in the C output. In
addition the "s"9 for subscriptd optimization switch is provided. Using this switch, the user may specify his own
preference on top of his overall bias specification.

The folowing shows a sample set of fixed array definitions along with some basic subscript expressions as translated via
the Xs and Ys switches.

SUBROUTINE DEMO

DIMENSION A(10),B(6,7),C(3.4,5)
+ ,D(2,3,4,5)

A(B)=0

B(2,4)=1

C(3,4,5) =2

D(1,1,1,1) =3

Aly=4

B(2,J)=5

C(,2,K)=6

D(,2,K,L) =7

END

Intermediate C output using the Ys switch is as follows.
void demo()

static int i,j,k,l;
static float a[10],b[42],c[60],d[120];
*(a+2) = 0;
*(b+19) = 1;
*(c+59) = 2;
*d=3;
*ati -1)=4;
*(b+1+(-1)*6)=5;
o+ - 1+(1+(k - 1)*4)*3) = 6;
*d+i - 1+(A+H(K - 1+(- 1)*4)*3)*2) = 7;
}

Intermediate C output using the default Xs switch is as follows.
void demo()

{
sta tic float a[10],b[7][6],c[5][4][3],d[5][41[3][2];
static long i,j,k,I;

a[2]=0;

b[3][1] = 1;

c[4][3][2] = 2;

d[O0][0][0][0] = 3;

ali -1]=4;

bl -1][1]=5;

c[k - 2][1][i -1]=6;

dil -1k - 2] -1]1=7,
}

Notice first in thisexample that, though both the FORTRAN source and the Xs switch translation show multidimensional
arrays, the order of the array sizes is reversed in the translation. This is necessary to maintain the same relativg position
of the elements within the rays. In the Ys translation, arrays are all shown with a single dimension equal to the total size
of each array. Thus, D shows 120 values which is

2*3*4*5,

103

PromulaFortran Translator User's Manual

In both the translations the actual subscript values are reduced by one to reflect thatfC subscripts begin at zero,

while FORTRAN begins at one. In the Ys case, the subscript array references are translated using pointer notation, with the
calculation reduced to its simplest form. Tha$3,4,5) becomes(c+59) . Also, subscript caldations are performed

using the FORTRAN convention. This ensures that any games played in the programs with equivalencing or with varying
COMMON layouts will work exactly as they worked in FORTRAN. Using a C compiler which does constant reduction one
would expect to have the same code produced by both of the above translations.

To demonstrate the subscript simplification process, the listing below shows the same Ys bias translation, but with the
"constant reductions optimizations" turned off.

void demo()

static int i,j,k,l;

static float a[10],b[42],c[60],d[120];
*@a+3 -1)=0;

*(b+2 - 1+(4 - 1)*6) = 1;
*(c+3 - 1+(4 - 1+(5 - 1)*4)*3) = 2;
*(d+1 - 1+(1 - 1+(1 - 1+(1 - 1)*4)*3)*2) = 3;

*at+i -1)=4;
*(b+2 - 1+(j -1)*6)=5;
*(cH - 1+(2 - 1+(k - 1)*4)*3) = 6;

*d+i - 142 - 1+(k - 1+(1 - 1)*4)*3)*2) =7;
}

Two additional subscripting options are provided for those who want to write their own approach to subgrigiteng
Ysv and Ysf flags. The listing below shows the C intermediate output with the Ysv swfited a

void demo()

static int i,j,k,l;

static float a[10],b[42],c[60],d[120];
*_aref(a,2) = 0;
*_aref(b,1,6,3) = 1,
*_aref(c,2,3,3,4,4) = 2;
*_aref(d,0,2,0,3,0,4,0) = 3;

*_aref(a,i -1) =4

*_aref(b,1,6,j -1)=5;

*_aref(c,i -1,314k -1)=6;
*_aref(d,i -1,213k -141 -1)=7,

}

In this output a generalized symbolaref is provided followed by a pointer to the start of the array followed by a
sequence of ordered pairs containing the subscript value and the size of th&atinassociated with that value. The user
can then either write a macro in fortran.h or a function to perform the actual subscript calculations.

The Ysf flag uses the same approach as Ysf except that the subscript values are not offset to make theto toafGr
convention. The following shows the output for Ysf.

void demo()
{
static int i,j,k,l;

static float a[10],b[42],c[60],d[120];
*_aref(a,3) = 0;
* aref(b,2,6,4) = 1,
*_aref(c,3,3,4,4,5) = 2;
* aref(d,1,2,1,3,1,4,1) = 3;
* aref(a,i)=4;
*_aref(b,2,6,)) = 5;
*_aref(c,i,3,2,4,k) = 6;

104

PromulaFortran Translator User's Manual

*_aref(d,i,2,2,3,k4,)) = 7;
}

Notice that the subscript values are now exactly as entered in the original FORTRAN code. Again as with Ysv it is up to
the user to provide an appropriateplementation of thearef function or macro.

2.48 Unformatted Write Optimization 8 Xu, Yu

It is a rather strange fact about FORTRAN that the only file type that requires special internal formatting, above that used
by the normal I/O system, is the unfaoatted file. The problem is that unformatted files receive variable length records. It is

up to the runtime library to ensure that records are not overflowed and to ensure that each new read begins at the start of a
record. To make this possible the rurgitibrary, when it writes unformatted records, must put a length value at the front

and back of each record. This convention creates a file structure which is efficient to read, backspace, and in general use.
To write the file, however, requires reposiiiog the file twice for each record written. To avoid this repositioning
overhead, a flag is available that téaBREAT MIGRATIONSto compute the lengths of records before they are written.

The following is a simple FORTRAN code which performs a seriemfifrmatted writes to unit 1.

SUBROUTINE DEMO(A,B,C,NR,NC)
DIMENSION A(NR),B(NC),C(NR,NC)
WRITE(L) A

WRITE(L) (A(1),1=1,6)

WRITE(1) B,C

RETURN

END

The default translation, under Xu, is as follows.

void demo(a,b, c,nr,nc)
int *nr,*nc;
float af],b[],*c;

static int i;
WRITE(1,REAL4,a,*nr,0);
WRITE(1,MORE);
for(i=0; i<6; i++) {
WRITE(REAL4,&a[i],1,MORE);

}

WRITE(0);
WRITE(1,REAL4,b,*nc,REAL4,c,*nr**nc,0);
return;

}

The listing iseasy to read and corresponds to the original FORTRAN quite closely. When executed, it will be reasonably
efficient, but each write will require that the file be repositioned twice.
Using the Yu flag the following C output is obtained.

void demo(a,b,c,nr, nc)
int *nr,*nc;
float af],b[],*c;

static int T1,i,T2,T3;
T1 =*nr*4;
fiouwl(&T1);
WRITE(1,REAL4,a,*nr,0);
T2 = 24;
fiouwl(&T2);
WRITE(1,MORE);
for(i=0; i<6; i++) {
WRITE(REAL4,&a[i],1, MORE);

105

PromulaFortran Translator User's Manual

}

WRITE(0);

T3 =*nc*4+*nr**nc*4,

fiouwl(&T3);
WRITE(1,REAL4,b,*nc,REAL4,c,*nr**nc,0);
return;

}

In this output, temporary variables are computed which contain the lengths of the records to be written. These values are
then passed to a runtime functiiwu wl which sets up the length value at the front of the record before it is written. As a
result, repositioning of the file is not required. The actual C output is, of course, more difficult to read; therefore, it i
suggested that this flag only be usedriformatted output speed is critical.

2.49 Subprogram Caltby-Value Argumentsd Xv, Yv

In FORTRAN all parameters are passed by address. This convention generates inefficient code for simple values and makes
passing constants and expressions messy, imaefthe translation is concerned. Nevertheless, to ensurgntifartran

always produces correct results, the default convention used is to pass all arguments by address. The Yv switch can be used
to allow for caltby-value.

Note that explicit function qtotypes can always be provided via the configuration file. These prototypes may specify call
by-value parameters on an individual function level which override the default setting of this switch.

2.50 Dollar Signs as Initial Symbols in Identifierss X$, Y$

By defaultGREAT MIGRATIONSaccepts $ (dollar sign) as a valid character within identifiers. They may occur anywhere
that an alphabetic character may appear. Unfortunately, some dialects of FORTRAN use the $ to mark multiple return
statement labels.df these dialects the $ may not be allowed to occur in the initial position. The X$ switch disallows $ in
the initial position of identifiers. The default Y$ switch allows them to occur anywhere.

2.51 Location of FORTRAN Files to be Included Zname

It is often desirable to have include files that are referenced from within FORTRAN programs stored in some other
directories. The Zname flag can be used to specify directories to be searched for include files. The syntax of name varies
from operating systenotoperating system, but should be the same as the syntax used to construct the PATH variable used
to locate the executable fgmFortranitself.

If the first character ofame is a#, then the remainder ofame is assumed to be the name of an environmranable
which contains the include file search paths.

2.52 Project Processing #project
In addition to processing independent single source files, it is often desirable to process groups of related mudtipte files
single project. This is done vigpaoject file which has the following syntax:

PROJECT: project_name
SOURCE: filel.for,
file2.for,

1.‘iIeN.for
where:

project_name is the name of the project
filel.for are the names of théefs that make up the project

106

PromulaFortran Translator User's Manual

To process a project, the following command line is used:
pfc #project options

where:

project is the name of the project file. If no extension is proviged is assumed.

options contains any other command line switchebe used.
The special charactér differentiates a project file from a single source file. To avoid conflicts with other uses of this
character in some operating environments (e.g., the Korn shell in UNIX), the alternative chi@raatebe used to mia
the project file name.
The processing of the project file will produce the following three kinds of files:

1. The translated FORTRAN files naméiel.c

2. A global prototypes fileproject_name.h

3. A global variables fileproject_name.c

To avoidconflicts, make sure that the name of the project is different than the names of all the project member files.

107

PromulaFortran Translator User's Manual

3. CONFIGURATION FILE

GREAT MIGRATIONS translates various dialects of FORTRAN source code to a variety of possible C source code
outputs. Ithas a powerful dialect processing component for controlling both the syntax of the FORTRAN dialect it accepts
as input and the form of the C source code it produces as output. This is accomplished via an external configuration file
which contains detailestatements for customizing the translation process. These statements include the following:

SWITCHESOS specifies command line switches

COMMENTS®S controls format of comments

PATHNAMES & controls location and naming of include filenames
RESTRUCTURES restuctures variables in the source code
KEYWORDSd changes output keywords and pattern strings
PRAGMA & configures special comments into C pragmas

$0 controls treatment of the dollar sign

Function prototyped control the translation of functions and theiguments

The configuration file is used with the R option on the pfc command line, as follows:

pfc file_name[.for] Rconfl.cnf]
The rules for writing directives in configuration files are described in the context of the following sections.

Suffice to sy here that the Rname switch will read configuration information from the files named. The Rname switch may
occur multiple times to allow the reading of multiple files. If there is no extension supplied with the first file, aiaxtens

of .cnf will be asumed. If there is no extension supplied for additional files, an extensipio ofis assumed. The reason

for this is that typically, when multiple files are read, the first contains the configuration information; while thenatiditio
files contain functin prototype information.

It should be noted that configuration files may contain command line switch information; thus, a common use of a
configuration file is to supply commonly used switches independently of the command line.

3.1 The Configuration SWTCHES Statement

The GREAT MIGRATIONS translation process is controlled via many command line switches. These switches give the
user easy access to the translation process; however, there are often many needed. To simplify the organization of complex
groups of switches, the configuration file contains a SWITCHES statement.

Syntax
SWITCHES sl ...sn
Where:

sl..sn are any valid sequence of command line switches entered exactly as they would be entered on the
command line

There may be as many SWITES statements as desired in a given configuration file; however, the set of SWITCHES
statements must always be the first set of statements in the configuration file. If multiple configuration files are being
processed, a SWITCHES statement may only appeéhe first such file. Note that the Rname switch may appear within a
SWITCHES statement.

The following is an example of a SWITCHES statement.

108

PromulaFortran Translator User's Manual

SWITCHES Y3 P+4096 P+8192 CF11 Il Mvax CHv Ga Yd*? QH1000

Note that the SWITCHES statement often interactth wiher statements following it in the configuration file. Many
examples of this interaction appear in the following discussion of the other statements in the configuration file.

3.2 The Configuration COMMENTS Statement

Many FORTRAN programs have rehlaly complicated conventions for marking comments of various types. These
conventions often do not work well when transformed directly to C. As has been mentioned elsewhere in this manual, the
hardest single aspect of FORTRAN codes to deal with in trémslistthe commenting conventions.

In general, the statements of a FORTRAN program can be divided into two groups:

(1) those that define the symbols to be u8edeferred to as data definition language or DDL;

(2) those that specify the actual operatido be performed referred to as data management language or DML.
Insofar as comments are concerned, the translation of the DML is straightforward since the ordering of the DML in the
target language is typically the same as that in the source landeagéhe DDL, however, the ordering of symbol
definitions is often quite different in the target language; therefore, the comments must also often be rearranged. The

algorithms for associating comments with symbols are complex and by no means perfect.

The COMMENTS statement itself does not deal with the ordering of comments but rather deals with the source and target
form of the individual comment lines themselves.

Syntax
COMMENTS
DDL- specification

DML: specification
END

Where:

DDL- specification sayshow comment lines within the DDL are to be interpreted and translated
DML: specification says how comment lines within the DML are to be interpreted and translated

Each specification consists of three sections. Within each section, the fields are as follow

Section Content Description

1 0 Do not precede comment blocks with a standard headet
1 "str" Precede comment blocks with the indicated header

2 "s1" A series of individual comment introducers and tt
"s2"... replacements in C

3 0 Do not follow comment blocks with a standard trailer
1 "str" Follow comment blocks with the indicated trailer.

As an example, consider the following FORTRAN code.

FUNCTION MODI (ARG_SWAB_FLAG, ARG_XLIT_FLAG)
i
I PURPOSE : General purpose initialization for MODI_* routines.
I
' PARAMETERS: LOGICAL ARG_SWAB_FLAG (R)

109

PromulaFortran Translator User's Manual

n LOGICAL ARG_XLIT_FLAG (R)
' RETURN VALUE: None.

Il SIDE EFFECTS: None.

i'lncorporates feat ures to support portable - LIO file handling (8 - Apr - 1986).

IMPLICIT INTEGER (A - 2)

!
! Initialization entry

! Initialization -- calculate some useful th ings.

NONINPBASE = HD_QPIS + HD_QPSUPIS
FIRSTNONINP = NONINPBASE + 1 ! First non - input node

! Determine practical maximum for

! no. of strings we can hash (using "PUTSTR" entry) --
! (Knuth's vol.3 says that the avg. no. collisions =

11/2 * (1 + 1/R), where "R" is HASH table density);

! it might be nice to stop at 98% full (R = 0.98),

I since this translates to an average of 25.5 collisions

| per string entered.

HASHMAX = HD_HASHVAL- (2* HD_HASHVAL) /100

! Save local values of SWAB and XLIT flags, and convert blank - string to
I match the language (EBCDC or ASCII) of the model -file - CREATOR.

SWAB_FLAG = ARG_SWAB_FLAG

XLIT_FLAG = ARG_XLIT_FLAG

IF (XLIT_FLAG .AND..N_ OT. BLANKS_XLIT_YET) THEN
CALL TRLITO (BLANK_BYTES, 4)
BLANKS_XLIT_YET = .TRUE.

ENDIF

RETURN

END

Within this code the is being used to mark the comments and multiple occurrences of this symbol arer esagHasis.
The default translation looks as follows.

long modi(arg_swab_flag,arg_xlit_flag)

/*
!
! PURPOSE: General purpose initialization for MODI_* routines.
!
! PARAMETERS: LOGICAL ARG_SWAB_FLAG (R)
! LOGICAL ARG_XLIT_FLAG (R)
!
! RETURN VALUE: None.
!
! SIDE EFFECTS: None.
!
!
Incorporates features to support portable - LIO file handling (8 - Apr - 1986).

*
/
long *arg_swab_flag,*arg_xlit_flag;

extern void trlito();

110

PromulaFortran Translator User's Manual

static long K1 = 4;
static long m odi,noninpbase,hd_qpis,hd_gpsupis,firstnoninp,hashmax,hd_hashval,
swab_flag,xlit_flag,blanks_xlit_yet,blank_bytes;

/*
Initialization entry
Initializatio n-- calculate some useful things.
*
noninpbase = hd_gpis+hd_gpsupis;
firstnoninp = noninpbase+1L; /* First non - input node*/
/*

Determine practical maximum for

no. of strings we can hash (using "PUTSTR" entry) -
(Knuth's vol.3 says that the av g. no. collisions =

1/2 * (1 + 1/R), where "R" is HASH table density);

it might be nice to stop at 98% full (R = 0.98),

since this translates to an average of 25.5 collisions

per string entered.

*/
hashmax = hd_hashval - 2L*hd_hashval/100L;
/*
Save local values of SWAB and XLIT flags, and convert blank - string to
match the language (EBCDC or ASCII) of the model - file - CREATOR.
*/

swab_flag = *arg_swab_flag;

xlit_flag = *arg_xlit_flag;

if((xlit_flag & fifidlog(!blanks_xlit_yet))) {
t rlito(&blank_bytes,&K1);
blanks_xlit_yet = fifi4log((long) TRUE);

return modi;

Under this default the actual comment symbol is removed and the remainder of the comment is left alone. Each block of
comments is preceded by the C commetitdeer /+ and is followed by the delimitef . The resulting appearance of the
comments is very different from that of the source.

The COMMENTS statement shown below

COMMENTS
Q "Ik gk ()

(O | N O
END

tells GREAT MIGRATIONS to treat DML and DDL comments in the same manner. The first section of each specification
says not to have a separate header for the comment blocks. The second section establishes the following correspondence
between source and target comment introducers

Source Target

1" *%

1 *

The third section says not to have a separate trailer for each comment block.
Using this COMMENTS statement in a configuration file produces the following result.

long modi(arg_swab_flag,arg_xlit_flag)

/**

¥»* P URPOSE: General purpose initialization for MODI_* routines.

*%

111

PromulaFortran Translator User's Manual

** PARAMETERS: LOGICAL ARG_SWAB_FLAG (R)
ok LOGICAL ARG_XLIT_FLAG (R)

*%

» RETURN VALUE: None.

*%
** SIDE EFFECTS: None.
*%

*%

In corporates features to support portable - LIO file handling (8 - Apr - 1986)./
long *arg_swab_flag,*arg_xlit_flag;
{
extern void trlito();
static long K1 = 4;
static long modi,noninpbase,hd_qpis,hd_gpsupis,firstnoninp,hashmax,hd_hashval,

swab_flag,xlit_flag ,blanks_xlit_yet,blank_bytes;
/*
* Initialization entry
* |nitialization -- calculate some useful things.*/
noninpbase = hd_gpis+hd_gpsupis;
firstnoni np = noninpbase+1L; /* First non - input node*/

/* Determine practical maximum for
* no. of strings we can hash (using "PUTSTR" entry) -
* (Knuth's vol.3 says that the avg. no. collisions =
*1/2 * (1 + 1/R), where "R" is HASH table density);
*itmigh tbe nice to stop at 98% full (R = 0.98),
* since this translates to an average of 25.5 collisions
* per string entered.*/
hashmax = hd_hashval - 2L*hd_hashval/100L;
/* Save local values of SWAB and XLIT flags, and convert blank - string to
* match the language (EBCDC or ASCII) of the model -file - CREATOR.*/
swab_flag = *arg_swab_flag;
xlit_flag = *arg_xlit_flag;
if((xlit_flag & fifidlog(!blanks_xlit_yet))) {
trlito(&blank_bytes,&K1);
blanks_xlit_yet = fifi4log((long) TRUE);

return modi;

}

This form has the same effect as the FORTRAN original; however, for both the DDL and DML comments, the lack of a
trailer makes the code hard to read, and for the DML comments a header seems appropriate as well.

COMMENTS

0 " R R LR L R
L | A A

END

Using this specification produces a much nicer looking translation which still seems to capture the flavor of the original.

long modi(arg_swab_flag,arg_xlit_flag)

/**

» PURPO SE: General purpose initialization for MODI_* routines.
*%

** PARAMETERS: LOGICAL ARG_SWAB_FLAG (R)

ok LOGICAL ARG_XLIT_FLAG (R)

*%

** RETURN VALUE: None.

*%

** SIDE EFFECTS: None.

*%

*%

* Incorp orates features to support portable - LIO file handling (8 - Apr - 1986).

112

PromulaFortran Translator User's Manual

*
/
long *arg_swab_flag,*arg_xlit_flag;

extern void trlito();
static long K1 = 4;
static long modi,noninpbase,hd_qpis,hd_gpsupis,firstnoninp,hashmax,hd_hashval,

swab_flag,xlit_flag,b lanks_xlit_yet,blank_bytes;
/*
*
* Initialization entry
* |nitialization -- calculate some useful things.
*
/
noninpbase = hd_gpis+hd_gpsupis;
firstn oninp = noninpbase+1L; /* First non - input node*/
/*

* Determine practical maximum for

* no. of strings we can hash (using "PUTSTR" entry) --
* (Knuth's vol.3 says that the avg. no. collisions =

*1/2 * (1 + 1/R), where "R" is HASH table density);

*i t might be nice to stop at 98% full (R = 0.98),

* since this translates to an average of 25.5 collisions

* per string entered.

*/
hashmax = hd_hashval - 2L*hd_hashval/100L;
/*
* Save local values of SWAB and XLIT flags, and convert blank - string to
* match the language (EBCDC or ASCII) of the model - file - CREATOR.

*/
swab_flag = *arg_swab_flag;
xlit_flag = *arg_xlit_flag;
if((xlit_flag & fifidlog(!blanks_xlit_yet))) {
trlito(&blank_bytes,&K1);
blanks_xlit_yet = fifi4log((lon 0)TRUE);

}

return modi;

}
This sample is an actual fragment. We did not create it to make this feature look good. If the source has a consistent

commenting style, then an equivalent one for the target language can be created using this staignoérdoulrse, the
user's responsibility to ensure that proper comments are being written.

3.3 The Configuration PATHNAMES Statement

A major problem faced in the migration of source codes from one environment to a new environment has to do with the
acessing of include files. There are three problem areas:

(1) Source pathnames often include dollar signs and possibly other characters such as slashes which cannot be easily
used under target systems.

(2) The directory separation characters are not thresan different systems.

(3) The organization and search rules used on the source system might not be the ones needed for the new
environment.

These problems are dealt with explicity GREAT MIGRATIONSvia the PATHNAMES statement in the configuration

file. Though it may not be feasible for all users to use the same PATHNAMES specifications, no user need physically make
any source changes to the INCLUDE or INSERT statements in his source codes. This section describes how a particular
pathname translaticstheme can be established for a given set of conventions.

113

PromulaFortran Translator User's Manual

The PATHNAME statement is entered into the configuration file. It describes the path and filename conventions to be used
on the target platform and how these conventions are to be obtained &@woutite specifications. The approach taken is
to describe how source pathnames are to be "translated" into target pathnames.

Syntax
PATHNAMES dirchar [REPLACE "s1t1s2t2..."]
[LOWER | UPPER]
[PREFIX "tname"]
[EXCLUDE]
[TERMINATION tc]

sname(1) tname(1)

snhame(n) tname(n)

END
Where:
dirchar is the directory separation character in the source pathname
s1tls2t2... are a sequence of character pairs
tname is a target langage pathname or pathname prefix
sname is a source language pathname or pathname prefix
tc is a pathname termination character used in the source pathname

The requireddirchar specification specifies the character used to separate the pathname comjponbat original

source codes. This character is replaced by the equivalent character in the target pathnames. For example moving from
PRIME FORTRAN to UNIX, a< character would be replaced by aharacter. Moving from M®0S to UNIX would

replace a character with @ character.

The optional REPLACE parameter specifies additional characters to be replaced in the source names. As many pairs of
characters as are needed may be included. The standard PRIME language description, for example, conlawisghe fo
specification for this option:

REPLACE "$_"
This causes all dollar signs in the source pathnames to be replaced by underscores.

The TERMINATION character is provided for source systems such as VMS which allow disposition information to be
appeneéd to the filename preceded by a slash. All of this information must be ignored in most target systems.

The mutually exclusive and optional UPPER, LOWER parameters specify that all alphabetic characters in pathnames
should be converted to uppear lowercase respectively. Since some systems' pathnames are case sensitive, while others
are not, it is important to specify one of these options. For example, though most PRIME pathnames are shown in
uppercase, most transfer programs create lowercase namegsravisderring files to UNIX; therefore, the standard PRIME
language description contains a specification of LOWER for this option.

For initial testing and use @REAT MIGRATIONSfor particular small projects, the simplest approach is simply to move

all saurce filesd including the INCLUDE filesd into the user's local directory. To do tBREAT MIGRATIONS must

be told to ignore all directory information in the source pathnames. Under this alternative all characters up to argl includin
the last occurrencef the directory component separations character are stripped from the source pathname. This is
achieved via the EXCLUDE option.

114

PromulaFortran Translator User's Manual

A possible alternative structure for the INCLUDE files for a UNIX implementation might be to copy all of these files into
somesubdirectory where they would retain the same relative structure as they had on the source system. The PREFIX
pname option allows a directory specification to be added to the front of all source pathnames.

Another alternative might be to copy all incluiiles into a single subdirectory with no additional structure. This effect can
be achieved by using PREFIX in conjunction with the EXCLUDE option. All source structure would be excluded and then
would be replaced by the desired target subdirectory name.

In some cases, no generic translation scheme will work. Certain names might have to be changed on an individual basis.
The final list ofsname, thame pairs achieves this end. Each pathname is first translated using the generic specifications on
the PATHNAME statement itself. The resultant pathnames are compared witkhdhees in the list. If the firstn
characters of a pathname matchrheharacters of asname, then those characters are stripped and the associatede

is added to the front of the nam

As can be seen from the above, it will be necessary to organize the INCLUDE files in the new environment. Once that
organization has been completed, the PATHNAMES component of the configuration file can be used to describe that
structure. No changes e be made in the FORTRAN source code INCLUDE and INSERT statements.

3.4 The Configuration RESTRUCTURE Statement

The RESTRUCTURE statement in the configuration file is used in contexts where the symbol table must be changed in
order to make a program worTypically, it is used when a program is being moved between platforms with different word
sizes.

Syntax

RESTRUCTURE
ident type

iEND
Where:

ident is the identifier of a variable in the program being processed.
type is the FORTRAN type to be agaed to that variable.

To understand the use of the RESTRUCTURE statement, consider the following simple FORTRAN program written for a
platform with 36 bit words and 6 bit characters.

PROGRAM TEST3
DIMENSION IALPHA(2)
DATA IALPHA/6HHel lo ,6HWorld./
1 FORMAT(1X,2A6)
PRINT 1,IALPHA
STOP
END

In this program the INTEGER arra%LPHA is being used to contain character data. This is a standard convention in many
FORTRAN dialects still in use today. The default transtafor this code is a mess.

void main(argc,argv)
int argc;
char* argv[];

static long ialpha[2];
static int ftnsiz[] = {1,1,2};

115

PromulaFortran Translator User's Manual

static namelist DATAVAR]] = {
"lalpha”,ialpha,5,ftnsiz

static char *DATAVAL[] ={

"$DATAVAR",

"ilalpha="Hell','0",",

"$SEND"

b

static char* F1[] ={
"(1x,2a6)"

h

ftnini(argc,argv,NULL);
fiointu((char)DATAVAL,0,2);
fiornl(DATAVAR,1,NULL);
WRITE(OUTPUT,FMT,F1,1,D0,2,INT4,ialpha,0);
STOP(NULL);

}

Since the variable is declared as an INTEGER, runtimializéition is needed. In addition, SinGRREAT MIGRATIONS
assumes no more that 4 characters per word the piwadd is thrown away. Using the QW3606 switch improves the
situation slightly; however, the result will not run on a 32 bit platform

void main(argc,argv)
int argc;
char* argv[];

static long ialpha[2];
static int ftnsiz[] = {1,1,2};
static namelist DATAVAR][] = {

alpha",ialpha,5,ftnsiz

2

static char *DATAVAL[] = {

"$DATAVAR",

"ialpha="Hello','World.",",

"$END"

2

static char* F1[] = {
"(1x ,2a6)"

2
ftnini(argc,argv,NULL);
fiointu((char*)DATAVAL,0,2);
fiornl(DATAVAR,1,NULL);
WRITE(OUTPUT,FMT,F1,1,D0,2,INT4,ialpha,0);
STOP(NULL);

}

because the long variabildpha is now expected to contain 6 characters. We need théettanslator that this variable is
really a CHARACTER*6. The following configuration file does this.

SWITCHES QW3606
RESTRUCTURE
IALPHA CHARACTER*6
END

Using this configuration file, the following "correct" translation is produced.
void main(argc,argv)
int argc;
char* argv[];

{
static char ialpha[12] = {

116

PromulaFortran Translator User's Manual

He 10 W T

I3

static char* F1[] = {
"(1x,2a6)"

2
ftnini(argc,argv,NULL);
WRITE(OUTPUT,FMT,F1,1,D0,2,STRG,ialpha,6,0);
STOP(NULL);

}

3.5 The nfiguration KEYWORDS Statement

Most of the actual text output GREAT MIGRATIONS is formed by combining sequences of keywords or keyword
strings. These strings can be changed by the user, although if they are changed the user must make certasuthit the r
still compilable. Most KEYWORD changes require an equivalent change in the fortran.h header file. Each KEYWORD can
be referenced either by its current form or by its identification number.

The keywords themselves are of two types:

(1) simple stings
(2) pattern strings

The table below shows the simple strings within the keyword table. These appear in the cGfRRERAIGT MIGRATIONS
exactly as shown in the appropriate places.

Idn Keyword Description of use in C
1 void equivalent of SUROUTINE
2 short equivalent of INTEGER*2
3 double equivalent of REAL*8
4 unsigned short equivalent of LOGICAL*2
5 char equivalent of INTEGER*1
6 long equivalent of INTEGER*4
7 float equivalent of REAL*4
8 unsigned long equivalent of LOGCAL*4
9 unsigned char equivalent of LOGICAL*1
10 double equivalent of REAL*16
11 dcomplex equivalent of DOUBLE COMPLEX
12 complex equivalent of COMPLEX
13 char equivalent of CHARACTER
14 static static keyword
15 auto auto keyword
16 extern extern keyword
17 typedef typedef keyword
18 struct struct keyword
19 ftnadr array that contains assigned FORMAT pointers
20 ftnalloc allocates memory for dynamic variables
21 ftndim array for dimension values for namelist
22 ftnlen number of lines in assigned FORMATs
23 ftnfree frees memory for dynamic variables
24 ftnsiz array for dimension values for runtime data
25 namelist structure name for namelist
26 declaration which precedes includes
27 ftnini(argc,argViNULL); runtime initialization function call
28 vmsopn(argc,argv); runtime initialization call for virtual memory
29 void main(argc,argv) main program declaration
30 int argc; declaration for main argc argument
31 char* argv[]; declaratiorfor main argv argument
32 #define #define keyword
33 #undef #undef keyword

117

PromulaFortran Translator User's Manual

Idn Keyword Description of use in C

34 if if keyword

35 switch switch keyword

36 case case keyword

37 default default keyword

38 break break keyword

39 goto goto keyword

40 for for keyword

41 return return keyword

42 DATAVAR namelist structure for runtime data

43 DATAVAL data for runtime data

44 END marks end of runtime data

45 FIRST variable which record first entry into function
46 IENTRY entry point numbevariable

47 RETNUMB alternate return variable

48 ELP endlocalprocessing statement label
49 0 zero of type of INTEGER*2

50 0.0 zero of type of REAL*8

51 0 zero of type LOGICAL*2

52 o' zero of type INTEGER*1

53 oL zero of tye INTEGER*4

54 0.0 zero of type REAL*4

55 oL zero of type LOGICAL*4

56 0 zero of type LOGICAL*1

57 0.0 zero of type REAL*16

58 dpxzero zero of type DOUBLE COMPLEX

59 cpxzero zero of type COMPLEX

60 int int keyword

61 NULL NULL keyword

62 fiointu((char¥*) initializes runtime data processing

63 fiornl performs runtime data processing
65 union union keyword

66 sizeof sizeof keyword
119 INT2 i/o list designator for INTEGER*2
120 REALS i/o list designator foREAL*8
121 LOG2 i/o list designator for LOGICAL*2
122 BYTE i/o list designator for INTEGER*1
123 INT4 i/o list designator for INTEGER*4
124 REAL4 i/o list designator for REAL*4
125 LOG4 i/o list designator for LOGICAL*4
126 LOG1 i/o list designator for LOGICAL*1
127 DCMPLX i/o list designator for DOUBLE COMPLEX
128 STRG i/o list designator for CHARACTER
129 DO /o list designator for implied DO
130 CSTR i/o list designator for constant string
131 \7%7d printf for freeform INTEGER*2
132 \25%25.15E printf for freeform REAL*8
133 \2%2c printf for freeform LOGICAL*2
134 \3%3d printf for freeform INTEGER*1
135 \12%12Id printf for freeform INTEGER*4
136 \16%16.6E printf for freeform REAL*4
137 \2%2c printf for freeform LOGICAL*4
138 \3%3d printf for freeform LOGICAL*1
139 \25%25.15LE printf for freeform REAL*16
140 \53(%25.15E,%25.15E) printf for freeform DOUBLE COMPLEX
141 \35(%16.6E,%16.6E) printf for freeform COMPLEX
142 \0%s printf for freeform CHARACTER
150 CMPLX i/o list designator for COMPLEX
151 _Inline inline function designator
152 #include "fortran.h" include request for fortran.h
154 ftnblkd name of BLOCK DATA subprogram
163 REALS i/o list designatofor REAL*8

118

PromulaFortran Translator User's Manual

Idn Keyword Description of use in C

164 BD_ COMMON data module prefix

165 VOID type of initialized structures array

166 #define LPROTOTYPE platform type designator

169 volatile volatile keyword

170 "={NULL,0}" initialization string for descriptors

171 "z" replacement characters for $ and

211 ftnstruc structure initializations of set array

212 ftnfdata structure initializations data

213 ftnrecrd initialized structures array

214 fiostrdi(ftnstruc, structure data initialization function céfhfdata,ftnrecrd);
259 "string" type label for string descriptors

260 "n" element name of descriptor string length
261 "a" element name of descriptor string address
270 "TRUE" symbol for logical TRUE constant value
271 "FALSE" symbol forlogical FALSE constant value
272 "Ktrue" symbol for logical TRUE constant variable
273 "Kfalse" symbol for logical FALSE constant variable

The pattern strings transform simple strings generated into alternate forms. The simple string is edpogs&ercent
(%) sign within the pattern string. The table below lists the available pattern strings.

Idn Keyword Description of use in C

64 #include "%" pattern string for writing includes
153 #pragma pfc("%") pattern string for writingoragmas
155 void ftnblkd() { name of COMMON initializations function
156 %1(); pattern string for COMMON initialization calls
157 } end of COMMON initialization function
172 "%" pattern string for external functions
174 "P%" pattern stringor argument surrogates
262 "T%" pattern string for local COMMON variable
263 "C%" pattern string for COMMON structure
264 "X%" pattern string for COMMON external
265 "%.h" pattern string for translated include names
267 "#endif /*ICF_% */" pattern string for include #endif
268 "#ifndef ICF_%" pattern string for include #ifndef
269 "#define ICF_%" pattern string for include #define

The KEYWORD statement in the configuration file begins with the command KEYWORD as a single lirfelltwsd
by a series of lines each containing a keyword string in quotes or a simple keyword identifier followed by the substitute
string to be used in quotes. The end of the replacement pairs is indicated by the word END on a single line.

The following subsections give several examples in which the look of the translation of the following code is altered using
a KEYWORDS statement.

SUBROUTINE TEST4

INTEGER*4 hd_hedsiz ! /* Length of header */

INTEGER*4 hd_numtab ! /* No. of t ables in file */
INTEGER*4 hd_filrev ! /* Model file revision date */

INTEGER*4 hd_sysprim ! /* No. of system primitive types */
COMMON/MODELHEAD/hd_hedsiz,hd_numtab,hd_filrev,hd_sysprim
CALL TEST5(hd_numtab,hd_filrev)

hd_hedsiz = hd_numtab - hd_filrev

WRITE(1) hd_hedsiz,hd_numtab,hd_filrev,hd_sysprim
RETURN

END

SUBROUTINE TEST5(num,rev)

119

PromulaFortran Translator User's Manual

INTEGER*4 num,rev
num = num * rev + 2
RETURN

END

The default translation of this ceds as follows:

void test4(heading,P1)
char *heading;
int P1;

extern void test5();
extern char Xmodelhead[];

typedef struct {

long hd_hedsiz; [* Length of header*/

long hd_numtab; /* No. of tables in file*/

lon g hd_filrev; [* Model file revision date*/

long hd_sysprim; /* No. of system primitive types*/
} Cmodelhead;

auto Cmodelhead *Tmodelhead = (Cmodelhead*) Xmodelhead;
test5(&Tmodelhead - >hd_numtab,&Tmodelhead - >hd_filrev);
Tmodelhead - >hd_hedsiz = Tmodelhead - >hd_numtab - Tmodelhead - >hd_filrev;
WRITE(1,LISTIO,STRG,heading,10,0);
WRITE(1,LISTIO,INT4,Tmodelhead - >hd_hedsiz,INT4,Tmodelhead - >hd_numtab,0);
WRITE(1,LISTIO,INT4,Tmodelhead - >hd_filrev,INT4,Tmodelhead - >hd_s ysprim,0);
return;

void test5(num,rev)
long *num,*rev;

{
*num = *num**rev+2L;
return;

}

char Xmodelhead[16];

3.5.1 Simple Keyword Replacement

To begin the detailed discussion of keyword replacement, let us assume that the user prefersNFQ@RKIRé variable

type names. He has made the following additions to the fortran.h file

#define INTEGER4 long
#define CHARACTER char

and wishes to have the corresponding changes made GREAT MIGRATIONS output. The followingdemo.cnf file

will do this.

KEYWORDS

6 "INTEGER4"

13 "CHARACTER"
END

Whentest4 is translated using thedemocommand line switch, the following translation will be produced.

void test4(heading,P1)
CHARACTER *heading;

int P1;

extern void test5();

extern char Xmodelhe ad[];

typedef struct {
INTEGER4 hd_hedsiz; [* Length of header*/
INTEGER4 hd_numtab; /* No. of tables in file*/
INTEGER4 hd_filrev; /* Model file revision date*/

120

PromulaFortran Translator User's Manual

INTEGER4 hd_sysprim; /* No. of syst em primitive types*/

} Cmodelhead;

auto Cmodelhead *Tmodelhead = (Cmodelhead*) Xmodelhead;
test5(&Tmodelhead - >hd_numtab,&Tmodelhead - >hd_filrev);
Tmodelhead - >hd_hedsiz = Tmodelhead - >hd_numtab - Tmodelhead - >hd_filrev;
WRITE(1,LISTIO,STRG,heading,10 ,0);
WRITE(1,LISTIO,INT4,Tmodelhead - >hd_hedsiz,INT4,Tmodelhead - >hd_numtab,0);
WRITE(1,LISTIO,INT4,Tmodelhead - >hd_filrev,INT4,Tmodelhead - >hd_sysprim,0);
return;

}

void test5(num,rev)

INTEGER4 *num,*rev;

{
*num = *num**rev+2L;
return;

}
char Xmodelhead[16];

Notice that there are several differehtir occurrences within the output. Some pertain directly to the CHARACTER type
while others are used for various memory allocation specifications. Keyword 13 is the one for the CHARACTER type.
Alternatively, there is only one use lohg in the keyword list; therefore, the following alternatikemo.cnf file would
produce the same result.

KEYWORDS

"long" "INTEGER4"
13 "CHARACTER"
END

3.5.2 Pattern Strings for COMMON blocks

In the defaultranslation COMMON blocks generate three different symBoldistinguished by the initial first letter. The
X indicates the global storage area, thimdicates the structure definition, and theéndicates local pointer. The pattern
strings used to produdhis convention aréx%", "C%", and"T%". Suppose instead that you wish to label the global
storage area with the suffiarea , to label the structure definition with the prefixuct_ , and to have the local pointer
simply use the COMMON name. The followy KEYWORDS statement would make this change.

KEYWORDS
"Xo%" "%_area"
"C%" ‘“struct %"
Top" "o

END

The following translation is produced.

void test4(heading,P1)

char *heading;

int P1;

{

extern void test5();

extern char modelhead_area(];
typedef st ruct{

long hd_hedsiz; [* Length of header*/

long hd_numtab; /* No. of tables in file*/

long hd_filrev; /* Model file revision date*/

long hd_sysprim; /* No. of system primitive typ es*/

} struct_modelhead;

auto struct_modelhead *modelhead = (struct_modelhead*) modelhead_area;
test5(&modelhead - >hd_numtab,&modelhead - >hd_filrev);
modelhead - >hd_hedsiz = modelhead - >hd_numtab - modelhead - >hd_filrev;
WRITE(L,LISTIO,STRG,heading,10 ,0);

121

PromulaFortran Translator User's Manual

WRITE(1,LISTIO,INT4,modelhead - >hd_hedsiz,INT4,modelhead - >hd_numtab,0);
WRITE(1,LISTIO,INT4,modelhead - >hd_filrev,INT4,modelhead - >hd_sysprim,0);
return;

void test5(num,rev)

long *num,*rev;

{
*num = *num**rev+2L;
return;

char mode l|head_area[16];

Of course the KEYWORDS of this section can be combined with those of the last to produce the faléondrgf file.

KEYWORDS

"long" "INTEGER4"
13 "CHARACTER"
"X%" "%_area"
"C%" "struct_%"
"T%" "%"

END

This configuration theproduces the following translation.

void test4(heading,P1)
CHARACTER *heading;
int P1;

extern void test5();
extern char modelhead_area[];

typedef struct {
INTEGER4 hd_hedsiz; /* Length of header*/
INTEGER4 hd_numtab; /* No. of tables in file*/
INTEGER4 hd_filrev; /* Model file revision date*/
INTEGER4 hd_sysprim; /* No. of system primitive types*/

} struct_modelhead;
auto struct_modelhead *modelhead = (struct_modelhead*) modelhead_area;
tests (&modelhead - >hd_numtab,&modelhead - >hd_filrev);

modelhead - >hd_hedsiz = modelhead - >hd_numtab - modelhead - >hd_filrev;
WRITE(1,LISTIO,STRG,heading,10,0);

WRITE(1,LISTIO,INT4,modelhead - >hd_hedsiz,INT4,modelhead - >hd_numtab,0);
WRITE(1,LISTIO,INT4,m odelhead ->hd_filrev,INT4,modelhead - >hd_sysprim,0);
return;

}

void test5(num,rev)
INTEGER4 *num,*rev;

{

*num = *num**rev+2L;
return;

char modelhead_area[16];

3.5.3 Pattern String for External Functions
Many UNIX FORTRAN compiler®d AlX and SUN OS for examplé append an underscore to external symbols. This
effect can be achieved iBREAT MIGRATIONSDby changing pattern string 172. The following configuration file

KEYWORDS
172 "%_"
END

122

PromulaFortran Translator User's Manual

produces the following translation. Notice the undemsappended to the function symbols.
void test4_(heading,P1)
char *heading;
int P1;
{
extern void tests_();
extern char Xmodelhead[];

typedef struct {
long hd_hedsiz; [* Length of header*/
long hd_numtab; /* No. of tab les in file*/
long hd_filrev; /* Model file revision date*/
long hd_sysprim; /* No. of system primitive types*/
} Cmodelhead;

auto Cmodelhead *Tmodelhead = (Cmodelhead*) Xmodelhead,;
tests_(&Tmodelhead - >hd_numtab,&Tm odelhead - >hd_filrev);
Tmodelhead - >hd_hedsiz = Tmodelhead - >hd_numtab - Tmodelhead - >hd_filrev;
WRITE(1,LISTIO,STRG,heading,10,0);
WRITE(L,LISTIO,INT4, Tmodelhead - >hd_hedsiz,INT4,Tmodelhead - >hd_numtab,0);
WRITE(1,LISTIO,INT4,Tmodelhead ->hd_filrev ,INT4,Tmodelhead - >hd_sysprim,0);
return;

void test5_(num,rev)
long *num,*rev;

{
*num = *num**rev+2L;
return;

}

char Xmodelhead[16];

3.5.4 Pattern String for Subprogram Surrogates

As is discussed under the Y4 command line switch a typicRTHRAN optimization involves making local surrogates for
subprogram parameters. Using Y4 with the example used above produces the following translation (only last subprogram
shown).

void test5(Pnum,Prev)
long *Pnum,*Prev;

auto long num = *Pnum;

auto long rev = *Prev;
num = num*rev+2L;
goto ELP;

ELP:
*Pnum = num;

}

The manner in which the local surrogates are formed can easily be changed. Consider the following configuration file

KEYWORDS
"P%" "Local_%_copy"
END

which will change the lookf the translation considerably.

void test5(Local_num_copy,Local_rev_copy)
long *Local_num_copy,*Local_rev_copy;

auto long num = *Local_num_copy;
auto long rev = *Local_rev_copy;
num = num*rev+2L;
goto ELP;
ELP:

123

PromulaFortran Translator User's Manual

*Local_num_copy = num;

}

3.55 Pattern Strings for VAX Descriptors
Users of VAX FORTRAN often want to treat characters as descriptors. The CHyv flag gives this basic treatment. Consider
the following simple code.

SUBROUTINE DEMO(l,J)
CHARACTER*12 NAME
CHARACTER*4 INITIAL

I = INDEX(NAME,INITIAL)
J = JINDEX(NAME,INITIAL)
RETURN

END

The output of the code above using the CHv command line sdittdtough we will put the switch into a configuration file
as discussed earlier in this chagielis below.

void demo(i,j)
long *i,%j;

extern long jindex();
static char name[12],initial[4];
static string T1 = {NULL, 0 };
static string T2 ={ NULL, 0 };
* = fifindex(name,12,initial,4);
Tl.a=name; T1l.n=12;
T2.a =initial; T2.n = 4;
*j = jindex(&T1,&T2);
return;

}

All the machinery needed for "real" VAX descriptors is here; however, the following configuration file is needed.

SWITCHES CHv

KEYWORDS

"string" "DESCRIPTOR"

"n" "Dleng"”

ng "Dptr"

" ftnsallo" "ftndallo”

"= {NULL,0}" "={0,0,0, NULL }"
END

This produces the following translation.

void demo(i,j)
long *i,*j;

extern long jindex();
static char name[12],initial[4];
static DESCRIPTOR T1={0, 0, 0, NULL };
static DESCRIP TOR T2={0, 0, 0, NULL };
* = fifindex(name,12,initial,4);
T1.Dptr = name; T1.Dleng = 12;
T2.Dptr = initial; T2.Dleng = 4;
* = jindex(&T1,&T2);
return;

3.6 The Configuration PRAGMA Statement

124

PromulaFortran Translator User's Manual

Sotfware developers have long facéx tproblem of nonportability with FORTRAN. As a result, many have written
FORTRAN preprocessors that aid in making FORTRAN programs more portable. A major feature of C that makes it
portable is its ability to deal with conditional compilation. It is veoynenon for FORTRAN preprocessors to have such a
capability as well. Consider the following simple FORTRAN code which uses a conditional compilation notation.

SUBROUTINE TEST6

CALL RENAME_F (‘'modxx.lio','model.lio")
*#1F UNIX
*? CALL RENAME_F ('modxx.lio','model.lio")
*#ENDIF

CALL RENAME_F (‘'modxx.lio','model.lio")

STOP

END

This particular notation uses three particular comment strings:

#IF introduces a conditional expression
*? introduces a statement Wwih a conditional block
*#ENDIF closes a conditional block

Though the notation varies from site to site, the above is typical. Since these conventions are based on C, we need to have
some mechanism for describing them to PROMULA.

To see the problem, thellowing is the default translation of the above.

void test6()

extern void rename_f();
rename_f("modxx.lio","model.lio",9,9);

/*

#IF UNIX

? CALL RENAME_F ('modxx.lio*,'model.lio")

#ENDIF

*/
rename_f("modxx.lio","model.lio",9,9);
STOP(NULL);

}

The translator completely ignores the true meaning of the condition block. The whole thing is treated as a comment. The
fact that the? should be ignored when going to C is easily established using the ¥bBrftnand line switch. This switch
is described in the previous chapter. It gives the following translation.

void test6()

extern void rename_f();
rename_f("modxx.lio","model.lio",9,9);
/*
#IF UNIX
*/
rename_f("modxx.lio","model.lio",9,9);
/*

#ENDIF

*/
rename_f("modxx.lio","model.l i0",9,9);
STOP(NULL);

}

Now we have gone too far the other way. The conditional statement will always be executed. We rRE A€l
MIGRATIONS to translate th&lF and#ENDIF into #if and#endif . The following configuration file does this.

125

PromulaFortran Translator User's Manual

SWITCHES Yd*?
PRAGMA "#" "IF" "#ifdef%" "ENDIF" "#endif"

Syntax

PRAGMA "¢" "s1" "t1" ... "sn" "tn"
Where:

¢ is the comment character introducing a special comment

si is a keyword in the source language

ti is the corresponding pattern string in the targeglage where thés represents anything on the comment
following the keyword.

In the PRAGMAtatement above then, conditional statements begin withTehe IF conditional is translated int¢ifdef
conditional and ENDIF whatever" is translated intgendif

The resultant translation of the code above is as follows.

void test6()

extern void rename_f();
rename_f("modxx.lio","model.lio",9,9);

#ifdef UNIX
rename_f("modxx.lio","model.lio",9,9);

#endif
rename_f("modxx.lio","model.lio",9,9);
STCP(NULL);

}
3.7 The Configuration $ Statement

The configuration $ statement simply specifies the replacement character for the dollar sign.
Syntax
$c
Where:
c s the replacement character.

By default all$ symbols in the source code are replaced.biyhe default translation of the following code

FUNCTION HELLO$(1$,J$)
DIMENSION WORLD$(10,20)
HELLO$ = WORD(I$,J$)
RETURN

END

is as follows.

float helloZz(iz,jz)
long *iZ,*jZ;

extern float word();

static float helloZ;
helloZ = word(iZ,jZ);
return helloZ;

126

PromulaFortran Translator User's Manual

}

Using a configuration statement$8 would give the following.

float helloS(iS,jS)
long *iS,*jS;

extern float word();

static float helloS;
helloS = word(iS,jS);
return helloS;

}

Alternatively, if$is to be left alone, usks.

float hello$(i$,j$)
long *i$,*j$;

extern float word();

static float hello$;
hello$ = word(i$,j$);
return hello$;

127

PromulaFortran Translator User's Manual

4. THE CONFIGURATION FUNCTION PROTOTYPES

As has been discussed in several other places, FORTRAdEpall function arguments by nafei.e., it passes the

address of a parameter to a subprogram as opposed to its value. C, on the other hand, allows argument values to be passe
directly as well as allowing the passing of argument addresses. In instemeresthe value of the argument is scalar and

where its value is not being changed by the subprogram, passing the value of that argument is far more efficient than
passing its address. Whenever possible, the translation from FORTRAN to C should-bgesakie. The problem is that

it is not always possible tell whether ebif-value is possible simply from the source code. Some other device is needed to

tell the translator which arguments can be passed by value.

Another problem with FORTRAN is that is iweak typing. By this is meant that it is sometimes valid to pass data of
differing binary types via the same subprogram argument. The translator needs to know when this is valid; and if it is not
valid, it needs to know which binary type is the expeanrd. Many perfectly valid FORTRAN programs fail either at
compilation time or execution time because of differing typing conventions and differing internal representations. There is
no general solution to the translation of "wagging" FORTRAN programsThe translator must be told what to do. Some
device is needed to describe subprogram arguments to the translator.

A similar problem has faced C programmers as well. Consequently, the new ANSI C has introduced the notion of a
"function prototype" which desibes the arguments of functions in terms of their binary type and in terms of their pointer
status. The conventions developed there are exactly those needed by the translator, although they need to be extended
slightly to deal with virtual variables, ntiple forms, and "external name clash".

The C prototype system and its extensionsGREAT MIGRATIONS are discussed in this section. It is strongly
recommended that you take the time to develop a set of prototypes for the subprograms within a FORGR¥&Npyior
to translation, if that program is suspected of playing any games with internal representations.

It should be pointed out that the storage of prototype information read from a configuration file has been carefully
optimized, which means thatdte are minimal performance penalties for using large prototype files.

4.1 Function Prototype Syntax

In C, a "function prototype" declaration defines the name, return type, and storage class of a function. In addition, it can
define the types of some ail of the arguments for that function. The prototype declaration has the same format as the
function declaration, except that it is terminated by a semicolon, and the argument identifiers are optional. If used,
argument identifiers have scope only wittiie prototype declaration and serve only as place holders., int a,b,c; is the

same as int,int,int.

The syntax used for prototypes B REAT MIGRATIONSIs similar to that used by C; however, it is unfortunately not the
same. The reason is that additibinformation must be supplied to the translator since additional problems are introduced
by the wealtyping conventions of FORTRAN.

The syntax of th6REAT MIGRATIONS prototype definition is as follows:

[fname] type name(type[c],type[c][,...])
[.type name(type[c].type[c][....])[....]

Where:
fname is the name of the subprogram used in the FORTRAN code.

type is one of the following C binary type specifiers:

void

128

PromulaFortran Translator User's Manual

short

double
unsigned short
char

long

float

unsigned long
dcomplex
complex

string

name is any valid identifier to be used in the C output
c is one of the following special characters:

* indicates a memory pointer to the indicated type
+ indicates a virtual pointer to the indicated type
I indicates that a value conversion should & ento the indicated type

Only a single prototype definition may occur on each record and the notation below in PROMULA

type name()

means that the function has no arguments. It does not mean that the function has some unspecified number of unspecified
arguments.

The type specifiers have their traditional C interpretation. The complex and dcomplex types refer tpreaigjien

complex and doublprecision complex respectively. The string type refers to the FORTRAN style character string which
was discgsed extensively in the section on the CHARACTER type. Remember that a string argument actually consists of a
pointer and a length specification. Depending upon the character translation scheme being used, these two may not even
appear together in the aatlC function declaration.

4.2 Value Parameters

If no ¢ specifier follows the type specification, a value parameter is being defined. When a reference to this argument is
processed, the value of the argument is passed and not its address. If therguto@htadoes not have the proper type,

then an error occurs. The only exception to this occurs when processing numeric constants. A constant with a decimal point
or exponent specified may be used as either a float or double value parameter, and a pustarit without a decimal
indication with a value in the rang82767 to + 32767 may be used in either a long or short environment. In a long context

an "L" is appended. The following simple example shows this.

void alpha(float,double,short,long)

SUBROUTINE DEMO

CALL ALPHA(1.234,10E5,32,32)

RETURN

END

SUBROUTINE ALPHA(FLT,DBL,ISHT,LNG)
REAL*8 DBL

INTEGER*2 ISHT

WRITE(*,*) FLT,DBL,ISHT,LNG

RETURN

END

The prototype above used in conjunction wita FORTRAN code above produces the following output.

void demo()

extern void alpha();

129

PromulaFortran Translator User's Manual

alpha(1.24,1000000.0,32,32L);
return;

}

void alpha(flt,dbl,isht,Ing)
int isht;

double dbl;

long Ing;

float flt;

WRITE(OUTPUT,LISTIO,REALA4,fIt,REALS,dbl,I NT2,isht,INT4,Ing,0);
return;

}

In this output, the 32 being passed via the long parameter is shown as a long constant. The following is the same translation
as the above, but without the prototype supplied.

void demo()

extern void alpha();

static float K1 = 1.234;

static long K3 = 32;

static double T2;
T2 =1000000.0;
alpha(&K1,&T2,&K3,&K3);
return;

}

void alpha(flt,dbl,isht,Ing)
int *isht;

double *dbl;

long *Ing;

float *flt;

WRITE(OUTPUT,LISTIO,REALA4,*flt, REAL8,*dbl,INT2,*isht,IN T4,*Ing,0);
return;

}

Notice that PROTOTYPE definitions effect both the translation of references to subprograms and the definitions of
subprograms. In this sens8REAT MIGRATIONS is very different than C itself. Clearly the version driven by the
prototype is the better versid@n both from the standpoint of readability and from the standpoint of efficiency.

4.3 External Name Clash

A problem that pervades C, in particular, is the external name clash problem. One tends to use many differemtittbraries

C. Itis not at all unusual to have the same names used by different libraries. As an example, we recently worked with a
FORTRAN program which had two generalized 1/0O routines named fread and fwrite, which stood for FORTRAN READ
and FORTRAN WRITE. Sice these are the names of the standard C I/O functions they needed to be changed. The
prototype system irGREAT MIGRATIONS allows this to be handled very easily. Consider the following example
translated using the prototype definition shown.

fread void ft read(short,long*,short)
fwrite void ftwrite(short,long*,short)

SUBROUTINE DEMO
INTEGER A,B(10),C(20)
CALL FREAD(1,A,1)
CALL FWRITE(2,A,1)
CALL FREAD(1,B,10)
CALL FWRITE(2,B,10)
CALL FREAD(1,C,20)
CALL FWRITE(2,C,20)
RETURN

END

130

PromulaFortran Translator User's Manual

In the prototype, the name as it appears in the FORTRAN comes first, followed by the standard prototype information. The
decision to change these names is made entirely in the prototype file, no changes are neededah FH@RARAN. The
C output looks as follows.

void demo()

extern void ftread();

extern void ftwrite();

static long a,b[10],c[20];
ftread(1,&a,1);
ftwrite(2,&a,1);
ftread(1,b,10);
ftwrite(2,b,10);
ftread(1,c,20);
ftwrite(2,c,20);

}

The old names have been completely replaced as a result of the prototype specification.

4.4 Multiple Forms

Another problem that comes up has to do with multiple forms. Here a single function in FORTRAN has been translated in
different ways either becaa of some weak typing convention or because the function is to be used in both virtual-and non
virtual mode. As an example, consider that you have a statistical analysis function which computes the mean and variance
of a vector of values. You have trartskhit twice, once using virtual conventions and once using memory conventions. Let

us first see how these two versions of the following utility can be produced.

SUBROUTINE ANADAT(VAL,N,XBAR, VAR)
DIMENSION VAL(N)
XBAR=0.0
VAR=0.0
DO 10J=1,N
XBAR = XBAR + VAL(J)
10 CONTINUE
XBAR = XBAR/N
DO 15J=1,N
S=VALJ) - XBAR
VAR = VAR + S*S
15 CONTINUE
VAR = VAR/(N - 1)
RETURN
END

Translating it with the following prototype prodes the memory version shown below.
anadat void manadat(float*,short,double*,double*)

void manadat(val,n,xbar,var)

int n;

double *xbar,*var;

float val[];

static long j;

static float s;
*xbar = 0.0;
*var = 0.0;

for(j=0L; j<n; j++) {
*xbar = *xbar+vallj];

*xbar = *xbar/(double)n;

131

PromulaFortran Translator User's Manual

for(j=0L,; j<n; j++) {
s = val[j] - *xbar;
*var = *var+s*s;
}
*var = *var/(double)(n -1);
return;
}
Notice that the name of the function has been changed to agree avifinotiotype name. Now translating the identical
FORTRAN code with the following prototype produces the virtual code shown.

anadat void vanadat(float+,short,double*,double*)

void manadat(val,n,xbar,var)
int n;

double *xbar,*var;

long val,

static long j;
static float s;
*xbar = 0.0;
*var = 0.0;
for(j=0L; j<n; j++) {
*xbar = *xbar+*(float*)vmsuse(val+j*4);

*xbar = *xbar/(double)n;

for(j=0L; j<n; j++) {
s = *(float*)vmsuse(val+j*4) - *xbar;
*var = *var+s*s;

*var = *var/(double)(n -1);
return;

}

This code treatsal as a long virtual address and not as an array. All references to val are made through the vmsuse
function. Again the name of the function has been changed via the prototype.

Now the bllowing prototype and FORTRAN code can be translated. In the translation we WHREINT MIGRATIONS
that C is to be virtual, via an Sv100 command line switch.

anadat void vanadat(float+,short,double*,double*),
void manadat(float*,short,double*, double*)

SUBROUTINE TEST
DIMENSION A(10),B(20),C(100)

REAL*8 ABAR,AVAR,BBAR,BVAR CBAR,CVAR
CALL ANADAT(A,10,ABAR,AVAR)

CALL ANADAT(B,20,BBAR,BVAR)

CALL ANADAT(C,100,CBAR,CVAR)

RETURN

END

In this functionANADATwill be translated to useanadat when the vector is in memory amenadat when the vector
is virtual. The translation is as follows:

void test()

{

extern void vanadat();

extern void manadat();

static double abar,avar,bbar,bvar,cbar,cvar;
static floa t a[10],b[20];

static long c=32;

132

PromulaFortran Translator User's Manual

manadat(a,10,&abar,&avar);
manadat(b,20,&bbar,&bvar);
vanadat(c,100,&cbar,&cvar);
return;

}

This translation is exactly as desired.

4.5 Global Symbols and Prototypes

To interface with external subroutinganctions, and common data arésREAT MIGRATIONS must know the naming
conventions and parameter types for each. This information is supplied via function prototypes, using either standard ANSI
C notation or an extended notation which allows changingdhee of the external in the target language. These prototypes

are entered within separate prototype files which are read at runtime via the Rfilename command line switch. The notation
and use of these files is described in detail in the earlier secfitims ochapter.

An additional problem that comes up is that some of the runtime libraries have been implemented via FORTRAN and
others via C. Some FORTRANSs and/or some Cs append additional characters to each externdl $eribalfunction or

a subrouhe. This requires that groups of global symbols, but not all, use a modified naming convention. These
modifications are achieved via GLOBAL strings, which may be entered into prototype files.

The GLOBALS string consists of two characters odlythe functon or subroutine prefix and suffix characters. As an
example, consider the following piece of a prototype file for a FORTRAN based system in which the FORTRAN compiler
appends an underscore character.

GLOBALS " _"

void actday(long*,long*,long*,long*);

void valdt(long*,long*,long*,short*);

void fixdt(long*,long*,long*,long*,long*,long*,long*,short*);
void weeknd(long*,long*,long*,long*,long*,long*,long*,short*);

The actual public names aagtdat_ , valdt_ , fixdt_ , andweeknd_. The GLOBALS string precedinthese tells
GREAT MIGRATIONSto make this change in the target C.

4.6 Renaming Identifiers Only
A final capability of the configuration file is to allow the user to enter simple identifier renaming requests. The following
notation

oldname * newname

in a prototype input file will rename all occurrences of oldname with newname.

133

PromulaFortran Translator User's Manual

5. OVERVIEW OF RUNTIME LIBRARY

The GREAT MIGRATIONSFORTRAN runtime library is a set of approximately 250 functions designed for use with the
C output of GREAT MIGRATIONS FORTRAN. It may also be used by those FORTRAN programmers who wish to
program in C, but who do not wish to give up the input/output conventions, formatting controls, and intrinsic functions
which they have grown used to.

This chapter is provided primarily faghose user's o6REAT MIGRATIONS FORTRAN who intend to maintain the C
output independently of their FORTRAN originals. Initially, C codes using this library can be produced by producing C
source code usinGREAT MIGRATIONS FORTRAN. Once in C, the programsay then be maintained by using these
functions and their documentation.

The source code for all functions in this library is available. If there is one certainty, it is that no two FORTRANsrbehave

the same way, especially with regard to their runtitmaries. Thus, if your conventions differ from the ones used here, or

if you require some specialized behavior, you may alter the library code. Alternatively, your version of FORTRAN may
contain statements which require runtime support not includetisnlibrary. In this case, you can add the additional
functions needed. For more discussion of this topic see the chapter in this manual on the implementation of nonstandard
FORTRAN dialects.

Another use of the material in this and the next chapter gptimize the runtime behavior of the C output for special
platforms or special needs. Much of this customization can be done Vattleh file which is included with each C
output romGREAT MIGRATIONSFORTRAN. This file is discussed in this chapteneell.

5.1 Naming and Organization of Functions
The GREAT MIGRATIONS FORTRAN runtime library functions are divided into six general groups. Associated with
each group is a three letter prefix which is part of each function name. The groups are as follow

Prefix General Description

cpx Performs single precision complex arithmetic
dpx Performs double precision complex arithmeti
fif Noncomplex intrinsic function

fio Performs an input/output operation

ftn Performs a general FORTRAN operatio

p77 PRIME FORTRAN functions

pdp PDP FORTRAN functions

vms virtual memory management functions

The descriptions of the individual functions are given in alphabetic order in the following chapter. The remainder of this
chapter gives a summary dission of the six functions, a listing of the runtime error produced, a description of the
pfclib.h header file which is included with every runtime function, and finally a description dbrthen.h header

file which is included byfclib.h ~ and which isalso included by each C output file produced3REAT MIGRATIONS
FORTRAN.

The final file needed by every runtime function is peeform.h file. This file is used to achieve transportability of the C
source code over a wide variety of platforms. Thiadee file is also included by the shrouded source codeREAT

134

PromulaFortran Translator User's Manual

MIGRATIONS FORTRAN itself. It is discussed in the chapter containing the installation instructionS R&AT
MIGRATIONS FORTRAN and its runtime library.

5.2 General FORTRAN Operations

This goup of functions is named with the preffin. They include those operations needed to support the actual
FORTRAN language conventions; character manipulatiena branching, generalized DO loops, etc. Also included in

this group are the interface fuias used by the C and FORTRAN bias to simplify the translation of FORTRAN I/O
statements.

5.3 Input/Output Operations

This group of functions is named with the prefiix. As has been discussed in other parts of this manual, the FORTRAN
input/output steements have not been translated into standard C type input/output operations. Rather, they have been
translated into function calls much like the calls that would be generated by an actual FORTRAN compiler.

Each FORTRAN statement is broken into a sedédunction calls. If the FORTRAN operation specifies any error
operations, then an initial call is made to a funcfiostatus , which establishes the error processing conventions to be
used, and a final call is madefimerror ~ which generates any errbranches requested. If no error processing is specified
by the FORTRAN statement, then an error causes the program to exit.

5.3.1 Runtime Error Messages

The actual 1/0 errors generated along with the name of the function generating them are listefineeidentifier of each

error is a mneumonic which specifies the function which generated it and its cause. The codes specified are those returned
if the /O statement requests an error status value.

Error Code Function Description
ELUN_EOF -1 fiolun End of file encountered
EOPN_EOF -1 fioopen End of file encountered
ERBV_EOF -1 fiorbiv End of file encountered
ERTX EOF -1 fiortxt End of file

EWTX_EOF -1 fiowtxt Write beyond end of file
ELUN_RDO 106 fiolun Write to read only file
EINT_NAF 107 fiointu No active file structure
ELUN_NAF 108 fiolun No active file structure
EINT_TMF 109 fiointu Too many files open
ELUN_TMF 110 fiolun Too many files open

ENAM_TMF 111 fioname Too many files open
ESIO_TMF 112 fiostio Too many files open
ECLO_PCF 113 fioclose Physical close failure
EOPN_POF 114 fioopen Physical open failed
ECLO_POF 115 fioclose Physical open failure
EBCK_FRT 116 fioback At front of file
EBCK_DIR 117 fioback Direct access file
ELUN_PWF 118 fiolun Physical write failed
ERWV_PWF 119 fiorwbv Physical write failure
EWBV_PWF 120 fiowbiv Physical write failure
EWEF_PWF 121 fiowef Physical write failure

ERDB_IFS 122 fiordb Invalid format specification
ERDD_IFS 123 fiordd Invalid format specification
ERDF_IFS 124 fiordf Invalid format specification
ERDI_IFS 125 fiordi Invalid format specification
ERDL_IFS 126 fiordl Invalid format specification
ERDS_IFS 127 fiords Invalid format specification
ERDT_IFS 128 fiordt Invalid format specification
EWRB_IFS 129 fiowrb Bad format speciéiation
EWRS_IFS 130 fiowrs Bad format specification

135

PromulaFortran Translator User's Manual

EWRT_IFS 131 fiowrt Bad format specification
EWVL_IFS 132 fiowval Bad format specification
ENXF_EFS 133 fionxtf End of format string
ENXF_BTF 134 fionxtf Bad T format

ENXF_BUS 135 fionxtf Bad B business format string
ENXF_BBF 136 fionxtf Bad BN,Z format
ENXF_WID 137 fionxtf Missing width specification
ENXF_DEL 138 fionxtf Missing terminating delimiter
ENXF_HOL 139 fionxtf Bad Hollerith string
ERCK_BUF 140 fiorchk Internal buffer exceeded

ERDX_MLP 141 fiordx Missing left parenthesis
ERDX_COM 142 fiordx Missing comma
ERDX_MRP 143 fiordx Missing right parenthesis
Error Code Function Description

ERDZ_MLP 144 fiordx Missing left parenthesis
ERDZ_COM 145 fiordx Missing comma
ERDZ_MRP 146 fiordx Missing right parenthesis
ERNL_MNI 147 fiornl Missing namelist identifier
ERNL_MVI 148 fiornl Missing variable identifier
ERNL_UVI 149 fiornl Undefined variable identifier
ERNL_SSV 150 fiornl Subscripted scalar variable
ERNL_NNS 151 fiornl Nonnumeric subscripts
ERNL_TMS 152 fiornl Too many subscripts
ERNL_EQL 153 fiornl Missing equals sign
ERNL_BSI 154 fiornl Bad string input
ERNL_MLP 155 fiornl Complex missing left pren
ERNL_COM 156 fiornl Complex missing comma
ERNL_MRP 157 fiornl Complexmissing right pren

ESTD_NNC 158 fiostod Nonnumeric character in field

5.4 Noncomplex Intrinsic Functions

This group of functions is named with the prefik. Many of the noncomplex intrinsic functions are part of the C
"standard" C libraries. lmdar as the implementation of the noncomplex intrinsic functions is concerned, the following
functions are assumed to be part of the library supplied with your C compiler.

Name Prototype Description of computation
acos double acos(double) arcmsine

asin double asin(double) arcsin

atan double atan(double) arctangent

atan2 double atan2(double,double arctangent of y/x

cos double cos(double) cosine

cosh double cosh(double) hyperbolic cosine

exp double exp(double) exponential

fabs double fabs(double) absolute value

floor double floor(double) largest integer less than
log double log(double) natural logarithm

log10 double log10(double) base 10 logarithm

sin double sin(double) sine

sinh double sinh(double) hyperbolicsine

sqrt double sqrt(double) square root

tan double tan(double) tangent

tanh double tan(double) hyperbolic tangent

136

PromulaFortran Translator User's Manual

The functions above are referenced directly GREAT MIGRATIONS FORTRAN in its translations of the intrinsic
functions. In addion, the following functions are used internally in the implementation of the remaining functions.

Name Prototype Description of computation
modf double modf(double,double*) Gets components of a value
pow double pow(double,double) Raises ®lue to a power

5.5 Virtual Memory System

This group of functions is named with the prefims The virtual memory system serves two very different, yet
complementary purposes. The first is to allow programs with very large data needs to be implemesystems with

limited memory. The second is to make the information within programs available tGREAT MIGRATIONS
Application Development System and to other programs and tools constructed usipigaatMigrationssystem. This

topic is discusse@xtensively in the chapter on tH@REAT MIGRATIONS interface in theGREAT MIGRATIONS
FORTRAN Compiler Manual. To achieve these two goals the virtual file manager uses the same data structure as the
GREAT MIGRATIONSApplication Development System.

The harest problem which must be faced by a virtual memory system is determining whether or not a current block is in
memory or is on the file. The approach taken by this implementation uses a block status byte. The total virtual memory
space is divided into n ewly sized blocks, say N of them. A vector N bytes long is then reserved in memory. For any
given block, if the block status is zero, then the block is not in memory. If the status byte is nonzero, then it shatifies w
memory block contains it. The adwage of this approach is that it is very fast. The disadvantages are as follows:

1. The overall size of the virtual memory space needed must be known in advance. This is no problem for this
implementation because either a fiX6REAT MIGRATIONSfile is used (with known size when it is opened) or the
translator has calculated this value during the translation phase.

2. The maximum memory space that can be used is 254 times the memory block size, which is 1024 bytes in this
implementation. The current maxum is then 254K which is clearly ample given a 640K overall memory limit on the
typical MSDOS PC.

3. The maximum file size that can be accommodated is limited by the maximum length of the block status vector. Each K
of memory space allows for a megabwtevirtual space, given the 1024 blocksize being used here. So, this is no
problem. A minor problem faced by this algorithm is that the criteria for writing a block to the disk is based on its use
pattern; consequently, a block high in the file might béten before some blocks below it, thus creating potential
'holes' in the file. Though such holes are acceptable to many operating systems, we have decided to avoid them here.
The virtual algorithm must, therefore, remember whether a given block haplaeed on the disk because it has valid
information or simply to fill a hole.

5.5.1 The Virtual Memory Management Algorithm
The virtual memory management system is controlled via three basic storage elements:

2 The block status vector
3 The memory blck address vector
4 The virtual memory block

The block status vector is the key to this algorithm. There must be one entry for each block of memory. To keep this vector
as memory efficient as possible its entries can be stored as unsigned bytes. i€hampeaaiues in this vector are as
follows.

137

PromulaFortran Translator User's Manual

Code Meaning

0 This block is not in memory and has no valid data on disk. See disct
above on holes.

1 This block is not now in memory, but has data on dig63. This block is ir
memory andd stored in block i 2

Given the block status vector, the current status of any memory block can be determined via a single memérynaccess
searching for the block is required. Note that the block status vector is dynamically allocated whetuaheneimory
system is initialized.

Assuming first that the desired block is specified as being in memory by the block status vector, then the memory block
address vector contains a pointer to the actual virtual memory block. Since there is an absatutennaé254 memory

blocks, the maximum number of entries in the memory block address vector is 254; therefore, this vector is statically
allocated.

The virtual memory blocks are dynamically allocated until there are either 254 of them or until avaitetwiécdomemory
is exhausted. Each block is defined viathasbtyp structure defined as follows:

#define VMSBSIZ 1024

typedef struct {

int vbdel;

int vblru;

int vbmru;

long vbadr;

unsigned char vbdat[VBLKSIZ];
} vmsbtyp;

The membersf the structure are defined as follows:

Name Description of use
vbdel A flag indicating whether or not the data in this block has been chang
vblru The number of that block which immediately precedes this block ir

leastrecently usedthain. A zero in this member means that this bloc
the leastrecently used block.

vbmru number of that record which is immediately moeeently used than th
current block or zero if this block is the mastently used block.

vbdat the atual data contained within this block.

As can be seen from the above structure, the virtual memory system keeps track of the order of reference of the blocks.
When a block must be moved into memory and there are no empty memory blocks, the ledgtussmbntemory block is
flushed.

5.5.2 Virtual Memory Global Variables

Internally, the virtual memory system functions are controlled via a set of statically allocated global variables. Tdtese are
follows.

138

PromulaFortran Translator User's Manual

Variable Description of use

vmsbadr The addresses in memory of virtual blocks. Note that there &
maximum of 254 virtual memory blocks; therefore, this array is statis
allocated.

vmsblock A pointer to the block status vector as described above.

vmsfd The file descriptor fothe virtual file.

vmslru Number of the leastecently used block

vmsnblk The number of blocks on the virtual file.

vmsnwr The number of bytes currently written to the virtual file. This valu

needed for the whole avoidance logic.

5.6 Single Precision Complex Arithmetic

This group of functions is named with the predpx. Single precision complex arithmetic is handled entirely via function
references since C contains no complex arithmetic of its own. The functions are straigbtfasw@an be seen in the
following function descriptions. The basic structure used to implement the complex data type is as follows:

typedef struct {

float cr; [* The real part of the value */

float ci; [* The imaginary part of the number */
} complex

5.7 Double Precision Complex Arithmetic

Double precision complex arithmetic is handled entirely via function references since C contains no complex arithmetic of
its own. The functions all begin with the prefipx and are strghtforward as can be seen in the following function
descriptions. The basic structure used to implement the double complex data type is as follows:

typedef struct {

double cr; [* The real part of the value */

double ci; /* The imaginary part of the number */
} dcomplex

139

PromulaFortran Translator User's Manual

6. RUNTIME LIBRARY FUNCTION DESCRIPTIONS

The following sections contain the descriptions for the functions iInGREAT MIGRATIONS FORTRAN Runtime
Library.

6.1 CPXABS: Compute the Short Complex Absolut&alue

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

float cpxabs(a)
complex a Contains the value to be transformed

Description:

Computes the value of the short complex absolute value. The result is single precision.
Return value:

The single precision result.

See also:None

6.2 CPXADD: Short Complex Addition

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex
float cpxadd(a,b)
complex a The lefthand value
complex b The righthand value
Description:

Adds two short complex nupers to form a third.
Return value:

The complex result of the addition.

140

PromulaFortran Translator User's Manual

See also None

6.3 CPXCJG

Synopsis:
#include "fortran.h"

typedef struct {
float cr

float ci
} complex

complex cpxcjg(a)
complex a

Description:

: Compute the Short Complex Conjugate

GREAT MIGRATIONSFORTRAN function declarations

The eal part of the value
The imaginary part of the number

Contains the value to be transformed

Computes the complex conjugate of a short complex value. By definition:

¢ =conj(a) = a.cr - i*ac i

Return value:
The complex result.

See also:None

6.4 CPXCMP: Short Complex Comparison

Synopsis:
#include "fortran.h"

typedef struct {
float cr

float ci
} complex

int cpxcmp(a,b)
complex a

complex b

Description:

GREAT MIGRATIONSFORTRAN function declarations

The real part of the value
The imaginary prt of the number

The lefthand value
The righthand value

Compares two short complex numbers.

Return value:

A zero if the numbers are the same, else a one.

See also:None

141

PromulaFortran Translator User's Manual

6.5 CPXCOS: Compute the Short Complex Cosine

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

complex cpxcos(a)
complex a Containghe value to be transformed

Description:
Computes the value of the short complex cosine of a short complex number. By definition:

e(i*a) 4e(-i*a)
cos(a) = 5

Return value:
The short complex result.
See also:

float fifsncs Computesingle precision sin/cosine

6.6 CPXCPX: Convert Two Floats to Short Complex

Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the nurab
} complex

complex cpxcpx(d1,d2)

double d1 Contains the real value
double d2 Contains the imaginary value
Description:

Forms a short complex number whose real and imaginary parts are specified values.
Return value:

The short complex result.

142

PromulaFortran Translator User's Manual

See ato: None

6.7 CPXDBL: Convert Double Precision to Short Complex

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxdbl(dbl)
double dbl Contains the value to be transformed

Description:

Forms a short complex number whose real part is a specified value and whose imaginary part is zero.
Return value:

The short complex result.

See also:None

6.8 CPXDN: Short Complex Division

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

complex cpxdiv(a,b)

complex a The numerato
complex b The denominator
Description:

Divides two short complex numbers to form a third.
Return value:
The short complex result of the division.

See also:None

6.9 CPXDPX: Convert Double Complex to Short Complex

Synopsis:

143

PromulaFortran Translator User's Manual

#include "fortran .h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double dr The real part of the value
double di The imaginary part of the number
} dcomplex
float cpxdpx(dbl)
dcomplex dbl Contains the value to be transformed
Description:

Forms a shd complex number whose real and imaginary parts correspond to a double complex number.
Return value:
The short complex result.

See also:None

6.10 CPXEXP: Short Complex Exponential

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN functio declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

complex cpxexp(a)
complex a The value to be transformed

Description:

Computes the short complex exponential of a short compleg.valu
Return value:

The short complex exponential.

See also:None

6.11 CPXIMA: Compute the Imaginary Part of a Short Complex

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {

float cr The real part ofite value

float ci The imaginary part of the number

144

PromulaFortran Translator User's Manual

} complex

float cpxima(a)
complex a Contains the value to be transformed

Description:

Computes the imaginary part of a short complex value. The result is single precision.
Return value:

The single pecision result.

See also:None

6.12 CPXLOG: Short Complex Natural Logarithm

Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the nurab
} complex

complex cpxlog(a)
complex a The value to be transformed

Description:

Computes the short complex natural logarithm of a short complex value.
Return value:

The complex natural logarithm.

See also:None

6.13 CPXLOG10: Short Complex Bse 10 Logarithm

Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

complex cpxlog10(a)
complex a The value to be transfmed

Description:

145

PromulaFortran Translator User's Manual

Computes the short complex base 10 logarithm of a short complex value.
Return value:

The complex base 10 logarithm.

See also:

cpxlog() Computes complex natural logarithm

6.14 CPXLONG: Convert Short Complex to Long

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

long cpxlong(a)
complex a Contains the value to be transformed

Description:

Computes the real part of a short complex value and converts it to long.
Return value:

The long result.

See also:None

6.15 CPXMUL: Short Complex Multiplication

Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

complex cpxmul(a,b)

complex a The lefthand value
complex b The righthand value
Description:

Multiplies two short complex numbers to form a third.

146

PromulaFortran Translator User's Manual

Return value:
The short complex result of the multiplication.

See also:None

6.16 CPXNEG: Compute the Short Complex Negative

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of thealue
float ci The imaginary part of the number
} complex

complex cpxneg(a)
complex a Contains the value to be transformed

Description:

Computes the complex negative of a short complex value.
Return value:

The complex result.

See also:None

6.17 CPXPOL: Short Complex Conversion to Polar

Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

complex cpxpol(a)
complex a The value to be converted

Description:

Converts a complex number into its polar form. By definitigh in Cartesian form is
r*exp(i* a)

Return value:
The short complex result of the conversion.

See also:None

147

PromulaFortran Translator User's Manual

6.18 CPXPOW: Raise Short Complex to a Power

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of thealue
float ci The imaginary part of the number
} complex

complex cpxpow(a,b)

complex a The value to be raised to a power
complex b The value of the power
Description:

Computes the value of a short complex raised to a short complex power.
Return value:

The complex result of the calculation.

See also:

cpxexp() Computes a short complex exponential complex
cpxlog() Computes a short complex logarithm complex
cpxmul() Multiplies two short complex values

6.19 CPXREAL: Compute Real Part of ShortComplex

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

float cpxreal(a)
complex a Contains the value to be transfad

Description:

Computes the real part of a short complex value. The result is double precision.
Return value:

The double precision result.

See also:None

148

PromulaFortran Translator User's Manual

6.20 CPXSIN: Compute the Short Complex Sine

Synopsis:
#include “fortran.h" GREAT MIGRATIONS FORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

complex cpxsin(a)
complex a Contains the value to be transformed

Description:
Computes the value of the shorhgalex sine of a short complex number. By definition:

sin(a) = e(i”a) -2ie(" a)

Return value:
The short complex result.

See also:None

6.21 CPXSROOT: Compute Short Complex Square Root

Synopsis:
#include “fortran.h" GREAT MIGRATIONS FORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

complex cpxsroot(a)
complex a Contains the value to be transformed

Description:

Computes the square root offeost complex value.
Return value:

The short complex result.

See also:None

6.22 CPXSUB: Short Complex Subtraction

149

PromulaFortran Translator User's Manual

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

complex cpxsub(a,b)

complex a The lefthand value
complex b The righthand value
Description:

Subtracts two short complex numbers to form a third.
Return value:
The short complex result of the stdidtion.

See also:None

6.23 DPXABS: Compute the Double Complex Absolute Value

Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ci The imaginary part of tnnumber
} dcomplex

double dpxabs(a)
dcomplex a Contains the value to be transformed

Description:

Computes the value of the double complex absolute value. The result is double precision.
Return value:

The double precision result.

See also:None

6.24 DPXADD: Double Complex Addition
Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

150

PromulaFortran Translator User's Manual

typedef struct {
double cr

double ci
} dcomplex

dcomplex dpxadd(a,b)
dcomple x a
dcomplex b

Description:

The real part of the value
The imaginary part of the number

The lefthand value
The righthand value

Adds two double complex humbers to form a third.

Return value:

The double complex result of the addition.

See also:None

6.25 DPXCJG: Compute the Double Complex Conjugate

Synopsis:
#include "fortran.h"

typedef struct {
double cr

double ci
} dcomplex

dcomplex dpxcjg(a)
dcomplex a

Desciption:

GREAT MIGRATIONSFORTRAN function declarations

The real part of the value
The imaginary part of the number

Contains the value to be transformed

Computes the complex conjugate of a double complex value. By definition:

¢ = conj(a) = a.cr
Return value:
The complex result.

See also:None

6.26 DPXCMP:

Synopsis:
#include "fortran.h"

typedef struct {
double cr

double ci
} dcomplex

- i*a.ci

Double Complex Comparison

GREAT MIGRATIONS FORTRAN function declarations

The real part of the value
The imaginary part of the number

151

PromulaFortran Translator User's Manual

int dpxcmp(a,b)

dcomplex a The lefthand value
dcomplex b The righthand value
Description:

Compares two doue complex numbers.
Return value:
A zero if the numbers are the same, else a one.

See also:None

6.27 DPXCOS: Compute the Double Complex Cosine

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
doubl e cr The real part of the value
double ci The imaginary part of the number
} dcomplex

dcomplex dpxcos(a)
dcomplex a Contains the value to be transformed

Description:
Computes the value of the double complex cosine of a double complex number. Byoaefiniti

eli*a) 4e(-iva)
cos(a) = 5

Return value:
The double complex result.

See also:None

6.28 DPXCPX: Convert Short Complex to Double Complex

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

typedef struct {
float cr The real part of the value

float ci The imaginary part of the number
} complex

typedef struct {

152

PromulaFortran Translator User's Manual

double dr The real part of the value
double di The imaginary part of the number
} dcomplex

dcomplex dpxcpx(sng)
complex sng Contains thevalue to be transformed

Description:

Forms a double complex number whose real and imaginary parts correspond to a single complex number.
Return value:

The double complex result.

See also:None

6.29 DPXDBL: Convert Double Precision to Double Conipx
Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {

double cr The real part of the value

double ci The imaginary part of the number

} dcomplex

dcomplex dpxdbl(dbl)
double dbl Contains the value to be tisformed

Description:

Forms a double complex number whose real part is a specified value and whose imaginary part is zero.
Return value:

The double complex result.

See also:None

6.30 DPXDIV: Double Complex Division

Synopsis:
#include "fortran. h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ci The imaginary part of the number
} dcomplex
dcomplex dpxdiv(a,b)
dcomplex a The numerator

153

PromulaFortran Translator User's Manual

dcomplex b The denominator
Description:

Dividestwo double complex numbers to form a third.
Return value:

The double complex result of the division.

See also:None

6.31 DPXDPX: Convert Two Doubles to Double Complex

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ci The imaginary part of the number
} dcomplex

dcomplex dpxdpx(d1,d2)

double d1 Contains the real value
double d2 Contains the imaginary value
Description:

Forms a double complex number whagal and imaginary parts are specified values.
Return value:
The double complex result.

See also None

6.32 DPXEXP: Double Complex Exponential

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ci The imaginary part of the number
} dcomplex

dcomplex dpxexp(a)
dcomplex a The value to be transformed

Description:

Computes the double complex exponential of a double complex value.

154

PromulaFortran Translator User's Manual

Return value:
The double omplex exponential.

See also:None

6.33 DPXIMA: Compute Imaginary of Double Complex

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ci The imaginary partfahe number
} dcomplex

double dpxima(a)
dcomplex a Contains the value to be transformed

Description:

Computes the imaginary part of a short complex value. The result is double precision.
Return value:

The double precision result.

See also:None

6.34 DPXLOG: Double Complex Natural Logarithm

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ci The imaginary part of the number
} dcomplex

dcomplex dpxlog(a)
dcomplex a The value to be transformed

Description:

Computes the double complex natural logarithm of a double complex value.
Return value:

The double complex natural logarithm.

See also:None

155

PromulaFortran Translator User's Manual

6.35 DPXLOG10: Double Complex Base 10 Logarithm

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ci The imaginary part of the number
} dcomplex
dcomplex dpxlog10(a)
dcomplex a The value to be transformed
Description:

Computes the double complex base 10 logarithm of a double complex value.
Return value:

The complex base 10 logarithm.

See also:

dpxlog() Computes complex natural logarithm

6.36 DPXLONG: Convert Double Complex to Long

Synopsis:
#include "f ortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ci The imaginary part of the number
} dcomplex

long dpxlong(a)
dcomplex a Contains the value to be transformed

Description:

Computeshe real part of a double complex value and converts it to long.
Return value:

The long result.

See also:None

6.37 DPXMUL: Double Complex Multiplication

156

PromulaFortran Translator User's Manual

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struc t{
double cr The real part of the value
double ci The imaginary part of the number
} dcomplex

dcomplex dpxmul(a,b)

dcomplex a The lefthand value
dcomplex b The righthand value
Description:

Multiplies two double complex numbers to form a third.
Return value:
The double complex result of the multiplication.

See also:None

6.38 DPXNEG: Compute the Double Complex Negative

Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part oftte value
double ci The imaginary part of the number
} dcomplex

dcomplex dpxneg(a)
dcomplex a Contains the value to be transformed

Description:

Computes the negative of a double complex value.
Return value:

The double complex result.

See also:None

6.39 DPXPOL: Double Complex Conversion to Polar
Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

typedef struct {

157

PromulaFortran Translator User's Manual

double cr The real part of the value
double ci The imaginary part of the number
} dcomplex

dcomplex dpxp ol(a)
dcomplex a The value to be converted

Description:

Converts a complex number into its polar form. By definiigh in Cartesian form is
r*exp(i* Q)

Return value:
The double complex result of the conversion.

See also:None

6.40 DPXPOW: Raise Double Complex to a Power

Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ci The imaginary part of the number
} dcomplex

dcomplex dpxpow(a,b)

dcomplex a The value to be raised to a power
dcomplex b The value of the power
Description:

Computes the value of a short complex raised to a short complex power.
Return value:

The complex result of the calculation.

See also:

dpxexp() Computes a double complexponential
dpxlog() Computes a double complex logarithm
dpxmul() Multiplies two double complex values

6.41 DPXREAL: Compute Real Part of Double Complex

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {

double cr The real part of the value

158

PromulaFortran Translator User's Manual

double ci The imaginary part of the number
} dcomplex

double dpxreal(a)
dcomplex a Contains the value to be transformed

Description:

Computes the real part of a short complex value. The result is double precision.
Return value:

The double precision result.

See also:None

6.42 DPXSIN: Compute the Double Complex Sine

Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ¢ i The imaginary part of the number
} dcomplex

dcomplex dpxsin(a)
dcomplex a Contains the value to be transformed

Description:
Computes the value of the double complex sine of a double complex number. By definition:

sin(a) = eli*a) -2ie(" 2)

Return value:
The double complex result.

See also:None

6.43 DPXSROOT: Compute Double Complex Square Root

Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of thealue
double ci The imaginary part of the number
} dcomplex

159

PromulaFortran Translator User's Manual

dcomplex dpxsroot(a)
dcomplex a Contains the value to be transformed

Description:

Computes the square root of a double complex value.
Return value:

The double complex result.

See also:None

6.44 DPXSUB: Double Complex Subtraction

Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
double cr The real part of the value
double ci The imaginary part of the number
} dcomplex
dcomplex dpxsub(a,b)
dcomplex a The lefthand value
dcomplex b The righthand value
Description:

Subtracts two double complex numbers to form a third.
Return value:
The double complex result of the subtraction.

See also:None

6.45 FIFAMAXO0O: FORTRAN Intrinsic Functi on AMAXO

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
float fifamax0(al,a2)

long al First value to be compared

long a2 Second value to be compared

Description:

Determines which of two long integer values is the largest

Return value:

160

PromulaFortran Translator User's Manual

The largest long integer value converted to single precision.

See also:None

6.46 FIFAMINO: FORTRAN Intrinsic Function AMINO

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
float fifaminO(al,a2)

lon g al First value to be compared

long a2 Second value to be compared

Description:

Determines which of two long integer values is the smallest.
Return value:
The smallest long integer value converted to single precision.

See also:None

6.47 FIFASC50: FORTRAN External Function ASC50

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fifasc50(icnt,input,output)

int icnt; Number of characters to be converted

void* input; Input Radix50 characters to be converted

voi d* output; ASCII characters return area

Description:

Thefifasc50 function converts a specified number of Rafixcharacters to ASCII. If the input word contains an illegal
Radix50 character, a "?" is entered into the ASCII string.

Radix50 is a speail character representation in which up to 3 characters can be encoded and packed into 16 bits. The
Radix50 characters and their corresponding code values are:

Character Radix50 Value
space 0

A- Z 1- 26

a- z 1- 26

$ 27

. 28

0-9 30 - 39

The radixvalues are stored three characters per word according to the formula:

c1*40*40+C2*40+c3

161

PromulaFortran Translator User's Manual

where the characters are numbered from left to right. If the number of characters is not a multiple of three, it is treated a
though it were padded to thight with blanksd i.e., O.

Note they are called "rad&0" because "40" is "50" when written in octal.
Return value:

None the function is void.

See also None

6.48 FIFCHAR: FORTRAN Intrinsic Function CHAR

Synopsis:

#include “fortran.h" GREAT MIGRATIONS FORTRAN function declarations
char* fifchar(iv)

int iv Value to be converted

Description:

Converts a numeric display code, or "lexical value" or "collating weight" into its character code. The point of this function
is that character valuesndhe host processor are not necessarily the same as those on the machine for which a given
FORTRAN program was written. All numeric display code references in a source FORTRAN program are passed through
this function either by the translator directly grthe other runtime functions included in this library. Note that if you wish

this function to return some value other than the host processor values, you must modify it. Typically this modification
would take the form of a lookup table reference.

Return value:
A pointer to a icharacter string containing the character corresponding to the display code.

See also:None

6.49 FIFCOS: FORTRAN Intrinsic Function COS

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
floatf ifcos(x)

float x; Argument containing the value

Description:

Computes the cosine of a floating point argument using single precision.
Return value:

The single precision value as computed above.

See also

fifsncs() Compute sine or cosine

162

PromulaFortran Translator User's Manual

6.50 FIDATE: External Function DATA

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fifdate(cl,ncl)

char* cl; Returns the date in string form

int ncl; Length of the date return string

Description:

Obtains the current datem the operating system.
Return value:

The current date imm/dd/yy form.

See also

fioconv General dialect convention flags

6.51 FIFDDIM: FORTRAN Intrinsic Function DDIM

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declations
double fifddim(al,a2)

double a1 First value in difference

double a2 Second value in difference

Description:

Computes a positive difference.
Return value:
If a1 is greater than2 then the value od1 - a2 is returned, else zero is returned.

See also: None

6.52 FIFDINT: FORTRAN Intrinsic Function DINT

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
double fifdint(a)

double a Argument containing the value

Description:

Truncates its double precision argurntmits integer value. In particular:

fifdint(a) =0 if Jaj<1

163

PromulaFortran Translator User's Manual

= the largest integer with the same sign that does not exciégal >= 1
Return value:
The double precision value as computed above.

See also:None

6.53 FIFDMAX1: FORTRAN Intrin sic FunctionDMAX1

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
double fifdmax1(al,a2)

double a1 First value to be compared

double a2 Second value to be compared

Description:

Determines which of two double precisiorlues is the largest.
Return value:
The largest double precision value.

See also:None

6.54 FIFDMIN1: FORTRAN Intrinsic Function DMIN1

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
double fifdminl(al,a2)

double a1 First value to be compared

double a2 Second value to be compared

Description:

Determines which of two double precision values is the smallest.
Return value:
The smallest double precision value.

See also:None

6.55 FIFDMOD: FORTRAN Intrinsic Fun ction
Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
double fifdmod(num,dem)

double num The numerator for the calculation

double dem The denominator for the calculation

164

PromulaFortran Translator User's Manual

Description:

Computes the value of the remaindenof divided bydem. If demis zero, the result is zero. For nonzero values the result
is calculated as follows:

num - (floor (%) *dem)

wherefloor is the standard @oor function.
Return value:
The value as computed above.

See ato: None

6.56 FIFDNINT: FORTRAN Intrinsic Function DNINT

Synopsis

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
double fifdnint(a)

double a; Argument containing the value

Description:

Computes the nearest integer to itsiole precision argument. In particular:

fifdnint(a) = fifdint(a+0.5) if a>=0.0
= fifdint(a -05) if a<=0.0

wherefifdint is the FORTRAN intrinsic functioDINT.
Return value:

The value as computed above.

See also:

fifdint() FORTRAN intrinsic function DINT

6.57 FIFDSIGN: FORTRAN Intrinsic Function DSIGN

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations

double fifdsign(mag,sgn)

double mag The magnitude for the result

double sgn The sign for the result

Description:

Returns a value after the transfer of a sign. The reguitiy if sgn is at least zero, elseitis - |mag| .

165

PromulaFortran Translator User's Manual

Return value:
The value as computed above.

See also:None

6.58 FIFEQF: FORTRAN Intrinsic Function EQF

Synopsis

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fifegf(a,b)

float a; First value to be compared

float b; Second value to be compared

Description:

Compares two floating point numbers to determine if they would be equal in single préowimg point form.
Return value:
The short integer result of the comparison.

See also:None

6.59 FIFEXIT: FORTRAN Exit Subroutine

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fifexit(hnumb)

long* numb; Message to be displayed at console, i.e: stderr
Description:

Exits to the operating system.
Return value:
None, the function exits to the operating system and never returns.

See also:None

6.60 FIFGETAR: FORTRAN Get Command Line Arguments
Synopss:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations

void fifgetarg(k, cl,ncl)
long k;

166

PromulaFortran Translator User's Manual

char* cl;
int ncl;

Description:

Copies thécth command line argument into a string variabltg . TheOth argument is the command name.
Return value:

None, the function is void.

See also:None

6.61 FIFGETCL: FORTRAN Get Command Line Subroutine
Synopsis
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

void fifgetcl(cl,ncl)
char* cl;
int ncl;

Description:

Copies the comand line parameters as entered by the user into a string variable. The individual parameters are separated
by spaces.

Return value:
None, the function is void.

See also:None

6.62 FIFGETENV: FORTRAN Get Value of Environment Variables

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fifgetenv(ename,lenin,evalue,lenout)

char* ename Name of environment variable

int lenin Length of name

char* evalue Returns value of environment variable

int lenout Length availabldor variable value

Description:

Searches the environment list for a string of the fename=value and returns value iavalue if such string is present,
otherwise fillsevalue with blanks.

Return value:

None, the function is void.

167

PromulaFortran Translator User's Manual

See also:None

6.63 FIFHBIT: FORTRAN High Bit Management

Synopsis

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fifhbit(chrs,nbyte)

unsigned char* chrs ; Vector of characters

int nbyte; Number of bytes in vector

Description:

In severaldialects of FORTRAN, especially Prime FORTRAN 77, the normal internal character representation is a seven
bit code with the 8th bit always set on, while the extended characters have the 8th bit off. The normal external character
representations use thepmsite conventions. This function converts from one representation to the other by toggling the
high order bit in each character of the input vector.

Return value:

None, the function is void.

See also:None

6.64 FIFI2ABS: FORTRAN Intrinsic Function 12ABS

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
short fifi2abs(a)

short a Value whose absolute value is needed

Description:

Computes the absolute value of a short integer argument.
Return value:
The short integeresult.

See also:None

6.65 FIFI2DAT: FORTRAN External Function I2DATE

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fifi2date(mm,dd,yy)

short* mm; Returns month value

short* dd; Returns day value

short* yy; Returns year value

168

PromulaFortran Translator User's Manual

Description:

Obtains the current date from the operating system and stores the month, day, and year in the parameters.
Return value:

None the function is void.

See also:None

6.66 FIFI2DIM: FORTRAN Intrinsic Function 12DIM

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
short fifi2dim(al,a2)

short al First value in difference

short a2 Second value in difference

Description:

Computes a positive difference.
Return value:
If al is greater than2 then the value adl - a2 is returned, else zero is returned.

See also:None

6.67 FIFI2DINT: FORTRAN Intrinsic Function I2DINT

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
short fifi2dint(a)

double a Argumentcontaining the value

Description:

Truncates its double precision argument to a short integer value. In particular:

fifi2dint(a) =0 if |Jaj<1
= the largest integer with the same sign as a that does not exifgaf>= 1

Return value:
The value asomputed above.

See also:None

6.68 FIFI2ZMAXO: FORTRAN Intrinsic Function I12MAXO0

Synopsis:

169

PromulaFortran Translator User's Manual

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
short fifimax0(al,a2)

short al First value to be compared

short a2 Second value to beompared

Description:

Determines which of two short integer values is the largest.
Return value:
The largest short integer value.

See also:None

6.69 FIFI2ZMINO: FORTRAN Intrinsic Function 12MINO

Synopsis:

#include "fortran.h " GREAT MIGRATIONSFORTRAN function declarations
short fifiamin0(al,a2)

short al First value to be compared

short a2 Second value to be compared

Description:

Determines which of two short integer values is the smallest.
Return value:
The smallest short integer value.

See also:None

6.70 FIFI2MOD: FORTRAN Intrinsic Function I2ZMOD

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
short fifimod(num,dem)

short num The numerator for the calculation

short dem The denominator for the callation

Description:

Computes the value of the remaindenof divided bydem If demis zero, then the result is zero.
Return value:

The value as computed above.

170

PromulaFortran Translator User's Manual

See also:None

6.71 FIFI2ZNINT: FORTRAN Intrinsic Function I2NINT

Synopsis:

#inc lude “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
short fifi2nint(a)

double a Argument containing the value

Description:

Computes the nearest short integer to its double precision argument. In particular:

fifnint(a) = fifidint(a+0.5) if a >=0.0
= fifidint(a -05) if a<=0.0

wherefifidint is the FORTRAN intrinsic functiofDINT .
Return value:

The value as computed above.

See also:

fifidint() FORTRAN intrinsic function IDINT

6.72 FIFI2POW: FORTRAN Intrinsic Function 12POW

Synagpsis

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifi2pow(a,b)

short a; Value to be raised to a power

short b; Power to be used

Description:

Raises a short integer value to a short integer power.
Return value:
The shorinteger result.

See also None

6.73 FIFI2SHF: FORTRAN Intrinsic Function I2SHFT
Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

short fifi2shf(a,n)

171

PromulaFortran Translator User's Manual

short a Value to be shifted
int n Number of positions to be shifted
Description:

Shifts the short argument left or right the specified number of bit positions depending upon whether the position count is
positive or negative.

Return value:
The short integer result.

See also:None

6.74 FIFI2SIGN: FORTRAN Intrin sic Function I12SIGN

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations

short fifi2sign(mag,sgn)

short mag The magnitude for the result

short sgn The sign for the result

Description:

Returns a value after the transfer ofgnsiThe result igmag| if sgn is at least zero, else itis - |mag| .

Return value:
The value as computed above.

See also:None

6.75 FIFIABS: FORTRAN Intrinsic Function IABS

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN functio declarations
long fifiabs(a)

long a Value whose absolute value is needed

Description:

Computes the absolute value of a long integer argument.
Return value:
The long integer result.

See also:None

6.76 FIFIARGC: FORTRAN Get Command Line Argument Count

172

PromulaFortran Translator User's Manual

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifiarge()

Description:

Returns the index number of command line argumdntse., the number of arguments minus one, where the program
name counts as one argent.

Return value:
The number of command line arguments minus one.

See also None

6.77 FIFIBIT: FORTRAN Intrinsic Function IBIT

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fifibit(bits,ibit,ival)

unsigne d char* bits; Bit vector to receive new bit value

int ibit; Number of bit to receive value

int ival; Bit value to be inserted

Description:

Set a specified bit in an arbitrary bit string equal to a specified value. Thadsftbit position is numbered Wwith higher
bits receiving higher values.

Return value:
None, the function is void.

See also None

6.78 FIFICHAR: FORTRAN Intrinsic Function ICHAR

Synopsis:

#include "fortran.h" Standard C header file
int fifichar(c1)

char* cl Character to beonverted
Description:

Converts a character code into its numeric display code, or "lexical value" or "collating weight". The point of this function
is that character values on the host processor are not necessarily the same as those on the maleicinea fgiven
FORTRAN program was written. All character "value" references in a source FORTRAN program are passed through this
function either by the translator directly or by the other runtime functions included in this library. Note that if yolisvish
function to return some value other than the host processor values, then you must modify it. Typically this modification
would take the form of a lookup table reference.

173

PromulaFortran Translator User's Manual

Return value:
The character value directly.

See also:None

6.79 FIFIDIM: FORTRAN Intrinsic Function IDIM

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifidim(al,a2)

long al First value in difference

long a2 Second value in difference

Description:

Computes a positive difference.
Return value:
If a1 is greater than2 then the value od1 - a2 is returned, else zero is returned.

See also:None

6.80 FIFIDINT: FORTRAN Intrinsic Function IDINT

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifidi nt(a)

double a Argument containing the value

Description:

Truncates its double precision argument to a long integer value. In particular:

fifidint(a) =0 if |a<1
= the largest integer with the same sign that does not excéefh| >= 1

Return value:
The value as computed above.

See also:None

6.81 FIFINDEX: FORTRAN Intrinsic Function INDEX

Synopsis:

174

PromulaFortran Translator User's Manual

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fifindex(s,ns,c,nc)

char* s Main string

int ns Length of main string

char* c Substring

int nc Length of substring

Description:

Returns the location of a substring within a string. Note that the arguments are two FORTRAN style strings, which means
that the length of each string must also be sent.

Return value:
If the sWbstring occurs within the main string, the result is an integer indicating the starting position (relative to 1) of the
first occurrence of the substring within the main string. If the substring does not occur within the main string, a zero is

returned.

See also None

6.82 FIFIPOW: FORTRAN Intrinsic Function IPOW

Synopsis

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifipow(a,b)

long a; Value to be raised to a power

long b; Power to be used

Description:

Raises a longnteger value to a long integer power.
Return value:

The long integer result.

See also None

6.83 FIFISHF: FORTRAN Intrinsic Function ISHFT

Synopsis:

#include "fortran.h " GREAT MIGRATIONSFORTRAN function declarations
long fifishf(a,n)

long a Value to be shifted

int n Number of positions to be shifted

Description:

Shifts the long argument left or right the specified number of bit positions depending upon whether the position count is
positive or negative.

175

PromulaFortran Translator User's Manual

Return value:
The long integer redu

See also:None

6.84 FIFISIGN: FORTRAN Intrinsic Function ISIGN

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifisign(mag,sgn)

long mag The magnitude for the result

long sgn The sign for the result

Desciiption:

Returns a value after the transfer of a sign. The reguitig if sgn is at least zero, else it is
Return value:
The value as computed above.

See also:None

6.85 FIFMAX0: FORTRAN Intrinsic Function MAXO

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifmax0(al,a2)

long al First value to be compared

long a2 Second value to be compared

Description:

Determines which of two long values is the largest.
Return value:
The largest long value

See also:None

6.86 FIFMAX1: FORTRAN Intrinsic Function MAX1
Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

long fifmax1(al,a2)
float al First value to be compared

- |mag| .

176

PromulaFortran Translator User's Manual

float a2 Second value to be compared
Description:

Determines which of two double precision values is the largest.
Return value:

The largest value converted to a long integer.

See also:None

6.87 FIFMINO: FORTRAN Intrinsic Function MINO

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifmin0O(al,a2)

long al First value to be compared

long a2 Second value to be compared

Description:

Determines which of two long values is the smallest.
Return value:

The smallest long value.

See also:None

6.88 FIFMIN1: FORTRAN Intrinsic Function MIN1

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifminl(al,a2)

float al First value to be compared

float a2 Second value to be compared

Description:

Determines which of two doubf@ecision values is the smallest.
Return value:
The smallest value converted to a long integer.

See also:None

6.89 FIFMOD: FORTRAN Intrinsic Function MOD

Synopsis:

177

PromulaFortran Translator User's Manual

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifmod (num,dem)

long num The numerator for the calculation

long dem The denominator for the calculation

Description:

Computes the value of the remaindenof divided bydem. If demis zero, then the result is zero.
Return value:
The value as computed above

See also:None

6.90 FIFNEF: FORTRAN Intrinsic Function NEF

Synopsis

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fifnef(a,b)

float a; First value to be compared

float b; Second value to be compared

Description:

Conmpares two floating point numbers to determine if they would be unequal in single precision floating point form.
Return value:
The short integer result of the comparison.

See also None

6.91 FIFNINT: FORTRAN Intrinsic Function NINT

Synopsis:

#inc lude "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
long fifnint(a)

double a Argument containing the value

Description:

Computes the nearest integer to its double precision argument. In particular:

fifnint(a) fifidint (a + 0.5) if a O .

fifidint (a - 05 ifa O 0.0

wherefifidint is the FORTRAN intrinsic functiofDINT .

178

PromulaFortran Translator User's Manual

Return value:
The value as computed above.
See also:

fifidint() FORTRAN intrinsic function IDINT

6.92 FIFRAD50: FORTRAN External Function IRAD50

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fifrad50(icnt,input,output)

int icnt; Number of characters to be converted

void* input; Input characters to be converted

void* output; Radix50 characters return area

Description:

Thefifrad50 function converts a specified number of ASCII characters to Re@ixConversion stops on the first ron
Radix50 character encountered in the input, or when the specified number of characters have been converted.

Radix50 is a special chagcter representation in which up to three characters can be encoded and packed into 16 bits. The
Radix50 characters and their corresponding code values are:

Character Radix50 Value
space 0

A- Z 1- 26

a- z 1- 26

$ 27

. 28

0-9 30 - 39

The radixvalues are stored three characters per word according to the formula:
cl1*40*40+C2*40+c3

where the characters are numbered from left to right. If the number of characters is not a multiple of three, thaadt is trea
as though it were padded teetright with blank® i.e., 0.

Note they are called "rad&0" because "40" is "50" when written in octal.

Return value:
The number of characters actually converted.

See also:None

6.93 FIFRBIT: FORTRAN Intrinsic Function RBIT
Synopsis

#inclu de "fortran.h” GREAT MIGRATIONSFORTRAN function declarations

179

PromulaFortran Translator User's Manual

void fifrbit(bits,nbyte)

unsigned char* bits; Bit vector to be reversed
int nbyte; Number of bytes in bit vector
Description:

Reverses the order of the bytes in a bit string.
Return value:
None, the function is void,

See also None

6.94 FIFSIN: FORTRAN Intrinsic Function SIN

Synopsis

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
float fifsin(x)

float x; Argument containing the value

Description:

Computes tha sine of a floating point argument using single precision.
Return value:

The value as computed above.

See also:

fifsncs() Compute sine or cosine

6.95 FIFSNCS: FORTRAN Single Precision Sine/Cosine

Synopsis

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
float fifsncs(x,cosflag)

float x; Argument containing the value

int cosflag; Perform cosine flag

Description:

Computes the sine or cosine of a single precision value which has been promoted to double via the C prtasotion ru
Return value:
The double precision value as computed above.

See also None

180

PromulaFortran Translator User's Manual

6.96 FIFSTRGV: FORTRAN String Value Conversion

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
char* fifstrgv(str,nc)

char* str; String to be converted

int nc; Number of characters in string

Description:

Copies a character string into a local buffer and then pads that buffer to 8 characters with blanks, so that the &ring can b
compared to a character string which has been hiddemaneharacter variable. Note that such hiding always pads the
numeric with blanks out to its natural size. This function is needed for situations like

F(K .EQ. 'Y
whereK is a noncharacter variable. The translation of this would be

if (k == *(typeof (K)*) fifstrv ("Y",1))
Return value:

A pointer to a buffer containing the string value.

See also:None

6.97 FIFSYSTM: FORTRAN External Function SYSTEM

Synopsis

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fifsystm(cl ,ncl)

char* cl String containing command to be executed

int ncl Length of the execution string

Description:

Executes the command contained in the character string and then resumes execution of the current program. The problem
addressed by this functioa that "system" requires a ntdrminated string; while the string received is blaaidded with
no terminator.

Return value:
A systemdependent integer status from the command. In UNIX systems, the status return is the value retstined by

See also:None

6.98 FIFTAN: FORTRAN Intrinsic Function TAN
Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

181

PromulaFortran Translator User's Manual

float fiftan(x)
float x; Argument containing the value

Description:

Computes the tangent of a floating point argument
Return value:

The value as computed above.

See also None

6.99 FIFTIME: FORTRAN External Function TIME

Synopsis

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiftime(cl,ncl)

char* cl; Returns the time in string for

int ncl; Length of the time return string

Description:

Obtains the current time from the operating system.
Return value:
The current time imr:mi:sec ~ form.

See also:None

6.100 FIFXBIT: FORTRAN Intrinsic Function XBIT

Synopsis

#include "fo rtran.h" GREAT MIGRATIONSFORTRAN function declarations
int fifxbit(bits,ibit)

unsigned char* bits; Bit vector to receive new bit value

int ibit; Number of bit to receive value

Description:

Extract a specified bit value from an arbitrary bit string. Teiemost bit position is numbered 1, with higher bits receiving
higher values.

Return value:
The function returns a one or a zero depending upon whether the bit specified is on or off.

See also:None

6.101 FIFXCREP: FORTRAN Extended Character Rpresentation

Synopsis

182

PromulaFortran Translator User's Manual

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
char* fifxcrep(chrs)

char* chrs; Vector of characters

Description:

In several dialects of FORTRAN, especially Prime FORTRAN 77, the normal internal characésergation is a seven

bit code with the 8th bit always set on, while the extended characters have the 8th bit off. The normal external character
representations use the opposite conventions. This function converts string constants to the extendedti@ptesmake

them compatible with other "internal" characters.

Return value:

A pointer to the result string.

See also:None

6.102 FIOBACK: Backspace a FORTRAN File

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations

int fioback()

Description:

This function backspaces the file associated with the "current” FORTRAN file as specified in the global figriable .
For files with fixed record lengths, this operation involves moving backwards in the file by thk &frate record. For
text files, this means moving backwards in the file to the position immediately following the second eattiagdine
feed character pair which immediately precedes the current record. For other types of files, no backspéole.idNptss
that if the file is currently positioned at its beginning, no operation is performed.

Return value:

A zero if the backspace was successful, else an error code. See the general discussion of FORTRAN /O capabilities for a
listing of the possild error codes.

See also:

fioerror() Performs standard error processing

6.103 FIOBFOUT: Business Format Output

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiobfout(value,bfmt)

double value; Value to be conwged

char* bfmt; Business formatting descriptor string

183

PromulaFortran Translator User's Manual

Description:
This utility function controls the conversion of a double precision value to string form under the control of a business

formatting descriptor string. The length of the string deterntimedield width of the final display. If this width is too small
for the number, then the output will be a string of asterisks filling the field. Valid characters for the string are:

+ *-Z $ # , . CR
The use of these valid clenters is explained below:
Plus (+):
If only the first character is +, then the sign of the number ¢ isrentered in the leftmost portion of the field (fixed sign).
If the string begins with more than one + sign, they will be replaced by blankbeustyn of the number (+ ey will be
printed in the field position immediately to the left of the first printing character of the number (floating sign). If the
rightmost character of the string is +, then the sign of the number-j+#if be printedin that field position following the
number (trailing sign).

Minus ():

The minus sign behaves the same as a plus sign except that a space (blank) is entered instead of a + if the number is
positive (plus sign suppression).

Dollar sign ($):

A dollar gn may at most be preceded in the string by an optional fixed sign. A single dollar sign will cause a $ to be
printed in the corresponding position in the output field (fixed dollar). Multiple dollar signs will be replaced by printing
characters in the mber, and a single $ will be printed in the position immediately to the left of the leftmost printing
character of the number (floating dollar).

Asterisk (*):

Asterisks may be preceded only by an optional fixed sign and/or a fixed dollar. Asterigisitions used by digits of the
number will be replaced by those digits. The remainder will be printed as asterisks (field filling).

Zed (2):

If the digit corresponding to a Z in the output number is a leading zero, a space (blank) will be printegdsitiwet;
otherwise, the digit in the number will be printed (leadbego suppression).

Number sign (#):

The number sign indicates a digit position not subject to leaxing suppression: the digit in the number will be printed
in its correspondinggrtion whether zero or not (zero nenppression).

Decimal point (.):

A decimal point indicates the position of the decimal point in the output number. Only the # sign and either trailing signs o
credit (CR) may follow the decimal point.

Comma (,):

Commas may be placed after any leading character, but before the decimal points. If a significant character of the number
(not a sign or dollar) precedes the comma, a comma will be printed in that position. If not preceded by a significant
character, a spae#ill be printed in this position unless the comma is in an asterisk field. In that case an * will be printed in
that position.

184

PromulaFortran Translator User's Manual

Credit (CR):

The characters CR may only be used as the last two (rightmost) characters of the string. If the humbereijstpositiv
spaces will be printed following it. If negative, the letters CR will be printed.

Return value:

None, the function is void. The global variafiterec is updated to contain the new field, and the variéiblehar is
updated to reflect the newatacter count in the coded communications record.

See also:None

6.104 FIOCLOSE: Close Current FORTRAN File

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations

int fioclose()

Description:

This function closes the filassociated with the "current” FORTRAN file as specified in the global vafiatlef
Return value:

A zero if the close was successful, else an error code. See the general discussion of FORTRAN /O capabilities for a listing
of the possible error code

See also:

fioerror() Performs standard error processing

6.105 FIOCPATH: Convert Pathname

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiocpath(pathname,cinfo)

char* pathname Pathname to be converted

unsig ned char* cinfo Conversion information table

Description:

Converts a pathname as it appears in an OPEN orrafsed statement into a form compatible with the target platform.
The actual conversion information is stored in a conversion informaticavatith has the following structure:

Byte Description of content
0 Directory separation character
1 Exclude directories from pathname flag
2 Case conversion code (0 = none, 1 = toupper, 2 = tolower)
3+ Other conversions string

185

PromulaFortran Translator User's Manual

4+ Prefix to be added to nee (length,characters)
5+ Conversions list (two Paseatyle strings)
6 Nul termination byte
The conversion information table itself is constructed via function "fiorpath".
Return value:
None, the function is void; however, the content offtitaname parameter is altered to reflect the conversion.
See also:
fiorpath() Reads the path conversion information used here

fioshl() Shift string left
fioshr() Shift string right

6.106 FIODTOS: Convert Double Value to String

Synopsis:

#include "fortran .h" GREAT MIGRATIONSFORTRAN function declarations
void fiodtos(val,ndig,pdecpt,psign,dspdig)

double val Value to be converted

int ndig Number of digits to produce

int* pdecpt Returns position of decimal point

int* psign Returns the sign of the value

char * dspdig Returns the string produced

Description:

ANSI C expects that all conversions of floating point values to string be performed wjaititie function. Though this

can be done, most generalized applications prefer to perform their own editirgiame and require only a raw
conversion be performed. This function performs that conversion using whatever facilities are available with a particular
platform.

This function converts the floating point numbed to a character string. It stores psady ndig digits in dspdig

followed by a nuHbyte. If the number of digits imal exceedsdig , the last digit is rounded; if the number of digits is less

thanndig , thendspdig is padded with zeros. The paramgigecpt points to an integer value givirtbe position of the
decimal point with respect to the beginning of the string;msigh returns zero if/al is positive; else one.

Return value:
None, the function is void.

See also:None

6.107 FIOERROR: Perform FORTRAN I/O Error Processing
Synaqpsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations

int fioerror(clear)

186

PromulaFortran Translator User's Manual

int clear Should error control be cleared?

Description:

If the FORTRAN I/O runtime system encounters an error, it sets an error code and calls this fihtifumction either

sets an error return value or exits to the operating system with an error message. In the case where an error cadle is returne

to the calling function, the parametelear specifies whether or not the error processing control variadilesld be
cleared prior to the return.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilitieador a listi
of the possible error codes.

See also:

fiocurf Pointer to current FORRAN file
fioitos() Converts an integer to a string
fioerch Specifies presence of error checking
fioier Code for actual error encountered
fiostat Returns an error code or zero

6.108 FIOFDATA: FORTRAN File Data

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiofdata(option,str,ns)

int option Specifies which data is being specified

char* str String information

int ns String length or integer information

Description:

This function is used to specify the variou fillata options associated with the current FORTRAN file structure. The
particular data being specified is defined bydption parameter as follows:

Option Description of data

1 Specifies the file name to be assigned to the file. This name may haweredhan 39 characters. If the name
is NULL or if it is all blank, then no name is assigned. If the file is opened with no hame assigned, then the
open function will request a name frawdinp via stdout

2 Specifies the status of the file. Only the fitblaracter of thetring parameter is used as follows:
Char Meaning
0,0 Old & the file already exists, do not create it.
N,n New d the file does not exist, create it even if this means destroying an existing file with the
same name.
S,s Scratchd the sameas new, except that the file is removed when it is closed.
uU,u Unknownd if the file exists it is opened, if it does not exist then it is created.
3 Specifies the access type of the file. Only the first character sfrthg parameter is used as follows
Char Meaning
S,s Sequentiab the file is opened for sequential access.

187

PromulaFortran Translator User's Manual

10

11

12

13

14

15

D,d Directd the file is opened for direct access.

Specifies the form of the file. Only the first character ofdiieg parameter is used as follows:

Char Meaning
F.f the record are formatted
U,u the records are unformatted

Specifies the record size for the file as contained in the paransetéhe parametestring is ignored.

Specifies the convention for treating blanks in numeric input fields. Only the first chartherstring
parameter is used as follows:

Char Meaning

N NULL & blank characters in humeric formatted input fields are ignored, except that a field of
all blanks is zero.

z ZEROOJ Blanks are treated as zeros.

Specifies that the file is readonly.

Speifies that the file is to be open for shared access.

Specifies the record type.

Specifies the carriage control conventions.

Specifies a pointer to the associated variable.

Specifies the maximum number of records on the file.

Specifies gointer to receive the number of the unit assigned to the file.
Specifies the associated buffer address along with its size.

Specifies a buffer block size.

Return value:

None, this function is void.

See also:None

6.109 FIOFEND: End Forma Processing

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

void fiofend()

Description:

Clears the format control variables to end processing with the current format.

Return value:

None, the function is void.

See als: None

188

PromulaFortran Translator User's Manual

6.110 FIOFFLD: Get Next FreeForm Field
Synopsis:
#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fioffld()

Description:

This function locates the start of the next unit of information whenférea reads are ding performed. It skips over
blanks and commas. If an enflrecord is encountered, then it reads the next physical record from the current file. The
major complexity in this routine has to do with repeat counts anevalules. Note that when a "/" chater is encountered,

all remaining values are set to null.

Return value:

The function returns a 1 if there is a noull value to be read. In this cadieicol points to the first significant character
of this value. A zero is returned if a null valiseto be read. From the standpoint of the calling function, this means that the
corresponding input value is to remain unchanged.

See also:

fiospace() Skip over white space

6.111 FIOFINI: Initialize A FORTRAN Format
Synopsis:

#include "fortran.h"

int fiofspec =0

char* fiosadr = NULL
char* fiocfmt = NULL
char** fiofrmt = NULL
int fiofstat = 0

int fioifmt =0

int fioiresc = 0

int fiomaxc =0

int fionfmt =0

int fionpren = 0

char* fiorscan = NULL
int fiorscnt =0

char fiobfmt[40]

char * fiovfmt = NULL
int fiovflen = 0

int fiofini(fmt,nfmt)
char** fmt

int nfmt

Description:

GREAT MIGRATIONSFORTRAN function declarations

Current format specification
Format string location

Current format position

Current format address list
Current processing state
Number of current format entry
Number of current rescan entry
Maximum characters in output line
Number of entries in format list
Parenthetical néisg

Current rescan position
Rescan count value

Business formatting string
Start of variable format

Length of variable format

Pointer to the format or format pointers
Number of format pointers or type

189

PromulaFortran Translator User's Manual

This function initializes the FORMAT environment needed by the FORTRAN style input/output statements. There is a
minor problem associated with the pragiag of FORTRAN style FORMATS in C, having to do with "maximum string
length”. In theory, since a C string consists of a sequence of nonzero characters terminated by a zero byte, it can be of any
length desired. Unfortunately, all C compilers place a lionitthe maximum length that a string constant may have,
typically 256. It is not at all unusual for FORMAT specification strings to be very long, and they are typically defined as
constants at compile time. Fortunately, though length of an individuad toinstant is limited, C has a very neat notation

for defining a constant set of pointers to constant strings. Thus, a long format string can be written very conveniently as a
sequence of individual lines as follows:

static char fmt01[] = {
"(T2,20A4,/1,T 2,'MASS (M) UNITS ="2A4,/,"
"T2,'LENGTH (L) UNITS ="2A4,/,"
"T2,'TIME (T) UNITS =",2A4,//)"

b

Using this notation, indefinitely long FORMAT specification strings can be written as a sequence of blocked lines. Note
that the FORMAT routines ignore theaks between the lines, so they may be broken in any way. Simple FORMAT
specification strings may, of course, still be written as standard string constants such as the following:

static char fmt02[] = "(F10.0)";

The FORMAT specification string itselias the same content as a FORMAT would have in a standard FORTRAN
environment. It must begin with a lgfarenthesis and end with a rigtdarenthesis. See the general discussion of
FORTRAN I/O capabilities for a detailed description of the format spetidite There are two parameters to be supplied
for this function as follows:

Name Description of use

fmt Points to the format control string. As discussed above, it may either be a pointer to a series of strings or
it may be a simple string pointer.rtay also be a NULL, meaning either that ffeemat is to be used or
that a "binary" operation is to be performed.

nfmt Provides additional information about the abovémif is NULL andnfmt is zero, then an unformatted
binary type operation is being ffermed. If fmt is NULL and nfmt is nonzero, then a freferm
"formatted" operation is being performed.fifit is not NULL andnfmt is zero, then a single string
format is being processed; else the specification consists of a sequefe bhes.

Oncethis function is called, the format specification string remains in effect until either this function is called again, or
functionfiofend is called.

Return value:

A zero if the format appears wdlirmed, else an error code. See the general discussEEARTRAN 1/O capabilities for a
listing of the possible error codes.

See also:
fioerror() Performs standard error processing
fiofwsp() Skips over white space in the format

6.112 FIOFINP: Formatted Input
Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

190

PromulaFortran Translator User's Manual

void fiofinp(context)
int context Context of call 0 = value, 1 = end

Description:

Performs nonvariable related formatted input functions until anoéfdrmat or a variable related specification is
encountered. Tdhactual operations performed by this function are as follows:

Specification Code Description

nH 1 Display Hollerith string

"cl..cn" 1 Display delimited string

nXx 2 Skip right n places

TRn 2 Skip right n places

Tn 3 Move to position n

TLn 4 Skip left n paces

SS 5 Set the plus sign to a space
SP 6 Set the plus signto a +

BN 7 Set blanks to null

Bz 8 Set blanks to zero

/ 9 Physically write the current line
nP 10 Set the floating scale factor to n

Return value:

Note the function is void; however, the bl variablefioier may be set to an error code if a problem is encountered.

See also:

fionxtf() Get next format specification
fiorchk() Check fixed input field
fiortxt() Read next text record

6.113 FIOFINQU: Inquire About File Data

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiofinqu(option,str,ns)

int option Specifies data being inquired about

char* str Information to be returned

int ns String length or integer information

Description:

This function § used to inquire about the various file data options associated with the current FORTRAN file structure. The
particular data being inquired about is defined byoifitean parameter as follows:

Option Description of data
1 Inquire about status of file
2 Inquire about existence of file
3 Inquire as to connection status of file
4 Inquire as to file's external unit number

191

PromulaFortran Translator User's Manual

5 Inquire whether file has a name

6 Inquire for name of file

7 Inquire as to files access method

8 Inquire if file can be accesssdquentially

9 Inquire if file can be directly accessed
10 Inquire if file is formatted
11 Inquire if file can be opened as a text file
12 Inquire if file can be opened as binary
13 Inquire about file record length
14 Inquire about file current recd number
15 Inquire about file current blank convention

Return value:
None, this function is void.

See also:None

6.114 FIOFMTV: Compute FORMAT Value

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations

int fiofmtv()

Description:

Computes the value of an integer constant in the FORMAT statement, and updates the current format position so that it
points to the first nonblank character beyond the end of the value. Note that if the current character in the format is
nonnumeric when this function is called, then this function does not move the current position and returns a zero value.
Return value:

The value of the integer constant or a zero if there was no integer constant.

See also:

fiofwsp() Skip white space iformat

6.115 FIOFOUT: Formatted Output Operations

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiofout(context)

int contex Context of call 0 = value, 1 = end

Description:

Performs nonvariable related fornsdtoutput functions until an eraf-format or a rescan or variable related specification
is encountered. The actual operations performed by this function are as follows:

Specification Code Description

192

PromulaFortran Translator User's Manual

nH 1 Write characters from a Hollerith string
"cl..cr 1 Write characters from a delimited string
nXx 2 Skip right n places

TRn 2 Skip right n places

Tn 3 Move to position n

TLn 4 Skip left n places

SS 5 Set the plus sign to a space

SP 6 Set the plus signto a +

BN 7 Set blanks to null (no operation for outpu
BZ 8 Set blanks to zero (no operation for output)
/ 9 Physically write the current record

nP 10 Set the floating scale factor to n

) 11 End-of-Format write current record

Return value:

None, the function is void; however, the global varidioier =~ may be set to an error code if a problem is encountered.

See also:
fionxtf() Get next format specification
fiowtxt() Write text record

6.116 FIOFVINQ: Inquire About File Value

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declations
long fiofving(option)

int option Specifies data being inquired about

Description:

This function is used to inquire about the various file data options associated with the current FORTRAN file structure
which return an integer or logical value.el'particular value being inquired about is defined byoften parameter as
follows:

Option Description of data
2 Inquire about existence of file
3 Inquire as to connection status of file
4 Inquire as to file's external unit number
5 Inquire whethefile has a name
13 Inquire about file record length
14 Inquire about file current record number

Note that this function is needed as distinct from the generic file information function because type conversions are
required on the returned value.

Return value:
The requested logical or integer value.

See also:

193

PromulaFortran Translator User's Manual

fiofinqu() Generic file information function

6.117 FIOFWSP: Skip Format White Space

Synopsis:

#include “fortran.h " GREAT MIGRATIONSFORTRAN function declarations
void fiofwsp()

Desciiption:

This function is a utility used by the FORMAT processing functions to skip over white space within the specification string.
White space consists of blanks and boundaries between the independent lines of the specification.

Return value:
None, tle function is void. The effect of its processing is reflected in the various global format control variables.

See also:None

6.118 FIOINTU: Establish FORTRAN Internal Unit

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declaratits
int fiointu(intu,rsize,action)

char* intu Pointer to internal storage

int rsize Record size

int action Specifies read = 1 or write =0

Description:

When some action is to be performed on an internal unit, typically a character storage area,tibisifitializes a file
structure to point to this internal unit, and makes this file structure the current one. Note that if the record sizthés zero
internal unit is a set of pointers togfyle strings and not FORTRAN style strings.

The form of thecreation of the INTERNAL depends upon the type of the action to be performed. This action code is as
follows:

Code Action to be performed

0 An internal file is to be opened with the specified storage area as its starting addre
size parametespecifies the overall size of the area. If there is an open structure cu
using this starting address then it is simply rewound.

1 An internal file with this starting address has been created. If it cannot be found, t
error has occurred

2 A coded read is to be performed. If there is no structure defined, then create one
will be removed at the end of the operation (this is the standard behavior).

194

PromulaFortran Translator User's Manual

3 A binary read is to be performed. If there is no structure defined,cttieate one whicl
will be removed at the end of the operation.

4 A coded write is to be performed. If there is no structure defined, then create one
will be removed at the end of the operation (this is the standard behavior).

5 A binary write is to be performed. If there is no structure defined, then create one
will be removed at the end of the operation.

6 A miscellaneous operation is to be performed. If there is no structure defined, tl
error has occurred.

7 A simple inquiry is being made. If there is no structure defined, then create one whic
be removed at the end of the operation.

Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN 1/O capabilitiistirigr af the
possible error codes.

See also:
fioerror() Performs standard error processing
fiortxt() Read text record

6.119 FIOITOS: Convert Integer to String

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
char* fioitos(humb)

int numb Value to be converted

Description:

Converts an integer number to a character string.
Return value:
A pointer to the string result.

See also:None

6.120 FIOLREC: Position a FORTRAN File on a Record

Synopsis

#include "fo rtran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiolrec(irec)

long irec; Record number desired

Description:

195

PromulaFortran Translator User's Manual

This function positions the file associated with the "current” FORTRAN file as specified in the global viiotaiole at
the begining of a specified record.

Return value:

A zero if the positioning was successful, else an error code. See the general discussion of FORTRAN 1/O capabilities for a
listing of the possible error codes.

See also:None

6.121 FIOLTOS: Convert Long Integer to String

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fioltos(value)

long value Value to be converted

Description:

Converts a long integer value to display form and stores it at the current position dl¢itlecommunications record right
justified in a fixed length field. In particular, the output field consists of blanks, if hecessary, followed by a minifis sign
the internal value is negative, or an optional plus sign otherwise. If the number of sigrdfigigs and sign required to
represent the value is less than the specified width, the unused leftmost portion of the field is filled with blarks. If it i
greater than the width, asterisks are entered instead of numeric digits. If a minimum digis specified, the output field
consists of at least that many digits, and is Z#led as necessary. If the minimum digit count is zero, and the value is
zero, then the field is simply blank filled, regardless of any sign control in effect.

The parametevalue contains the value to be converted. The conversion control parameters are specified via global
variables.

Return value:

None, the function is void. The global variafiterec is updated to contain the new field, and the variéiblehar is
updded to reflect the new character count of the coded communication record.

See also:
fioitos() Convert integer to string
fioshr() Shift display string right

6.122 FIOLUN: Establish FORTRAN Unit Number

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations
int fiolun(lun,action)

int lun Logical unit number of file

int action Action code for subsequent use

Description:

196

PromulaFortran Translator User's Manual

Before any action can be performed on a FORTRAN file, the logical unit number must be associated witingn e
FORTRAN file structure. If there is no already existing structure for the unit number, then this function will attempt to
create one. The form of this creation depends upon the type of the action to be performed. This action code is as follows:

Code Action to be performed

0 A file is to be opened with this logical unit number, if there is an open structure cu
associated with this number, close the file.

A structure for this logical unit number has been created. If it cannfiiupel, then an error he
occurred.

A coded read is to be performed. If there is no structure defined, then create one and open tt
A binary read is to be performed. If there is no structure defined, then create one and open tt
A coded write is to be performed. If there is no structure defined, then create one and create
A binary write is to be performed. If there is no structure defined, then create one and create
A miscellaneous operation is to be penfied. If there is no structure defined, then create one
open the file.

7 A simple inquiry is being made

[EnY

O wWN

Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN 1/O capabilities for a listing of the
possible error codes.

See also:

fioclose() Closes the current FORTRAN file
fioerror() Performs standard error processing
fioopen() Opens the current FORTRAN file
fiortxt() Read next text record

6.123 FIONAME: Establish FORTRAN Unit by Name

Synopsk:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fioname(strg,ns)

char* strg Name of file

int ns Number of characters in file name

Description:

The FORTRAN INQUIRE statement allows the user to inquire about file status @#hies logical unit number or via its
name. If the name reference is being used, then this function is called. If there is no already existing structurenfitin a unit
this name, then this function will attempt to create one.

Return value:

A zero if al went well, else an error code. See the general discussion of the FORTRAN I/O capabilities for a listing of the
possible error codes.

See also:
fifindex() Find one substring in another
fioerror() Performs standard error processing

197

PromulaFortran Translator User's Manual

6.124 FIONXTF: Get Next Format Specification

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fionxtf()

Description:

Gets the next format specification from the format list and sets the external variiafdpsc(, fioiwd , andfio ndec)
to indicate what it is. The above variables are set as follows:

Specification Type fioiwd fiondec
free form 0 0 0
nH 1 n 0
"cl..cn” 1 n "
‘cl..cn’ 1 n '
cl..cn 1 n *
nX 2 n --
TRnN 2 n --
Tn 3 n --
TLn 4 n --
SS 5 -- -
SP 6 -- -
BN 7 -- -
BZ 8 -- -
/ 9 -- -
nP 10 n --
) 11 -
: -1 -
$ -2 -
Aw 12 w --
Lw 13 w --
Iw 14 w --
Fw.d 15 w d
Dw.d 16 w d
Ew.d 17 w d
Gwd 18 w d
B'ssss' 19 -- --

Return value:

None, the function is void.

See also:

fioerror() Do requested error procesgi

fiofmtv() Get constant format value

fiofwsp() Skip over white space

6.125 FIOOPEN: Open Current FORTRAN File

Synopsis:

198

PromulaFortran Translator User's Manual

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

int fioopen()

Description:

This function opens thel& associated with the "current” FORTRAN file as specified in the global vafiadlef
Return value:

A zero if the open went well, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing of
the possible error codes.

See also:
fioitos() Converts a short integer to a string
fioerror() Performs standard error processing

6.126 FIORALPH: Read Alphabetic Information

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fioralph(alpha, nalpha,nfield)

char* alpha Character string

int nalpha Length of string

int nfield Width of field

Description:

This function blank fills a character string and then reads characters from the current input record into the string. Read
characters are lejtistified in the string. Any characters beyond the end of the string are discarded. If inpufésrfresd

if the characters read begin with a single quote, then the material within the quoted list is entered into the chagacter stri
with " reducingo a single quote.

Return value:

None, the function is void. The effect of its processing is reflected in the various global format control variables.

See also:

fiortxt() Read next text record

ftnxcons(.) Process Exact representation constant
fiorchk() Check fixedform input field

6.127 FIORBIV: FORTRAN Read Binary Values
Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations

int fiorbiv(value,nvalue)

199

PromulaFortran Translator User's Manual

void* value Points to values being read
int nvalue Number of bytes tbe read
Description:

This function reads binary values from a file.
Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN 1/O capabilities for a listing of the
possible error codes.

See also:None

6.128 FIORCHK: Check Fixed-Form Input Field

Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

void fiorchk(nfield)
int nfield

Description:

This function controls the physical reading of text records. If the logicab&necord has been reached, the next physical
record is read. If a physical emdi-record has been reached prior to the logicat@record, the physical erof-record is
extended by padding the record with blanks.

Return value:
None, the function is voidl he effect of its processing is reflected in the various global format control variables.

See also:None

6.129 FIORDB: Read FORTRAN Boolean Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiordb(bool,nval)

unsigned short* bool The values to be read

int nval The number of values to be read

Description:

Reads a vector of Boolean (short logical) values from the current input file in accordance with the current format
specification. Note that in this functiceach individual Boolean value is assumed to have its own corresponding format
specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN IliDesafoata listing
of the possible error codes.

200

PromulaFortran Translator User's Manual

See also:

fioerror() Do requested error processing
fioffld() Get next fredorm field

fiofinp() Process input format specifications
fioralph(') Read alphabetic information
fiorchk() Check fixed readiéld

6.130 FIORDC: Read FORTRAN Character Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiordc(c,nval)

char* ¢ Points to characters to be read

int nval Number of characters to read

Description:

Reads a ector of character values from the current input file in accordance with the current format specification. In this
implementation signedhar is derived from the nonstandard FORTRAN types BYTE or INTEGER*1. Therefore,
formatting conventions are assumedbte that in this function each individual character is assumed to have its own
corresponding format specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general disoti§50dRTRAN 1/O capabilities for a listing
of the possible error codes.

See also:
fioerror() Do specified error processing
fiordi() Read short integer value

6.131 FIORDD: Read FORTRAN Double Precision Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations
int fiordd(value,nval)

double* value Points to values to be read

int nval Number of values to be read

Description:

Reads a vector of double precision floating point values from the current input file in accondédnttee current format
specification. Each value is assumed to have its own corresponding format specification if a formatted read is being
performed.

Return value:

201

PromulaFortran Translator User's Manual

A zero if there is no error flag set, else an error code. See the general discuB€@RIT&AN 1/O capabilities for a listing

of the possible error codes.

See also:

fioerror()
fiofinp()
fiostod()
fioffld()
fioralph()
fiorchk()

Perform FORTRAN I/O error processing
Get next formatted input specification
Convert string to double

Get next fredform input field

Read alphabetic information

Check current fixed input field

6.132 FIORDF: Read FORTRAN Floating Point Values

Synopsis:
#include “fortran.h"

int fiordf(value,nval)
float* value
int nval

Description:

GREAT MIGRATIONSFORTRAN function declarations

Points to values to be read
Number of values to be read

Reads a vector of single precision floating point values from the current input file in accordance with the current format
specification. Each value is assumed to have its ommesponding format specification if a formatted read is being

performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN 1/O capabilitiesdor a listin

of the possible error codes.

See also

fioerror()
fiofinp()
fiostod()
fioffld()
fioralph()
fiorchk()

6.133 FIORDI:

Synopsis:
#include "fortran.h"

int fiordi(value,nval)
short* value
int nval

Description:

Perform FORTRAN I/O error processing
Get next formatted input specification
Convert string to double

Get next freform input field

Read alphabetic information

Check current fixed inputeld

Read FORTRAN Short Integer Vector

GREAT MIGRATIONSFORTRAN function declarations

Vector of values
Number of values to be read

202

PromulaFortran Translator User's Manual

Reads a veor of short fixed point values from the current input file in accordance with the current format specification.
Each value is assumed to have its own corresponding format specification if a formatted read is being performed.

Return value:

A zero if thee is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing
of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing
fiofinp() Get next formatted input specification
fiostod() Convert string to double

fioffld() Get next fredorm input field

fioralph() Read alphabetic information

fiorchk() Check current fixed input field

6.134 FIORDL: Read FORTRAN Long Integer Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations
int fiordl(value,nval)

long* value Vector of values

int nval Number of values to be read

Description:

Reads a vector of long fixed point values from the current input file in accordance with the current formaaspecific
Each value is assumed to have its own corresponding format specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN /O capabilitiisdor a |
of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing
fiofinp() Get next formatted input specification
fiostod() Convert string to double

fioffld() Get next freform input field

fioralph(') Read alphabetic infmation

fiorchk() Check current fixed input field

6.135 FIORDS: Read FORTRAN String
Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

int fiords(str,nstring,nval)
char* str Points to start of strings

203

PromulaFortran Translator User's Manual

int nstring Lengthof each string
int nval Number of strings to be read
Description:

Reads a sequence of fixed length strings, stored one after another, from the current input file in accordance with the curren
format specification. Each string is assumed to have itsamsnesponding format specification if a formatted read is being
performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilitiesdor a listin
of the possible error codes.

See als:

fioerror() Perform FORTRAN I/O error processing
fiofinp() Get next formatted input specification
fioffld() Get next freform input field

fioralph() Read alphabetic information

6.136 FIORDT: Read FORTRAN Truth Value Vector

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiordt(bool,nval)

unsigned long* bool The values to be read

int nval The number of values to be read

Description:

Reads a vector of truth values (long logical values) from the current fitguh accordance with the current format
specification. Note that in this function each individual truth value is assumed to have its own corresponding format
specification if a formatted read is being performed.

Return value:

A zero if there is no eor flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing
of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing
fiofinp() Get next formatted input specification
fioffld() G next freeform input field

fioralph() Read alphabetic information

fiorchk() Check current fixed input field

6.137 FIORDU: Read FORTRAN Unsigned Char Vector

Synopsis:

204

PromulaFortran Translator User's Manual

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiordu (c,nval)

unsigned char* c Points to characters to be read

int nval Number of characters to read

Description:

Reads a vector of character values from the current input file in accordance with the current format specification. In this
implementatiorunsign ed char is derived from the nonstandard FORTRAN type LOGICAL*1. Therefore, L formatting
conventions are assumed. Note that in this function each individual character is assumed to have its own corresponding
format specification if a formatted read is bepegformed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN 1/O capabilitiesdor a listin
of the possible error codes.

See also:
int fiordb() Read short Boolean value
int fioerror() Perfam FORTRAN I/O error processing

6.138 FIORDX: Read FORTRAN Complex Values

Synopsis

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiordx(value,nval)

complex* value; Points to values to be read

int nval; Number of valuesatbe read

Description:

Reads a vector of single precision complex values from the current input file in accordance with the current format
specification. Each value is assumed to have its own corresponding format specification if a formatted read is bein
performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilitiesdor a listin
of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing
fioffld() Get next freeform input field

fiordf() Read floating point values

fiospace() Skip whitespace in record

fiostod() Convert string to double

6.139 FIORDZ: Read FORTRAN Double Complex Values

205

PromulaFortran Translator User's Manual

Synopsis:

#include "fortran.h” GREAT MIGRATIONSFORTRAN function declarations
int fiordz(value,nval)

dcomplex* value; Points to values to be read

int nval; Number of values to be read

Description:

Reads a vector of double precision complex values from the current input file in accordance with the aunant f
specification. Each value is assumed to have its own corresponding format specification if a formatted read is being
performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN lliDesafoaa listing
of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing
fioffld() Get next freeform input field

fiordd() Read floating point values

fiospace() Skip whitespace in record

fiostod() Convert string talouble

6.140 FIOREC: Position a FORTRAN File on a Record

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiorec(irec)

int irec Record number desired

Description:

This function merely records a record number hichy the FORTRAN file about to be accessed is to be positioned.
Return value:
None, the function is void.

See also: None

6.141 FIOREW: Rewind a FORTRAN File
Synopsis:
#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

int fiore w()

206

PromulaFortran Translator User's Manual

Description:

This function rewinds the file associated with the "current” FORTRAN file as specified in the global Viiwtaiole .
Return value:

A zero if the rewind was successful, else an error code. See the general discussion of FORTRAlsbilfiesafor a
listing of the possible error codes.

See also:None

6.142 FIORLN: Read FORTRAN Endof-Line

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiorln()

Description:

Completes the current read op@a by flushing the current format statement and by setting the current record controls to
the end of the current record.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN /O capalaillismfpr
of the possible error codes.

See also:

fiofend() End current format processing
fioerror() Perform error processing
fiofinp() Next input format specification

6.143 FIORNDV: Round Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiorndv(dspdig,ndigit,length)

char* dspdig Digit string to be rounded

int ndigit Number of rounded digits

int length Length of digit string

Description:

Truncates and rounds a numeric string of digits. The parameigr t specifies the number of digits desired in the
rounded result. The parametength specifies the total number of digits now in the string. dhedig string may
contain only numeric characters

Return value:

207

PromulaFortran Translator User's Manual

The function returns the carry value fromethound. If the input string consists of a sequence of "999..." such that all
become rounded to zero, then the output string will contain "100..." and the function will return a value of 1; else it will
return a value of 0.

See also:None

6.144 FIORNL.: Process FORTRAN READ DATALIST Statement

Synopsis:
#include "fortran.h " GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
char* nmname Name of the variable
void* nmvalu Points to the variable values
int nmtype Binary type of the vaable
int* nmadr Points to the variable's dimensions
} namelist

int fiornl(name,nname)

namelist* name List of variables in this namelist
int nname Number of variables in namelist
Description:

This function reads a set of variable values from the cuiment file. The namelist format is identical to that which may be
used in specifying values in a FORTRAN DATA statement.

Return value:

A zero if the read was successful, else an error code. See the general discussion of FORTRAN I/O capabilisiéasgfor a |
of the possible error codes.

See also:

fiostod() Convert string to double

fioerror() Perform FORTRAN I/O error processing
fiofend() End formatted processing

fioralph(') Read alphabetic information

fiospace() Skip white space in record

fiostoi() Convert string to integer

fioffld() Get next freform field

6.145 FIORPATH: Read Pathname Conversion Information

Synopsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiorpath(fname,pak)

char* fname Name of file cotaining conversion information

unsigned char* pak Conversion information table

Description:

208

PromulaFortran Translator User's Manual

Reads a file containing pathname conversion information which establishes a particular pathname translation scheme. The
actual specification is contained on tlile fvhose name is specified by thame parameter. This specification describes

the path and file name conventions to be used on the target platform and how these conventions are to be obtained from the
source pathname specifications. The approach takendescribe how source pathnames are to be "translated" into target
pathnames.

Syntax
PATHNAMES dirchar [REPLACE "s1t1s2t2..."]
[LOWER | UPPER]
[PREFIX "tname"]
[EXCLUDE]
[TERMINATION tc]
sname(1) tname(1)
sname(n) tname(n)
END
Where:
dirchar is the directory separation character in the source pathname
sltls2t2 ... are a sequence of character pairs
tname is a target language pathname or pathname prefix
sname is asource language pathname or pathname prefix
tc is a pathname termination character used in the source pathname

Thedirchar specification gives the character used to separate the pathname components in the original source codes. By
default, this charactés replaced by the appropriate separation character / in the target pathnames.

The requireddirchar specification specifies the character used to separate the pathname components in the original
source codes. This character is replaced by an equivdiaraater in the target pathnames. For example moving from
PRIME FORTRAN to UNIX, a "<" character would be replaced by a "/" character. Moving frorD®IS to UNIX would

replace a\" character with a "/" character.

The optional REPLACE parameter specifegdditional characters to be replaced in the source names. As many pairs of
characters as are needed may be included. The standard PRIME language description, for example, contains the following
specification for this option:

REPLACE "$_"
This causes allollar signs in the source pathnames to be replaced by underscores.

The mutually exclusive and optional UPPER, LOWER parameters specify that all alphabetic characters in pathnames
should be converted to upper lowercase respectively. Since some sysgrathnames are case sensitive, while others are

not, it is important to specify one of these options. For example, though most PRIME pathnames are shown in uppercase,
most transfer programs create lowercase names when transferring files to UNIX; thehefetandard PRIME language
description contains a specification of LOWER for this option.

For initial testing and use dBREAT MIGRATIONS FORTRAN for particular small projects, the simplest approach is
simply to move all source filed including the INCLUDE files 8 into the user's local directory. To do tBEREAT
MIGRATIONS FORTRAN must be told to ignore all directory information in the source pathnames. Under this alternative

209

PromulaFortran Translator User's Manual

all characters up to and including the last occurrence of the directoryooemipseparations character are stripped from the
source pathname. This is achieved via the EXCLUDE option.

A possible alternative structure for the INCLUDE files for a UNIX implementation might be to copy all of these files into
some subdirectory wherédy would retain the same relative structure as they had on the PRIME. The PRERX
option allows a directory specification to be added to the front of all source pathnames.

Another alternative might be to copy all include files into a single sulidisewith no additional structure. This effect can
be achieved by using PREFIX in conjunction with the EXCLUDE option. All source structure would be excluded and then
would be replaced by the desired target subdirectory name.

In some cases, no genericristation scheme will work. Certain names might have to be changed on an individual basis.
The final list ofsname, thame pairs achieves this end. Each pathname is first translated using the generic specifications
on the PATHNAME statement itself. The resumt pathnames are compared with shames in the list. If the first n
characters of a pathname match the n characterssofare; then those n characters are stripped and the assowiates

is added to the front of the name.

As can be seen from théave, it will be necessary to organize the INCLUDE files in the new environment. Once that
organization has been completed, the PATHNAMES component of the language specification can be used to describe that
structure. No changes need be made in the FORT&AKce code INCLUDE and INSERT statements.

Return Value:

The pathname conversion information is stored in the parapeiteas follows:

Byte Description of content

0 Directory separation character
1 Exclude directories from pathname flag
2 Case conveion code (0 = none, 1 = toupper, 2 = tolower)
3+ Prefix to be added to name(length,characters)
4+ Conversions list
See also:
fiocpath() Performs the path conversion specified here

6.146 FIORTXT: Read Next Text Record

Synopsis:

#include “fortran e GREAT MIGRATIONSFORTRAN function declarations
void fiortxt()

Description:

Reads the next physical text record into the coded communications record for detailed processing. Both "internal" and
"external” files are processed.

Return value:
None, he function is void. The effect of its processing is reflected in the various global format control variables.

See also:

210

PromulaFortran Translator User's Manual

fioerror() Perform error processing

6.147 FIORWBV: FORTRAN Rewrite Binary Values

Synopsis

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiorwbv(value,nvalue)

void* value; Points to values being written

int nvalue; Number of bytes to be written

Description:

This function rewrites binary values to a file.
Return value:

A zero if all went well, els@n error code. See the general discussion of the FORTRAN I/O capabilities for a listing of the
possible error codes.

See also:None

6.148 FIOSHL: Shift String Left

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fioshl(s,n)

char* s String to be shifted

int n Number of places to be shifted

Description:

Shifts a character string left a specified number of places. The spaces removed are lost.
Return value:
None, the function is void.

See also:None

6.149 FIOSHR: Shift String Right

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fioshr(s,nfill)

char* s String to be shifted

int n Number of places to shift

char fill The fill character

Description:

211

PromulaFortran Translator User's Manual

Shifts a charactertrsng right a specified number of places. The spaces thus created are set equal to the specified fill
character. This function is typically used during detailed editing of displays during various numeric conversions.

Return value:
None, the function isaid.

See also:None

6.150 FIOSPACE: Skip White Space in Record

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiospace()

Description:

This function is a utility used by the ligirected input processing futimns to skip over white space within the input
record. White space consists of blanks and newlines.

Return value:
If the function reads a new record during its processing, it returns a 1; else it returns a zero.
See also:

fiortxt() Read next text rexd

6.151 FIOSTATUS: Set FORTRAN |/O Error Status

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiostatus(iostat,error)

long* iostat Address of error status variable

int error Error testing switch

Description:

If the FORTRAN I/O runtime system encounters an error, it sets an error code and calls fisgstion. The behavior of

that function depends upon how the code using the 1/O system is doing error processing. This function establishes the error
code returrvariable and the error checking level.

Return value:

None, the function is void.

See also:None

6.152 FIOSTIO: Establish FORTRAN Standard I/O

212

PromulaFortran Translator User's Manual

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiostio(action)

int action Action code for subsequent use

Description:

Before any action can be performed on a standard I/O file, it must be associated with an existing FORTRAN file structure.
there is no already existing structure for the standard unit, then thisofumdll attempt to create one.

The type of standard unit to be used is determined by the action code as follows:

Code Standard unit

1 console (standard error)
2 standard input
3 standard printer

other standard output
Return value:

A zero if all went vell, else an error code. See the general discussion of the FORTRAN 1/O capabilities for a listing of the
possible error codes.

See also:
fiortxt() Read next text record
fioerror() Performs standard error processing

6.153 FIOSTOD: Convert String toDouble

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
double fiostod(str,nstr)

char *str String to be converted

int nstr Length of field

Description:

Converts an alphanumeric string containing a number in scientifidiootto a double precision floating point number. The

string can contain optional leading blanks, an integer part, a fractional part, and an exponent part. The integertpart consis
of an optional sign followed by zero or more decimal digits. The fraatipart is a decimal point followed by zero or more
decimal digits. The exponent part consists of an 'E', 'e', 'D', or 'd' followed by an optional sign and a sequence of decimal
digits. The parameters to this function are as follows:

Name Description of Use

str Contains the alphanumeric string to be converted.
nstr Contains the number of characters in the string. Note that the string is not nect
NULL terminated.

The following global variables are also used by this function:

213

PromulaFortran Translator User's Manual

Name Description of Use

fioerc If the conversion encounters a character which is not part of the notation then this variable ret
position of that character.

fiondec Returns the number of decimal places in the fractional part of the number plus 1a™Malige of zerc
means there was no decimal point and one means there was a decimal, but no fractional digits.

fioblkn If blanks are normal tibreakers, then this variable is zero, else if it is +1 blanks are simply ignored

it is -1 blanks are #ated as zero.
Return value:
The double precision value of the string as computed.
See also:

fiostoi() Convert string to integer

6.154 FIOSTOI: Convert String to Integer

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarans
int fiostoi(s)

char** s Pointer to the string pointer

Description:

Converts an alphanumeric string to an integer value. Its parameter points the location of a pointer to the start gf the strin
This location is updated to point immediately beytimellast character of the integer value.

Return value:
The converted value.

See also:None

6.155 FIOUWL: Establish FORTRAN Unformatted Write Length

Synopsis

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiouwl(recl)

long* recl Record number desired

Description:

This function merely records the length of the following unformatted record to be written.
Return value:
None, the function is void.

See also:None

6.156 FIOVFINI: Initialize A Variable FORTRAN Forma t

214

PromulaFortran Translator User's Manual

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiovfini(fmt,nfmt)

char* fmt; Pointer to the format

int nfmt; Length of FORMAT

Description:

This function initializes the variable's format strings for use in the FA@RMENvironment needed by the FORTRAN style
input/output statements. This function is needed to convert the format string into external display code which is used by the
format system.

Return value:

A zero if the format appears wdlirmed, else an errmode. See the general discussion of FORTRAN 1/O capabilities for a
listing of the possible error codes.

See also:

fiofini(') Initialize FORTRAN format processing

6.157 FIOWALPH: Write Alphabetic Information

Synopsis:

#include "“fortran.h" GREAT MIGRATIONS FORTRAN function declarations
void fiowalph(alpha,nalpha,nfield)

char* alpha Character string

int nalpha Length of character string

int nfield Width of field

Description:

Write a character string, lefistified, blankfilled to the right into dixed width field. If the character string is longer than
the field, then only the lefinost characters are written.

Return value:
None, the function is void. The effect of its processing is reflected in the various global format control variables.
Seealso:

fiowhexo() Write Hexadecimal or octal constant

6.158 FIOWBIV: FORTRAN Write Binary Values
Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations

215

PromulaFortran Translator User's Manual

int fiowbiv(value,nvalue)

void* value Points to values being written
in t nvalue Number of bytes to be written
Description:

This function writes binary values to a file.
Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN 1/O capabilities for a listing of the
possible errocodes.

See also:None

6.159 FIOWDBL: Write Double Precision Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiowdbl(value,nsigdig)

double value Value to be converted

int nsigdig Number of significant digs

Description:

Converts a double precision value to ffeem display form and stores it at the current position in the coded
communications record.

The parametevalue contains the value to be converted; whitdgdig specifies the number of signifiat digits in the
value.

Return value:

None, the function is void. The global variafiterec is updated to contain the new field, and the variéiblehar is
updated to reflect the new character count in the coded communication record.

See also:

fioitos() Convert integer to string

fiorndv() Round floating point value display
fioshr() Shift display string right

6.160 FIOWEF: FORTRAN Write End-of-file

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiowef()

Description:

216

PromulaFortran Translator User's Manual

This function writes an endf-file to a file.
Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN 1/O capabilities for a listing of the
possible error codes.

See also:None

6.161 FIONHEXO: Write Hexadecimal or Octal Constant

Synopsis

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
char* fiowhexo(base,ival,vlen)

int base; Base of the exact representation constant

char* ival; Value of exact representation comgta

int vien; Length of value in bytes

Description:

Displays a numeric value as a hexadecimal or octal character string.
Return value:

The function returns a pointer to the exact representation string for the value.

See also:

fifibit() Insert a bit

fifrbit() Reverse bits byte order
fifxbit() Extract a bit

6.162 FIOWLN: Write FORTRAN End-of-Line

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations

int fiowlIn()

Description:

Completes the current read operation laghiing the current format statement and writing out the current record.
Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilitiesdor a listin
of the possible error codes.

See also:

fiofout() Process output format specification
fiowtxt() Write text record

fiofend() End current format

217

PromulaFortran Translator User's Manual

fioerror() Do requested error processing

6.163 FIOWNL: Process FORTRAN WRITE DATALIST Statement
Synopsis
#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {
char* nmname;
char* nmvalu;
int nmtype;
int* nmadr;

} namelist;

int fiownl(name,nname,nlident)

namelist* name; NAMELIST group

int nname; Number of variables in group
char* nlident; Identifier of NAMELIST group
Description:

Writes the information in a namelist data group.
Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN 1/O capabilitiesdor a listin
of the possible error codes.

See also:

fiowdbl() Write double precision values

fioerror() Perform FORTRAN I/O error processing
fiowtxt() Write current text record

fiodtos() Convert floating point number

fioitos() Convert integer to string

6.164 FIOWRB: Write FORTRAN Boolean Vector

Synapsis:

#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiowrb(bool,nval)

unsigned short* bool Points to values being written

int nval Number of values to be written

Description:

Writes a vector of Boolean values to the currerntpoufile in accordance with the current format specification. In this
context, the term "Boolean value" refers to a short logical value. The output display for a logical value consists of a
sequence of "ful" blanks followed by a "T" or an "F", where "fvi§ the field width. "T" is used for nonzero values and

"F" is used for zero values.

Note that this function also supports the FORTRAN 66 convention under which alphabetic information may be stored in
the logical values.

218

PromulaFortran Translator User's Manual

Return value:

A zero if there $ no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing
of the possible error codes.

See also:

fioerror() Perform error processing

fiofout() Process output format specification
fiowalph() Write alphabetic information
fiowtxt() Write a text record

6.165 FIOWRC: Write FORTRAN Character Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiowrc(c,nval)

char* c Points to characters to be written

int nval Number of characters to be written

Description:

Writes a vector of character values to the current output file in accordance with the current format specification. Note that
in this function each individual character is assumed to have its own correspfordiat) specification if a formatted write
is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN 1/O capabilitiesdor a listin
of the possible error codes.

See also:
fioerror() Do requested error processing
fiowrih() Perform short integer output

6.166 FIOWRD: Write FORTRAN Double Precision Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiowrd(value,nval)

double* value Points b values being written

int nval Number of values to be written

Description:

Writes a vector of double precision values to the current output file in accordance with the current format specification.
Note that in this function each individual value isumssed to have its own corresponding format specification if a
formatted write is being performed.

219

PromulaFortran Translator User's Manual

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilitiesdor a listin
of the possiblerror codes.

See also:

fioerror() Do requested error processing
fiofout() Process output format specification
fiowalph() Write alphabetic information
fiowval() Write value

6.167 FIOWRF: Write FORTRAN Single Precision Vector

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiowrf(value,nval)

float* value Points to values being written

int nval Number of values to be written

Description:

Writes a vector of single precision values to the current output filedordance with the current format specification. Note
that in this function each individual value is assumed to have its own corresponding format specification if a formatted
write is being performed.

Return value:

A zero if there is no error flag selse an error code. See the general discussion of FORTRAN I/O capabilities for a listing
of the possible error codes.

See also:

fioerror() Do requested error processing
fiofout() Process output format specification
fiowalph() Write alphabetic informatin

fiowval() Write value

6.168 FIOWRI: Write FORTRAN Short Integer Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiowri(value,nval)

short* value Points to values to be written

int nval Number of values tbe written

Description:

220

PromulaFortran Translator User's Manual

Writes a vector of short integer values to the current output file in accordance with the current format specification. Note
that in this function each individual value is assumed to have its own corresponding format spegiffcatformatted
write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilitiesdor a listin
of the possible error codes.

See also:

fioltos() Convert long to sing

fioerror() Do requested error processing
fiofout() Process output format specification
fiowalph() Write alphabetic information
fiowtxt() Write a text record

6.169 FIOWRL: Write FORTRAN Long Integer Vector

Synopsis:

#include “fortran.h" GREAT MIGRATIONS FORTRAN function declarations
int fiowrl(value,nval)

long* value Points to values to be written

int nval Number of values to be written

Description:

Writes a vector of long integer values to the current output file in accordance withrthatdormat specification. Note
that in this function each individual value is assumed to have its own corresponding format specification, if a formatted
write is being performed.

Return value:

A zero if there is no error flag set, else an error c8ee. the general discussion of FORTRAN I/O capabilities for a listing
of the possible error codes.

See also:

fioltos() Convert long to string

fioerror() Do requested error processing
fiofout() Process output format specification
fiowalph() Write alphdetic information

fiowtxt() Write a text record

6.170 FIOWRS: Write FORTRAN Vector of Strings
Synopsis:
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations

int fiowrs(str,nstring,nval)
char* str Points to start of strings

221

PromulaFortran Translator User's Manual

int nstri ng Length of each string
int nval Number of strings to be written
Description:

Writes a sequence of fixed length strings, stored one after another, to the current output file in accordance withtthe curren
format specification. Each string is assumetdue its own corresponding format specification if a formatted write is being
performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilitiesdor a listin
of the possible error ces.

See also:

fioerror() Do requested error processing
fiofout() Process output format specification
fiowalph() Write alphabetic information
fiowtxt() Write a text record

6.171 FIOWRT: Write FORTRAN Truth Value Vector

Synopsis:

#include “fort ran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiowrt(bool,nval)

unsigned long* bool Points to values to be written

int nval Number of values to be written

Description:

Writes a vector of truth values to the current output file in accordaitbethe current format specification. In this context,
the term "truth value" refers to a long logical value. The output display for a logical value consists of a sequenté of "fw
blanks followed by a "T" or an "F", where "fw" is the field width. "T"used for nonzero values and "F" is used for zero
values.

Note that this function also supports the FORTRAN 66 convention under which alphabetic information may be stored in
the logical values.

Return value:

A zero if there is no error flag set, elseerror code. See the general discussion of FORTRAN 1/O capabilities for a listing
of the possible error codes.

See also:

fioerror() Do requested error processing
fiofout() Process output format specification
fiowalph() Write alphabetic information
fiowtxt() Write a text record

6.172 FIOWRU: Write FORTRAN Unsigned Char Vector

222

PromulaFortran Translator User's Manual

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
int fiowru(c,nval)

unsigned char* ¢ Points to characters to be written

int nval Number of baracters to be written

Description:

Writes a vector of unsigned character values to the current output file in accordance with the current format specification.
In this implementatiorunsigned char is derived from the nonstandard FORTRAN type LOGICALTherefore, L
formatting conventions are assumed. Note that in this function each individual character is assumed to have its own
corresponding format specification if a formatted write is being performed.

Return value:

A zero if there is no error flageg else an error code. See the general discussion of FORTRAN 1/O capabilities for a listing
of the possible error codes.

See also:
fioerror() Do requested error processing
fiowrb() Perform short Boolean output

6.173 FIOWRX: Write FORTRAN Complex Vector

Synopsis
#include "“fortran.h" GREAT MIGRATIONSFORTRAN function declarations
typedef struct {
float cr The real part of the value
float ci The imaginary part of the number
} complex

int fiowrx(value,nval)

complex* value; Points to values beingritten
int nval; Number of values to be written
Description:

Writes a vector of single precision complex values to the current output file in accordance with the current format
specification. Note that in this function each individual component of timeplex value is assumed to have its own
corresponding floating point format specification if a formatted write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN |/Qesfratdlitisting
of the possible error codes.

See also:

fiowrf() Write vector of floats

223

PromulaFortran Translator User's Manual

6.174 FIOWTXT: Write Text Record

Synopsis:

#include "fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiowtxt()

Description:

Writes the curent text record to the current file followed by a new line. Then it sets the length of the current text record to
zero.

Return value:
None, the function is void.
See also:

fioerror() Perform error processing

6.175 FIOWVAL: Write Floating Point Value

Synopsis:

#include “fortran.h" GREAT MIGRATIONSFORTRAN function declarations
void fiowval(value)

double value Value to be converted

Description:

This utility function controls the conversion of floating point values to string form under theokoh a FORMAT
specification. The actual form of the output display depends upon the particular specification. For all formats the output
field consists of blanks, if necessary, followed by a minus sign if the value is negative, or an optional itesigse.

For F format this is followed by a string of digits that contains a decimal point, representing the magnitude of the value.
Leading zeros are not provided, except for an optional zero immediately to the left of the decimal point if the enafynitud
the value is less than one. The leading zero also appears if there would otherwise be no digits in the output field.

For E format this is followed by a zero, a decimal point, the number of significant digits specified and an exponent of a
specified vidth.

For G format, the display type depends upon whether or not all significant digits can be displayed in F format. If Ehey can,
format is used; if they cannot, E format is used.

For B format, business formatting conventions are used. See fuhitidout for details.

For all display types, if the number of digits required to represent the value is less than the specified width, the unused
leftmost portion of the field is filled with blanks. If it is greater than the width, asterisks are entsteadirof the
representation.

Return value:

224

