

GREAT MIGRATIONS

FORTRAN to C Translator

User's Manual

Copyright 1988-2017, Great Migrations LLC

ALL RIGHTS RESERVED

COPYRIGHT NOTICE for

gmFortran

Version 9.38 Released May, 2007

Published by:

Great Migrations LLC

7453 Katesbridge Ct

Dublin, Ohio 43017

(877) 644.8222

This User's manual for gmFortran is the property of Great Migrations LLC . It embodies proprietary, confidential, and trade

secret information. The User's manual and the files of the gmFortran machine-readable distribution media are protected by

trade secret and copyright laws.

The use of gmFortran is restricted as stipulated in the Great Migrations LLC License Agreement which came with the

gmFortran product and which you completed and returned to Great Migrations LLC. The content of the machine-readable

distribution media and the User's manual may not be copied, reproduced, disclosed, transferred, or reduced to any

electronic, machine-readable, or other form except as specified in the License Agreement with the express written approval

of Great Migrations LLC.

The unauthorized copying of any of these materials is a violation of copyright and/or trade secret law.

DISCLAIMER OF WARRANTIES AND LIMITATIONS OF LIABILITIES

THIS USER'S MANUAL IS PROVIDED ON AN "AS IS" BASIS. EXCEPT FOR THE WARRANTY DESCRIBED IN

THE GREAT MIGRATIONS LLC LICENSE AGREEMENT, THERE ARE NO WARRANTIES EXPRESSED OR

IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE, AND ALL SUCH WARRANTIES ARE EXPRESSLY AND SPECIFICALLY

DISCLAIMED.

IN NO EVENT SHALL GREAT MIGRATIONS LLC BE RESPONSIBLE FOR ANY INDIRECT OR CONSEQUNTIAL

DAMAGES OR LOST PROFITS, EVEN IF GREAT MIGRATIONS LLC HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Some states do not allow the limitation or exclusion of liability for incidental or consequential damages, so the above

limitation or exclusion may not apply to you.

TRADEMARK

PROMULA®is a registered trademark of Great Migrations LLC.

gmFortran®is a registered trademark of Great Migrations LLC.

DEFINITION OF PURCHASE

The definition of your particular purchase is specified in the Great Migrations LLC License Agreement which came with

the gmFortran product and which you completed and returned to Great Migrations LLC. If you have any questions about

your rights or obligations as a gmFortran user or believe that you have not received the complete gmFortran package that

you purchased, please contact:

Great Migrations LLC

7453 Katesbridge Ct

Dublin, Ohio 43017

(877) 644.8222

PromulaFortran Translator User's Manual

iii

Table Of Contents

PLEASE READ THIS SECTION ... 1

1. INTRODUCTION ... 2

1.1 USER SUPPORT ... 2
1.2 WHAT IS GREAT MIGRATIONS FORTRAN? .. 2
1.3 COMPILER ADVANTAGES.. 3
1.4 TRANSLATOR ADVANTAGES ... 3
1.5 HOW GREAT MIGRATIONS FORTRAN WORKS ... 5
1.6 RATIONALE FOR DEVELOPING GREAT MIGRATIONS FORTRAN ... 5
1.7 DOWNSIZING MAINFRAME CODES FOR USE ON THE PC DOS PLATFORM .. 6
1.8 DEALING WITH FORTRAN DIALECT PROBLEMS ... 6
1.9 DEALING WITH C TYPES AND FORTRAN TYPES ... 7
1.10 DEALING WITH FORTRAN INPUT/OUTPUT IN C .. 7
1.11 RUNTIME LIBRARY ... 8
1.12 DEALING WITH COMMON BLOCKS .. 8
1.13 ALLOCATION OF LOCAL VARIABLES .. 8
1.14 A SAMPLE TRANSLATION TO C ... 9

2. COMMAND LINE .. 11

2.1 COMMAND LINE SYNTAX ... 11
2.2 SPECIFYING YOUR C OUTPUT BIAS — BC, BF, BO... 13
2.3 ARITHMETIC CONVERSIONS — CL, CS, C0, C1, C2, C3 ... 16

2.3.1 Arithmetic with Short Integer Variables ... 19
2.4 DETAILED C OUTPUT FORMAT — CF1, CF2, CF4, CF8, CF16 .. 22
2.5 TREATMENT OF CHARACTER VARIABLES — CHD, CHR, CHS, CHV ... 25

2.5.1 Initializing Character Values ... 27
2.5.2 Subprogram Arguments .. 28
2.5.3 Substrings ... 32
2.5.4 Character Concatenations .. 33
2.5.5 Character Treatment Conclusion ... 34

2.6 APPEARANCE OF COMMENTS IN C OUTPUT — CM0, CM1, CM2... 34
2.7 TREATMENT OF DATA INITIALIZATIONS — DA, DC, DR ... 35

2.7.1 Overview of Initialization Problem .. 36
2.7.2 The Initialization Switches ... 38

2.8 TURN ON DEBUGGING MODE — DB... 41
2.9 ECHO CONTROL OPTIONS — ES, ET, EX, EZ, EP, EL ... 41

2.9.1 Warnings, Notes, and Comments .. 42
2.9.2 Annotated Listing of Source Code .. 43
2.9.3 Symbol Listing and Cross Reference Table .. 44
2.9.4 Intermediate Compiler Tables .. 46
2.9.5 Annotated Listing of C Output .. 47

2.10 TREATMENT OF SYNTAX ERRORS — ER0, ER1, ER2, ER3, ER4 ... 48
2.11 FORTRAN INPUT FORMAT USED — FSNUM, FT, FF, FV, F9 ... 49
2.12 SOURCE FORTRAN INTEGER TYPE — FIS, FIL ... 50
2.13 GNAME — NAME OF FILE CONTAINING GLOBAL SYMBOLS ... 50
2.14 COMMON VARIABLES CONVENTION — GA, GD, GP, GS, GR, GV... 50

2.14.1 Overall Alignment Control with Gp — Gpc, Gps, Gpl, Gpd .. 54
2.15 INAME — NAME OF FILE CONTAINING INLINE FUNCTIONS .. 54
2.16 TARGET C INT TYPE — IS, IL ... 55
2.17 TREATMENT OF INTERNALLY GENERATED CONSTANTS — KA, KS .. 56
2.18 MAXIMUM OUTPUT LINE WIDTH — LNUM .. 58
2.19 LINK TIME PROCESSING OF COMMON DATA MODULES — LM, LS .. 58
2.20 INCLUSION OF LINE NUMBERS FOR DEBUGGING — LN, L0 .. 60
2.21 FORTRAN DIALECT SELECTION FLAGS — MDIALECT ... 60

PromulaFortran Translator User's Manual

iv

2.22 NESTING INDENTATION TO BE USED IN THE OUTPUT — N*, N0, NN .. 61
2.23 INLINE COMMENTS OUTPUT MARGIN WIDTH — NCNUM .. 61
2.24 UPPER AND LOWER BRACES CONVENTION IN C — NU0, NU1, NU2, NL1, NL2 ... 62
2.25 NAME OF THE FILE TO RECEIVE THE C OUTPUT — ONAME .. 62
2.26 SPLITTING OF OUTPUT INTO SEPARATE FILES — OS, OM ... 62
2.27 MISCELLANEOUS PROTOTYPING CONTROL FLAGS — PNUMB, P+NUMB .. 63

2.27.1 P1 — Include Definitions of int Functions ... 64
2.27.2 P2 — Use ANSI Prototypes for Argument Functions ... 64
2.27.3 P4,P8 — Exclude Referenced or Defined Prototypes ... 65
2.27.4 P16 — Ignore Prototypes for Definitions ... 66
2.27.5 P32 — Treat User Prototypes as System Functions ... 67
2.27.6 P64 — Write PFC Style Prototypes, not C Type .. 68
2.27.7 P128 — Write All Function decls to Header File ... 69
2.27.8 P256 — Use ANSI C Function Declarations .. 70
2.27.9 P512 — Make Parameters Always Take Explicit Value Type .. 71
2.27.10 P1024 — Exclude undefs From the Translation ... 71
2.27.11 P2048 — Force Variables to Have Explicit Character Type ... 72
2.27.12 P4096 — Define Equivalences via a #define .. 74
2.27.13 P8192 — Use Parameter Identifiers in Equivalences .. 75
2.27.14 P16384 — Display Include Files Separately .. 76

2.28 LISTING FILE CONTROL — PANAME, PHNUMB, PNNAME, PWNUMB .. 78
2.29 QUANTITY CONTROL FLAGS — QINUMB, QENUMB, QDNUMB, QXNUMB, QHNUMB, QWNUMB 78

2.29.1 QInumb — Size of Compacted Statement Storage .. 79
2.29.2 QEnumb — Size of the Line Number Table .. 79
2.29.3 QDnumb — Size of a Data Block ... 79
2.29.4 QXnumb — Size of External Information Storage .. 79
2.29.5 QHnumb — Size of Include File Information Storage .. 79
2.29.6 QWnumb — Word Size of Source Platform .. 80

2.30 SPECIFY A CONFIGURATION FILE — RNAME .. 80
2.31 STORAGE THRESHOLD VALUES — SANUM, SDNUM, SSNUM, SVNUM, SZNUM .. 80
2.32 FORTRAN DIALECT DOLOOP ASSUMPTIONS — T0, T1, T2 .. 83
2.33 TREATMENT OF INTERNALLY GENERATED TEMPORARIES — TA, TS ... 88
2.34 SPECIFYING UNIT NUMBERS — UR, URNUM, UP, UPNUM, UW, UWNUM .. 90
2.35 FILE TO RECEIVE PROTOTYPE DEFINITIONS — WNAME ... 90
2.36 MISCELLANEOUS CONTROL FLAGS — Y1, Y2 ... 90

2.36.1 The Treatment of Entry Points — Y1 .. 90
2.36.2 Output Form of Parameter Identifiers — Y2 .. 93

2.37 TREATMENT OF MULTIPLE ASSIGNMENTS — XA, YA .. 93
2.38 TREATMENT OF SINGLE STATEMENT NESTING BRACE — XB, YB .. 94
2.39 CONSTANT REDUCTION OPTIMIZATION — XC, YC ... 95
2.40 CHARACTER OPTIMIZATION SWITCHES — XCH, YCH .. 97
2.41 TREATMENT OF FORTRAN "D" DEBUGGING STATEMENTS ... 97

2.41.1 Treatment of Other Debugging Statements — Ydstring ... 98
2.42 USE OF PRINTF-STYLE FORMATTING — XF, YF ... 99
2.43 INITIALIZATION CHECK FOR AUTO VARIABLES — XI, YI ... 100
2.44 DO LOOP COUNTER REDUCTION OPTIMIZATION — XL, YL ... 100
2.45 SUBPROGRAM ARGUMENT TYPE CHECKING — XP, YP .. 101
2.46 SINGLE PRECISION REAL ARITHMETIC — XR, YR .. 102
2.47 SUBSCRIPT POINTER NOTATION — XS, YS, YSV, YSF .. 102
2.48 UNFORMATTED WRITE OPTIMIZATION — XU, YU ... 105
2.49 SUBPROGRAM CALL-BY-VALUE ARGUMENTS — XV, YV .. 106
2.50 DOLLAR SIGNS AS INITIAL SYMBOLS IN IDENTIFIERS — X$, Y$.. 106
2.51 LOCATION OF FORTRAN FILES TO BE INCLUDED — ZNAME .. 106
2.52 PROJECT PROCESSING — #PROJECT .. 106

3. CONFIGURATION FILE .. 108

3.1 THE CONFIGURATION SWITCHES STATEMENT .. 108

PromulaFortran Translator User's Manual

v

3.2 THE CONFIGURATION COMMENTS STATEMENT .. 109
3.3 THE CONFIGURATION PATHNAMES STATEMENT .. 113
3.4 THE CONFIGURATION RESTRUCTURE STATEMENT .. 115
3.5 THE CONFIGURATION KEYWORDS STATEMENT .. 117

3.5.1 Simple Keyword Replacement .. 120
3.5.2 Pattern Strings for COMMON blocks .. 121
3.5.3 Pattern String for External Functions .. 122
3.5.4 Pattern String for Subprogram Surrogates .. 123
3.5.5 Pattern Strings for VAX Descriptors .. 124

3.6 THE CONFIGURATION PRAGMA STATEMENT ... 124
3.7 THE CONFIGURATION $ STATEMENT .. 126

4. THE CONFIGURATION FUNCTION PROTOTYPES ... 128

4.1 FUNCTION PROTOTYPE SYNTAX ... 128
4.2 VALUE PARAMETERS .. 129
4.3 EXTERNAL NAME CLASH ... 130
4.4 MULTIPLE FORMS ... 131
4.5 GLOBAL SYMBOLS AND PROTOTYPES .. 133
4.6 RENAMING IDENTIFIERS ONLY ... 133

5. OVERVIEW OF RUNTIME LIBRARY .. 134

5.1 NAMING AND ORGANIZATION OF FUNCTIONS .. 134
5.2 GENERAL FORTRAN OPERATIONS ... 135
5.3 INPUT/OUTPUT OPERATIONS .. 135

5.3.1 Runtime Error Messages .. 135
5.4 NONCOMPLEX INTRINSIC FUNCTIONS ... 136
5.5 VIRTUAL MEMORY SYSTEM ... 137

5.5.1 The Virtual Memory Management Algorithm ... 137
5.5.2 Virtual Memory Global Variables .. 138

5.6 SINGLE PRECISION COMPLEX ARITHMETIC .. 139
5.7 DOUBLE PRECISION COMPLEX ARITHMETIC ... 139

6. RUNTIME LIBRARY FUNCTION DESCRIPTIONS ... 140

6.1 CPXABS: COMPUTE THE SHORT COMPLEX ABSOLUTE VALUE ... 140
6.2 CPXADD: SHORT COMPLEX ADDITION .. 140
6.3 CPXCJG: COMPUTE THE SHORT COMPLEX CONJUGATE ... 141
6.4 CPXCMP: SHORT COMPLEX COMPARISON ... 141
6.5 CPXCOS: COMPUTE THE SHORT COMPLEX COSINE .. 142
6.6 CPXCPX: CONVERT TWO FLOATS TO SHORT COMPLEX ... 142
6.7 CPXDBL: CONVERT DOUBLE PRECISION TO SHORT COMPLEX ... 143
6.8 CPXDIV: SHORT COMPLEX DIVISION ... 143
6.9 CPXDPX: CONVERT DOUBLE COMPLEX TO SHORT COMPLEX .. 143
6.10 CPXEXP: SHORT COMPLEX EXPONENTIAL ... 144
6.11 CPXIMA: COMPUTE THE IMAGINARY PART OF A SHORT COMPLEX .. 144
6.12 CPXLOG: SHORT COMPLEX NATURAL LOGARITHM ... 145
6.13 CPXLOG10: SHORT COMPLEX BASE 10 LOGARITHM ... 145
6.14 CPXLONG: CONVERT SHORT COMPLEX TO LONG ... 146
6.15 CPXMUL: SHORT COMPLEX MULTIPLICATION ... 146
6.16 CPXNEG: COMPUTE THE SHORT COMPLEX NEGATIVE ... 147
6.17 CPXPOL: SHORT COMPLEX CONVERSION TO POLAR .. 147
6.18 CPXPOW: RAISE SHORT COMPLEX TO A POWER .. 148
6.19 CPXREAL: COMPUTE REAL PART OF SHORT COMPLEX ... 148
6.20 CPXSIN: COMPUTE THE SHORT COMPLEX SINE .. 149
6.21 CPXSROOT: COMPUTE SHORT COMPLEX SQUARE ROOT .. 149
6.22 CPXSUB: SHORT COMPLEX SUBTRACTION ... 149
6.23 DPXABS: COMPUTE THE DOUBLE COMPLEX ABSOLUTE VALUE .. 150
6.24 DPXADD: DOUBLE COMPLEX ADDITION.. 150

PromulaFortran Translator User's Manual

vi

6.25 DPXCJG: COMPUTE THE DOUBLE COMPLEX CONJUGATE .. 151
6.26 DPXCMP: DOUBLE COMPLEX COMPARISON .. 151
6.27 DPXCOS: COMPUTE THE DOUBLE COMPLEX COSINE ... 152
6.28 DPXCPX: CONVERT SHORT COMPLEX TO DOUBLE COMPLEX .. 152
6.29 DPXDBL: CONVERT DOUBLE PRECISION TO DOUBLE COMPLEX .. 153
6.30 DPXDIV: DOUBLE COMPLEX DIVISION .. 153
6.31 DPXDPX: CONVERT TWO DOUBLES TO DOUBLE COMPLEX ... 154
6.32 DPXEXP: DOUBLE COMPLEX EXPONENTIAL .. 154
6.33 DPXIMA: COMPUTE IMAGINARY OF DOUBLE COMPLEX .. 155
6.34 DPXLOG: DOUBLE COMPLEX NATURAL LOGARITHM .. 155
6.35 DPXLOG10: DOUBLE COMPLEX BASE 10 LOGARITHM .. 156
6.36 DPXLONG: CONVERT DOUBLE COMPLEX TO LONG ... 156
6.37 DPXMUL: DOUBLE COMPLEX MULTIPLICATION .. 156
6.38 DPXNEG: COMPUTE THE DOUBLE COMPLEX NEGATIVE .. 157
6.39 DPXPOL: DOUBLE COMPLEX CONVERSION TO POLAR ... 157
6.40 DPXPOW: RAISE DOUBLE COMPLEX TO A POWER ... 158
6.41 DPXREAL: COMPUTE REAL PART OF DOUBLE COMPLEX .. 158
6.42 DPXSIN: COMPUTE THE DOUBLE COMPLEX SINE ... 159
6.43 DPXSROOT: COMPUTE DOUBLE COMPLEX SQUARE ROOT .. 159
6.44 DPXSUB: DOUBLE COMPLEX SUBTRACTION .. 160
6.45 FIFAMAX0: FORTRAN INTRINSIC FUNCTION AMAX0 .. 160
6.46 FIFAMIN0: FORTRAN INTRINSIC FUNCTION AMIN0 ... 161
6.47 FIFASC50: FORTRAN EXTERNAL FUNCTION ASC50 ... 161
6.48 FIFCHAR: FORTRAN INTRINSIC FUNCTION CHAR .. 162
6.49 FIFCOS: FORTRAN INTRINSIC FUNCTION COS .. 162
6.50 FIFDATE: EXTERNAL FUNCTION DATA .. 163
6.51 FIFDDIM: FORTRAN INTRINSIC FUNCTION DDIM ... 163
6.52 FIFDINT: FORTRAN INTRINSIC FUNCTION DINT ... 163
6.53 FIFDMAX1: FORTRAN INTRINSIC FUNCTION DMAX1 .. 164
6.54 FIFDMIN1: FORTRAN INTRINSIC FUNCTION DMIN1 ... 164
6.55 FIFDMOD: FORTRAN INTRINSIC FUNCTION .. 164
6.56 FIFDNINT: FORTRAN INTRINSIC FUNCTION DNINT ... 165
6.57 FIFDSIGN: FORTRAN INTRINSIC FUNCTION DSIGN .. 165
6.58 FIFEQF: FORTRAN INTRINSIC FUNCTION EQF ... 166
6.59 FIFEXIT: FORTRAN EXIT SUBROUTINE .. 166
6.60 FIFGETAR: FORTRAN GET COMMAND LINE ARGUMENTS .. 166
6.61 FIFGETCL: FORTRAN GET COMMAND LINE SUBROUTINE .. 167
6.62 FIFGETENV: FORTRAN GET VALUE OF ENVIRONMENT VARIABLES ... 167
6.63 FIFHBIT: FORTRAN HIGH BIT MANAGEMENT ... 168
6.64 FIFI2ABS: FORTRAN INTRINSIC FUNCTION I2ABS .. 168
6.65 FIFI2DAT: FORTRAN EXTERNAL FUNCTION I2DATE ... 168
6.66 FIFI2DIM: FORTRAN INTRINSIC FUNCTION I2DIM ... 169
6.67 FIFI2DINT: FORTRAN INTRINSIC FUNCTION I2DINT .. 169
6.68 FIFI2MAX0: FORTRAN INTRINSIC FUNCTION I2MAX0 ... 169
6.69 FIFI2MIN0: FORTRAN INTRINSIC FUNCTION I2MIN0 .. 170
6.70 FIFI2MOD: FORTRAN INTRINSIC FUNCTION I2MOD ... 170
6.71 FIFI2NINT: FORTRAN INTRINSIC FUNCTION I2NINT .. 171
6.72 FIFI2POW: FORTRAN INTRINSIC FUNCTION I2POW.. 171
6.73 FIFI2SHF: FORTRAN INTRINSIC FUNCTION I2SHFT .. 171
6.74 FIFI2SIGN: FORTRAN INTRINSIC FUNCTION I2SIGN ... 172
6.75 FIFIABS: FORTRAN INTRINSIC FUNCTION IABS .. 172
6.76 FIFIARGC: FORTRAN GET COMMAND LINE ARGUMENT COUNT .. 172
6.77 FIFIBIT: FORTRAN INTRINSIC FUNCTION IBIT .. 173
6.78 FIFICHAR: FORTRAN INTRINSIC FUNCTION ICHAR ... 173
6.79 FIFIDIM: FORTRAN INTRINSIC FUNCTION IDIM .. 174
6.80 FIFIDINT: FORTRAN INTRINSIC FUNCTION IDINT .. 174
6.81 FIFINDEX: FORTRAN INTRINSIC FUNCTION INDEX ... 174

PromulaFortran Translator User's Manual

vii

6.82 FIFIPOW: FORTRAN INTRINSIC FUNCTION IPOW.. 175
6.83 FIFISHF: FORTRAN INTRINSIC FUNCTION ISHFT .. 175
6.84 FIFISIGN: FORTRAN INTRINSIC FUNCTION ISIGN ... 176
6.85 FIFMAX0: FORTRAN INTRINSIC FUNCTION MAX0 ... 176
6.86 FIFMAX1: FORTRAN INTRINSIC FUNCTION MAX1 ... 176
6.87 FIFMIN0: FORTRAN INTRINSIC FUNCTION MIN0 .. 177
6.88 FIFMIN1: FORTRAN INTRINSIC FUNCTION MIN1 .. 177
6.89 FIFMOD: FORTRAN INTRINSIC FUNCTION MOD ... 177
6.90 FIFNEF: FORTRAN INTRINSIC FUNCTION NEF ... 178
6.91 FIFNINT: FORTRAN INTRINSIC FUNCTION NINT ... 178
6.92 FIFRAD50: FORTRAN EXTERNAL FUNCTION IRAD50... 179
6.93 FIFRBIT: FORTRAN INTRINSIC FUNCTION RBIT .. 179
6.94 FIFSIN: FORTRAN INTRINSIC FUNCTION SIN ... 180
6.95 FIFSNCS: FORTRAN SINGLE PRECISION SINE/COSINE ... 180
6.96 FIFSTRGV: FORTRAN STRING VALUE CONVERSION ... 181
6.97 FIFSYSTM: FORTRAN EXTERNAL FUNCTION SYSTEM .. 181
6.98 FIFTAN: FORTRAN INTRINSIC FUNCTION TAN.. 181
6.99 FIFTIME: FORTRAN EXTERNAL FUNCTION TIME ... 182
6.100 FIFXBIT: FORTRAN INTRINSIC FUNCTION XBIT ... 182
6.101 FIFXCREP: FORTRAN EXTENDED CHARACTER REPRESENTATION .. 182
6.102 FIOBACK: BACKSPACE A FORTRAN FILE .. 183
6.103 FIOBFOUT: BUSINESS FORMAT OUTPUT .. 183
6.104 FIOCLOSE: CLOSE CURRENT FORTRAN FILE .. 185
6.105 FIOCPATH: CONVERT PATHNAME ... 185
6.106 FIODTOS: CONVERT DOUBLE VALUE TO STRING ... 186
6.107 FIOERROR: PERFORM FORTRAN I/O ERROR PROCESSING .. 186
6.108 FIOFDATA: FORTRAN FILE DATA ... 187
6.109 FIOFEND: END FORMAT PROCESSING .. 188
6.110 FIOFFLD: GET NEXT FREE-FORM FIELD .. 189
6.111 FIOFINI: INITIALIZE A FORTRAN FORMAT... 189
6.112 FIOFINP: FORMATTED INPUT .. 190
6.113 FIOFINQU: INQUIRE ABOUT FILE DATA ... 191
6.114 FIOFMTV: COMPUTE FORMAT VALUE .. 192
6.115 FIOFOUT: FORMATTED OUTPUT OPERATIONS ... 192
6.116 FIOFVINQ: INQUIRE ABOUT FILE VALUE ... 193
6.117 FIOFWSP: SKIP FORMAT WHITE SPACE ... 194
6.118 FIOINTU: ESTABLISH FORTRAN INTERNAL UNIT .. 194
6.119 FIOITOS: CONVERT INTEGER TO STRING .. 195
6.120 FIOLREC: POSITION A FORTRAN FILE ON A RECORD .. 195
6.121 FIOLTOS: CONVERT LONG INTEGER TO STRING ... 196
6.122 FIOLUN: ESTABLISH FORTRAN UNIT NUMBER .. 196
6.123 FIONAME: ESTABLISH FORTRAN UNIT BY NAME ... 197
6.124 FIONXTF: GET NEXT FORMAT SPECIFICATION .. 198
6.125 FIOOPEN: OPEN CURRENT FORTRAN FILE .. 198
6.126 FIORALPH: READ ALPHABETIC INFORMATION .. 199
6.127 FIORBIV: FORTRAN READ BINARY VALUES ... 199
6.128 FIORCHK: CHECK FIXED-FORM INPUT FIELD .. 200
6.129 FIORDB: READ FORTRAN BOOLEAN VECTOR ... 200
6.130 FIORDC: READ FORTRAN CHARACTER VECTOR ... 201
6.131 FIORDD: READ FORTRAN DOUBLE PRECISION VECTOR .. 201
6.132 FIORDF: READ FORTRAN FLOATING POINT VALUES ... 202
6.133 FIORDI: READ FORTRAN SHORT INTEGER VECTOR ... 202
6.134 FIORDL: READ FORTRAN LONG INTEGER VECTOR ... 203
6.135 FIORDS: READ FORTRAN STRING .. 203
6.136 FIORDT: READ FORTRAN TRUTH VALUE VECTOR .. 204
6.137 FIORDU: READ FORTRAN UNSIGNED CHAR VECTOR .. 204
6.138 FIORDX: READ FORTRAN COMPLEX VALUES ... 205

PromulaFortran Translator User's Manual

viii

6.139 FIORDZ: READ FORTRAN DOUBLE COMPLEX VALUES ... 205
6.140 FIOREC: POSITION A FORTRAN FILE ON A RECORD ... 206
6.141 FIOREW: REWIND A FORTRAN FILE .. 206
6.142 FIORLN: READ FORTRAN END-OF-LINE .. 207
6.143 FIORNDV: ROUND VALUE ... 207
6.144 FIORNL: PROCESS FORTRAN READ DATALIST STATEMENT ... 208
6.145 FIORPATH: READ PATHNAME CONVERSION INFORMATION .. 208
6.146 FIORTXT: READ NEXT TEXT RECORD .. 210
6.147 FIORWBV: FORTRAN REWRITE BINARY VALUES ... 211
6.148 FIOSHL: SHIFT STRING LEFT .. 211
6.149 FIOSHR: SHIFT STRING RIGHT .. 211
6.150 FIOSPACE: SKIP WHITE SPACE IN RECORD .. 212
6.151 FIOSTATUS: SET FORTRAN I/O ERROR STATUS ... 212
6.152 FIOSTIO: ESTABLISH FORTRAN STANDARD I/O .. 212
6.153 FIOSTOD: CONVERT STRING TO DOUBLE ... 213
6.154 FIOSTOI: CONVERT STRING TO INTEGER .. 214
6.155 FIOUWL: ESTABLISH FORTRAN UNFORMATTED WRITE LENGTH .. 214
6.156 FIOVFINI: INITIALIZE A VARIABLE FORTRAN FORMAT .. 214
6.157 FIOWALPH: WRITE ALPHABETIC INFORMATION ... 215
6.158 FIOWBIV: FORTRAN WRITE BINARY VALUES .. 215
6.159 FIOWDBL: WRITE DOUBLE PRECISION VALUE .. 216
6.160 FIOWEF: FORTRAN WRITE END-OF-FILE ... 216
6.161 FIOWHEXO: WRITE HEXADECIMAL OR OCTAL CONSTANT ... 217
6.162 FIOWLN: WRITE FORTRAN END-OF-LINE ... 217
6.163 FIOWNL: PROCESS FORTRAN WRITE DATALIST STATEMENT .. 218
6.164 FIOWRB: WRITE FORTRAN BOOLEAN VECTOR ... 218
6.165 FIOWRC: WRITE FORTRAN CHARACTER VECTOR ... 219
6.166 FIOWRD: WRITE FORTRAN DOUBLE PRECISION VECTOR ... 219
6.167 FIOWRF: WRITE FORTRAN SINGLE PRECISION VECTOR.. 220
6.168 FIOWRI: WRITE FORTRAN SHORT INTEGER VECTOR .. 220
6.169 FIOWRL: WRITE FORTRAN LONG INTEGER VECTOR ... 221
6.170 FIOWRS: WRITE FORTRAN VECTOR OF STRINGS .. 221
6.171 FIOWRT: WRITE FORTRAN TRUTH VALUE VECTOR.. 222
6.172 FIOWRU: WRITE FORTRAN UNSIGNED CHAR VECTOR ... 222
6.173 FIOWRX: WRITE FORTRAN COMPLEX VECTOR ... 223
6.174 FIOWTXT: WRITE TEXT RECORD ... 224
6.175 FIOWVAL: WRITE FLOATING POINT VALUE .. 224
6.176 FIOWVB: WRITE FORTRAN BOOLEAN VALUE ... 225
6.177 FIOWVC: WRITE FORTRAN CHARACTER VALUE .. 225
6.178 FIOWVD: WRITE FORTRAN DOUBLE VALUE ... 226
6.179 FIOWVF: WRITE FORTRAN FLOAT VALUE .. 226
6.180 FIOWVI: WRITE FORTRAN SHORT INTEGER VALUE .. 226
6.181 FIOWVL: WRITE FORTRAN LONG INTEGER VALUE .. 227
6.182 FIOWVS: WRITE FORTRAN STRING VALUE ... 227
6.183 FIOWVT: WRITE FORTRAN TRUTH VALUE ... 228
6.184 FIOWVU: WRITE FORTRAN CHARACTER VALUE .. 228
6.185 FIOWVX: WRITE FORTRAN COMPLEX VALUE .. 229
6.186 FIOWVZ: WRITE FORTRAN DOUBLE COMPLEX VALUE .. 229
6.187 FTNADS: FORTRAN ADD STRINGS .. 230
6.188 FTNALLOC: ALLOCATE DYNAMIC MEMORY ... 230
6.189 FTNBACK: FORTRAN BACKSPACE STATEMENT .. 231
6.190 FTNBLKD: FORTRAN BLOCK DATA .. 231
6.191 FTNCLOSE: FORTRAN CLOSE STATEMENT ... 232
6.192 FTNCMS: FORTRAN COMPARE STRINGS ... 232
6.193 FTNFREE: FREE DYNAMIC MEMORY ... 233
6.194 FTNINI: INITIALIZE FORTRAN PROCESSING ... 233
6.195 FTNLUN: ESTABLISH FILE FOR LOGICAL UNIT NUMBER .. 234

PromulaFortran Translator User's Manual

ix

6.196 FTNOPEN: FORTRAN OPEN STATEMENT ... 234
6.197 FTNPAUSE: FORTRAN PAUSE STATEMENT ... 235
6.198 FTNREAD: FORTRAN READ STATEMENT .. 235
6.199 FTNREW: FORTRAN REWIND STATEMENT .. 237
6.200 FTNSAC: FORTRAN STORE A CHARACTER STRING .. 237
6.201 FTNSALLO: FORTRAN STRING ALLOCATION .. 238
6.202 FTNSCOMP: FORTRAN STRING COMPARISON ... 238
6.203 FTNSCOPY: FORTRAN STRING COPY .. 239
6.204 FTNSLENG: FORTRAN STRING LENGTH ... 239
6.205 FTNSUBS: FORTRAN SUBSTRING EVALUATION .. 239
6.206 FTNSTOP: FORTRAN STOP STATEMENT .. 240
6.207 FTNWEF: FORTRAN END FILE STATEMENT ... 240
6.208 FTNWRIT: FORTRAN WRITE STATEMENT ... 241
6.209 FTNXCONS: FORTRAN EXACT REPRESENTATION CONSTANT .. 242
6.210 P77GETU: PRIME FORTRAN 77 FUNCTION F77$GETU ... 243
6.211 P77NLENA: PRIME FORTRAN 77 SUBROUTINE NLEN$A.. 243
6.212 P77TNOUA: PRIME FORTRAN 77 SUBROUTINE TNOUA ... 243
6.213 PDPASSN: PDP FORTRAN SUBROUTINE ASSIGN ... 244
6.214 PDPCLOSE: PDP FORTRAN SUBROUTINE CLOSE .. 244
6.215 PDPCVTIM: PDP FORTRAN EXTERNAL FUNCTION CVTTIM ... 245
6.216 PDPGTIM: PDP FORTRAN EXTERNAL FUNCTION GTIM ... 245
6.217 VMSCLS: CLOSE VIRTUAL FILE ... 246
6.218 VMSDEL: CHANGE VIRTUAL INFORMATION .. 246
6.219 VMSGLOB: VIRTUAL GLOBAL ACCESS ... 247
6.220 VMSLOAD: LOAD A VIRTUAL VECTOR.. 247
6.221 VMSOPN: OPEN A VIRTUAL MEMORY FILE ... 247
6.222 VMSPTR: GET VIRTUAL BYTE POINTER ... 248
6.223 VMSRBL: REMOVE VIRTUAL BLOCK ... 249
6.224 VMSRDB: READ FORTRAN VIRTUAL BOOLEAN VECTOR .. 249
6.225 VMSRDC: READ FORTRAN VIRTUAL CHARACTER VECTOR .. 250
6.226 VMSRDD: READ FORTRAN VIRTUAL DOUBLE PRECISION VECTOR .. 250
6.227 VMSRDF: READ FORTRAN VIRTUAL FLOATING POINT VALUES ... 251
6.228 VMSRDI: READ FORTRAN VIRTUAL SHORT INTEGER VECTOR ... 251
6.229 VMSRDL: READ FORTRAN VIRTUAL LONG INTEGER VECTOR .. 252
6.230 VMSRDS: READ FORTRAN VIRTUAL STRING .. 252
6.231 VMSRDT: READ FORTRAN VIRTUAL TRUTH-VALUE VECTOR .. 253
6.232 VMSRDU: READ FORTRAN VIRTUAL UNSIGNED CHARACTER VECTOR .. 253
6.233 VMSSAVE: SAVE A VIRTUAL VECTOR ... 254
6.234 VMSUSE: USE VIRTUAL INFORMATION .. 254
6.235 VMSVECT: VIRTUAL VECTOR INPUT/OUTPUT ... 255
6.236 VMSWRB: WRITE FORTRAN VIRTUAL BOOLEAN VECTOR ... 255
6.237 VMSWRC: WRITE FORTRAN VIRTUAL CHARACTER VECTOR ... 256
6.238 VMSWRD: WRITE FORTRAN VIRTUAL DOUBLE PRECISION VECTOR .. 256
6.239 VMSWRF: WRITE FORTRAN VIRTUAL SINGLE PRECISION VECTOR .. 257
6.240 VMSWRI: WRITE FORTRAN VIRTUAL SHORT INTEGER VECTOR ... 257
6.241 VMSWRL: WRITE FORTRAN VIRTUAL LONG INTEGER VECTOR ... 258
6.242 VMSWRS: WRITE FORTRAN VIRTUAL VECTOR OF STRINGS ... 258
6.243 VMSWRT: WRITE A VIRTUAL LONG TRUTH VALUE VECTOR .. 259
6.244 VMSWRU: WRITE FORTRAN VIRTUAL UNSIGNED CHARACTER VECTOR ... 259
6.245 VMSWVB: WRITE A VIRTUAL BLOCK .. 260

PromulaFortran Translator User's Manual

1

PLEASE READ THIS SECTION

There are three fundamentally different ways of using PFC:

1. As a FORTRAN compiler;

2. As a tool to produce maintainable C source code from a FORTRAN source which corresponds to the original as

closely as possible so that it can be maintained by the original authors;

3. As a tool to produce a maintainable C source code from a FORTRAN source which is logically equivalent to the

original, but which uses conventional C notation and standard C functions as much as possible.

These three views are referred to as the "optimized", "FORTRAN", and "C" biases respectively. The default bias for PFC

is the FORTRAN bias. The C and optimized biases are, however, fully supported by PFC and may be activated by the Bc

and Bo command line switches. In addition, the PFC configuration file can be easily changed to make either the C or the

optimized bias the default.

Please evaluate your own reasons for applying PFC to your FORTRAN codes and make the appropriate bias selection. If

you are still not satisfied with the output from PFC, please look at the chapters in this manual which discuss the command

line switches available and the use of a configuration file. Virtually every aspect of the look of the output can easily be

controlled by you. If you are still not satisfied, please contact our user support staff. We feel very strongly that PFC can

support any reasonable objective or bias, and would like the opportunity to prove it.

PromulaFortran Translator User's Manual

2

1. INTRODUCTION

The GREAT MIGRATIONS FORTRAN to C Translator generates C code which can be compiled by a standard C

compiler to produce executable code. It is operational on a wide variety of platforms. More than just a translator, GREAT

MIGRATIONS FORTRAN adds value to the code during the translation: virtual memory logic, dynamic memory logic,

references to external databases and application management systems, and integration with other operating environments.

Finally, GREAT MIGRATIONS FORTRAN has a dialect management component which allows the customization of the

package in terms of both the FORTRAN dialect to be accepted by the translator and the form of the C translation output.

The source code processing component of gmFortran is completely compatible with the one used by the GREAT

MIGRATIONS FORTRAN Compiler. The manual for the GREAT MIGRATIONS FORTRAN Compiler is included with

this manual. That manual contains a description of the FORTRAN language supported, controlling runtime behavior, the

GREAT MIGRATIONS interface, and error messages. That discussion applies directly to gmFortran as well and will not

be repeated in this manual.

1.1 User Support

If you are a licensed and registered user of GREAT MIGRATIONS FORTRAN, you are entitled to user support from Great

Migrations LLC.

If you encounter a problem that you cannot resolve on your own by referring to this User's Manual, you may call or write

us:

Great Migrations LLC

PFC Support

7453 Katesbridge Ct

Dublin, Ohio 43017

(614) 761-9816

Your comments and suggestions about the product are always welcome.

If possible, we will provide help over the telephone. However, if the problem involves an apparent translation problem or a

runtime library problem, we will probably need a copy of your source FORTRAN. We will protect the full confidentiality

of any sample codes that you send to us.

If the problem does uncover a problem either with the translator or with the runtime library, you will be supplied with a

corrected copy of GREAT MIGRATIONS FORTRAN and/or the Runtime Library as soon as we have made those

corrections.

All purchasers of GREAT MIGRATIONS FORTRAN will be notified of any revised versions, and will be given the option

to purchase them at a nominal update cost.

At your request, Great Migrations LLC staff will also provide technical consulting services to assist you in software

conversion projects.

1.2 What is GREAT MIGRATIONS FORTRAN?

GREAT MIGRATIONS FORTRAN is a compiler which will process FORTRAN codes of almost any dialect on almost

any platform that supports a standard C compiler. It is also a comprehensive FORTRAN to C translator which converts

FORTRAN code to clean, portable, and maintainable C code while allowing extensive control over the translation process.

PromulaFortran Translator User's Manual

3

No matter how old or how extended your FORTRAN dialect is, GREAT MIGRATIONS will process it by first compiling

it to the more versatile and more portable C language. Your long-established FORTRAN programs do not have to be

maintenance burdens running inefficiently on old platforms; with PROMULA, you can give them new life on

contemporary platforms where you can take advantage of new technology options, including the option of program

maintenance in either FORTRAN or C.

1.3 Compiler Advantages

As a FORTRAN compiler, GREAT MIGRATIONS FORTRAN offers a number of advantages over other FORTRAN

compilers:

Portability Compile to C rather than machine code. Maintain a single FORTRAN source code on multiple

platforms. Port and process your applications on almost any platform that supports a standard C

compiler.

Multi-Dialect

Processing

Compile standard FORTRAN 66 and FORTRAN 77 dialects as well as various other extended

dialects, such as VAX, IBM VS, PDP, PRIME, Honeywell, and Data General FORTRAN.

Multi-Platform

Availability

Achieve reproducible results on multiple platforms without having to maintain separate source

codes on each platform. When you migrate from one platform to another, bring your FORTRAN

applications with you — including your FORTRAN compiler.

 GREAT MIGRATIONS FORTRAN is available for several platforms: IBM PC, Apple

Macintosh, VAX/VMS, VAX/ULTRIX, SUN/UNIX, IBM/AIX, 386/UNIX and other UNIX

workstations, as well as IBM mainframes. GREAT MIGRATIONS FORTRAN is a portable C

program and can be installed via shrouded source code on platforms not listed above, provided

they support a standard C compiler.

Run-Time

Library

GREAT MIGRATIONS FORTRAN comes with an extensive runtime library which reproduces

in C the full functionality of FORTRAN (FORTRAN I/O, complex arithmetic, etc.). The library

is available in C source code and can be recompiled with any standard C compiler. This means

that you can use GREAT MIGRATIONS FORTRAN as a cross-compiler, i.e., translate your

FORTRAN code to C in one platform using GREAT MIGRATIONS FORTRAN, then compile,

link and run the translated C code on a second platform using a C compiler.

Validation The compiler has been tested on several platforms with Version 2.0 of the FORTRAN compiler

Validation System from the Federal Software Testing Center and passed the test at the full

validation level on all platforms.

Integration Upgrade your FORTRAN applications by integrating them naturally with GUI libraries and other

C-based software on new platforms.

Debugging Extensive error checking is done at three steps of the process:

 (a) During compilation of the FORTRAN to C, by GREAT MIGRATIONS FORTRAN.

 (b) During compilation of the translated C code, by the C compiler. In principle, after a

successful Step (a) above, this step yields no compilation errors.

 (c) During execution, by the debugger of the C compiler. For UNIX-based systems, the dbx

debugger may be used and it can reference either the translated C code or the lines of the

original FORTRAN source code.

1.4 Translator Advantages

PromulaFortran Translator User's Manual

4

As a FORTRAN to C translator, GREAT MIGRATIONS FORTRAN offers a number of advantages over other FORTRAN

to C translators:

Multi-Dialect

Processing

Translate the standard FORTRAN 66 and FORTRAN 77 dialects as well as various other

extended dialects, such as VAX, IBM VS, PDP, PRIME, Honeywell, and Data General

FORTRAN. A particular FORTRAN dialect is selected at the time of purchase. Additional

FORTRAN dialects may be purchased later.

Cross-Platform

Availability

Translate your code on one platform for compilation, linking and running on a second platform.

Completeness The syntax processor handles almost all existing standard and extended FORTRAN dialects. It

also supports a number of Fortran 90 features, such as structures and pointer variables. On the

execution side, its comprehensive runtime library covers the full functionality of all of the above

FORTRAN dialects (full FORTRAN I/O, complex arithmetic, NAMELIST,

DECODE/ENCODE, DEFINE FILE, B-FORMAT, %VAL, %REF, %DESCR, STRUCTURE,

RECORD, embedded and inline comments, etc.)

Correctness Since GREAT MIGRATIONS FORTRAN compiles to C, i.e., performs both a syntactic and a

semantic transformation to C, the translated C code is both compilable and "correct," that is, it

yields reproducible results. See Validation above.

Language

Migration

Translate FORTRAN to maintainable C. Migrate to C for source code maintenance and further

development.

 The C code generator actually offers three output options (or biases):

 (a) The FORTRAN bias generates C output which is as close to the original FORTRAN as

possible and is aimed at easing the transition of those users who are presently FORTRAN

programmers but wish to (or must) become C programmers.

 (b) The C bias generates C output which looks much like a standard C program and is aimed at

those users who are C programmers but must now take over the maintenance of a

FORTRAN code.

 (c) The optimized bias generates C output which is designed to compile as quickly as possible

and to produce an efficient as possible executable module. This output is not very readable

and is aimed at those users who wish to continue to program in FORTRAN. For these users,

the C output is of no importance as such. It is merely an intermediate step and serves as input

to the C compiler.

Error

Processing

When a FORTRAN error occurs, an error message is issued and the user has the option to exit or

continue processing. A command-line switch allows the user to select from five different error

handling options:

 (a) Stop translation when the first error is encountered

 (b) Translate all errors into non-compilable FORTRAN ERROR statements

 (c) Translate all errors into non-linkable FORTRAN ERROR function calls

 (d) Translate all errors into executable print-error-message statements

 (e) Translate all errors into warning comments.

PromulaFortran Translator User's Manual

5

Conversion

Support

As part of our standard maintenance agreement, if after translating a working FORTRAN

application with GREAT MIGRATIONS FORTRAN you find that it does not yield the same

results in C as it does in FORTRAN, we will gladly revise or extend our translator and/or its

runtime library until you achieve complete reproducibility of results. This guarantee applies only

to pure FORTRAN applications; hybrid applications that contain external, possibly non-

FORTRAN, components, are outside the scope of our standard maintenance agreement and are

handled as part of our system conversion services on a consulting basis, upon request.

Documentation According to a Computer Language review (October, 1988), "the documentation for GREAT

MIGRATIONS FORTRAN is excellent. It meticulously details the translation process,... all the

runtime library routines, and more." In addition, the language reference component of the

documentation describes the actual FORTRAN dialect that GREAT MIGRATIONS FORTRAN

supports.

1.5 How GREAT MIGRATIONS FORTRAN Works

The GREAT MIGRATIONS compiler is based on the proven FORTRAN to C translator which was released to the PC

market almost six years ago as Version 1.0 of GREAT MIGRATIONS FORTRAN and has shown in a number of

FORTRAN code migration projects that reproducible results can be achieved almost automatically without lengthy and

expensive manual recoding work.

GREAT MIGRATIONS FORTRAN translates FORTRAN code to C code which is then compiled via any standard C

compiler and linked with the GREAT MIGRATIONS FORTRAN runtime library to produce efficient executable code. The

resultant executable code produces the same results on a target platform as the original code does on the source platform.

In designing GREAT MIGRATIONS FORTRAN we took the position that the only difference between a translator and a

compiler should be that a compiler converts the source code into machine language while a translator takes it to a higher

level language. GREAT MIGRATIONS FORTRAN compiles the FORTRAN source language into a low level

pseudocode. This pseudo-code is much like the output produced by the first, or second, pass of contemporary compilers.

Second, it optimizes that code using the same techniques as used during the optimization pass of a compiler. Third, it does

code generation; but the code generated is not machine code, it is C.

A more detailed description of the design and methodology of GREAT MIGRATIONS FORTRAN appeared in a series of

three technical papers in the Journal of C Language Translation:

1. "Design of a FORTRAN to C Translator," Fred K. Goodman, Vol. 1, December, 1989 and March, 1990.

2. "FORTRAN to C: Numerical Issues," Fred K. Goodman, Vol. 2, June, 1990.

3. "FORTRAN to C: Character Manipulation," Fred K. Goodman, Vol. 2, September, 1990.

1.6 Rationale for Developing GREAT MIGRATIONS FORTRAN

Since the beginning of FORTRAN there has always been a problem — FORTRAN is not transportable from machine to

machine or even from one operating system to another.

In contrast, the C language is unique in that it is available for almost every type of computer — from home computers to

supercomputers. It is extremely efficient, modular, and portable. It is presently the language of choice for many operating

system programmers and compiler designers.

In addition to authoring GREAT MIGRATIONS FORTRAN, we have been developing FORTRAN development tools and

FORTRAN applications for clients since 1967. In converting FORTRAN programs from one platform to another, our

typical problem was not that we could not find a good FORTRAN 77 compiler for the target platform, but rather that we

were confronted by FORTRAN programs that were almost always written in non-standard, non-machine-transportable

PromulaFortran Translator User's Manual

6

FORTRAN dialects. The typical mainframe FORTRAN program is not written in standard FORTRAN and makes

assumptions about the machine and operating system for which it was originally written. FORTRAN programs are just not

portable.

GREAT MIGRATIONS FORTRAN was designed to deal with actual FORTRAN programs, written by "non- structured"

FORTRAN programmers who took advantage of every possible special feature of their particular vendor's compiler, and

who had never known or cared that there was a standard, or two, available.

If you have a relatively small FORTRAN 77 program and wish to use it on a new platform in a C environment, then you

have a variety of compilers and/or translators available to you, but we think GREAT MIGRATIONS FORTRAN will give

you the best results. However, if you have a serious FORTRAN program and you do not wish to do any changes by hand,

then we know that GREAT MIGRATIONS FORTRAN is your only current alternative.

We originally developed GREAT MIGRATIONS FORTRAN for use in our own consulting business because we were

unable to find a FORTRAN compiler which would effectively and accurately process the typical FORTRAN programs

which we wished to migrate to the PC or other workstations. Having once developed the translator, we discovered that far

more than just translation could be achieved during the conversion. Many other problems could also be solved by

translating to C.

1.7 Downsizing Mainframe Codes for Use on the PC DOS Platform

Many FORTRAN programs are written with the assumption that a very large memory is available. This is because most

machines above the PC class have virtual operating systems. A standard "error-free" translation of a statement like the

following:

DIMENSION A(10000,20),B(10000,20)

would be:

static float a[20][10000],b[20][10000];

The fact that this is syntactically error-free is of little significance since no C compiler presently available for the PC will

accept it. Faced with this problem, what do you do? In the brute force approach, you would probably go through the code

— maybe all 10000 lines of it — and change the references to arrays A and B to some sort of disk reference. You would

probably also analyze how these arrays are referenced so that you could make the disk accesses as efficient as possible.

In processing large programs on the limited memory model of the PC-DOS platform, GREAT MIGRATIONS FORTRAN

takes a virtual memory approach. In GREAT MIGRATIONS FORTRAN, you can tell the translator that all variables larger

than a certain number of bytes should be treated as virtual memory disk variables. The runtime library has a very efficient

set of virtual memory management routines, and the translator replaces references to the specified variables with function

calls to the virtual memory functions. The subscript calculations are replaced by virtual memory address calculations.

Thus, GREAT MIGRATIONS FORTRAN allows you to bring an entire class of FORTRAN programs to the PC which

cannot now be processed easily by any other product available.

1.8 Dealing with FORTRAN Dialect Problems

Other translators deal primarily with FORTRAN 77, require that tokens contain no blanks and be separated, and treat

FORTRAN statement names as reserved words. FORTRAN codes not meeting these specifications must be changed by the

user manually. Our experience has been that many FORTRAN programs are written in FORTRAN 66 or in some mixed

dialect of FORTRAN 66 and FORTRAN 77. Since FORTRAN has no keywords and explicitly ignores all blanks in its

source statements, many perfectly readable FORTRAN programs do not meet the above requirements.

PromulaFortran Translator User's Manual

7

GREAT MIGRATIONS FORTRAN translates FORTRAN 66 as well as FORTRAN 77 programs. The user can control

those aspects of the two languages which conflict by selecting options in the translation process.

The translator accepts split tokens, token sequences without separators, blank lines, comment lines within continuation

sequences, and other potential translation ambiguities. You do not have to "clean up the code" to use GREAT

MIGRATIONS FORTRAN. So, if you have an old 66 program punched on a 026 keypunch with a drum card on as few

cards as possible and you can get it onto a disk, GREAT MIGRATIONS FORTRAN can process it for you.

Also, GREAT MIGRATIONS FORTRAN knows the difference between

DO10I=1,5 and DO10I=1.5

or

DO 10 I = 1,5 and DO 10 I = 1.5

and translates them all correctly.

GREAT MIGRATIONS FORTRAN deals with all of the "violations" of standard character manipulation including hiding

character values in arithmetic variables, mixing character and noncharacter variables in COMMON blocks, equivalencing

character variables with arithmetic variables, and assuming that CHARACTER*N and CHARACTER*1(N) have the same

memory representations.

Finally, in cases where different versions of FORTRAN have conflicting features or conventions a dialect selection option

switch can be used to select the desired set. The particular dialects which the compiler supports are as follows:

1.9 Dealing with C Types and FORTRAN Types

GREAT MIGRATIONS FORTRAN gives you access to all of the following standard C types:

signed char

unsigned char

short signed int

short unsigned int

long signed int

long unsigned int

float

double

and to float complex and double complex structured types.

Though GREAT MIGRATIONS FORTRAN has the usual set of default FORTRAN types, you can specify which

FORTRAN type should connect to which C type. If your dialect of FORTRAN includes nonstandard types such as

BOOLEAN or BYTE or INTEGER*3, then you can include these. In addition, FORTRAN compilers differ as to whether

logical types are bit sequences or simply TRUE/FALSE values. You may also select this. If bit sequences are assumed, the

"logical" operators become bit-manipulation operators.

1.10 Dealing with FORTRAN Input/Output in C

The approach taken to FORTRAN input/output statements by GREAT MIGRATIONS FORTRAN is straightforward: the

C programs should behave identically to their FORTRAN counterparts. All standard I/O statements are accepted including

long FORMAT statements. These tend to be rejected by C compilers because their initialization strings exceed the compiler

limit on the length of individual static strings. C input/output is managed via calls to functions in the C library. C has no

PromulaFortran Translator User's Manual

8

input/output statements as such. FORTRAN input/output statements are translated into calls to functions in the GREAT

MIGRATIONS FORTRAN runtime library. These functions perform input/output the way FORTRAN does.

Though the general form of input/output statements is quite standard throughout the FORTRAN dialect community, no two

FORTRAN compilers have the identical set of options. This is the major area in which dialects differ. With the GREAT

MIGRATIONS FORTRAN dialect manager you may describe the individual options associated with your particular

dialect. In addition, you may specify the form of the function to be referenced in the translation. Then you can simply write

the needed function and include it in your version of the runtime library.

1.11 Runtime Library

The GREAT MIGRATIONS FORTRAN runtime library is a set of approximately 250 functions designed for use with the

GREAT MIGRATIONS FORTRAN translator. It may also be used by those FORTRAN programmers who wish to

program in C, but who do not wish to give up the input/output conventions, formatting controls, and intrinsic functions

which they have grown used to.

Initially, C codes using this library can be produced by translating FORTRAN programs into C using the GREAT

MIGRATIONS FORTRAN translator. Once in C, the programs may then be maintained by using these functions.

If there is one certainty, it is that no two FORTRANs behave in the same way, especially with regard to their runtime

libraries. Thus, if your conventions differ from the ones used here, you may alter the library code. Alternatively, your

version of FORTRAN may contain statements which require runtime support not included in this library. In this case, you

can add the additional functions needed.

1.12 Dealing with Common Blocks

If there is any aspect of FORTRAN that can destroy the validity of a translation, it is COMMON blocks — especially when

combined with EQUIVALENCE statements. Every storage trick ever conceived gets used in the nuances of changing

COMMON block definitions through a large FORTRAN program. There is no best way to translate COMMON blocks.

Some compilers, for example, insert extra bytes to achieve various types of alignments, and programmers using these

compilers will take that fact into account without any warning or comment for the user.

GREAT MIGRATIONS FORTRAN translates COMMON blocks in one of four ways. It is up to you to select the

appropriate one depending upon your needs and preferences:

1. The default is to declare the COMMON block identifiers simply as external void pointers and then to assign them

locally to a structure pointer whose members are defined in the same manner as the COMMON definition in the

routine. This technique works in all cases except where alignments are needed.

2. In cases where COMMON blocks are always defined in the same manner, the common blocks are simply defined as

external structures. This gives more efficient code than the technique above.

3. The most efficient technique can be used when no games are played with the common blocks at all. Then, the blocks

themselves are removed and the variables within them become external variables directly.

4. The final technique is used when an exact block layout is required. The COMMON block is declared as an external

pointer to a char. The variable positions within the block are calculated with user-supplied alignment and size

specifications. Actual variable references then become references to the COMMON block name plus the calculated

position.

1.13 Allocation of Local Variables

PromulaFortran Translator User's Manual

9

Most FORTRAN compilers allocate a fixed unique storage location to all variables, be they COMMON or local. The

equivalent allocation in C is called "static", and by default all variables in the translation are declared as static variables. C,

however, has two additional storage allocation methods — auto and dynamic.

Auto variables are stored on the program stack automatically when a function is called and are automatically removed when

the function is exited. The advantage of these variables is that they occupy memory only when needed and their physical

allocation is quick and transparent to the C program. The disadvantage of auto variables is that the program stack tends to

be quite short; thus, the number and size of auto variables are very limited.

Dynamic variables are stored on the heap via explicit calls to a function and must also be freed explicitly via a function call.

The disadvantage of dynamic variables is that their allocation is slow as compared to auto variables, and the allocation itself

must be done explicitly. The advantage is that the heap is generally quite large.

Using GREAT MIGRATIONS FORTRAN you have complete control over the allocation of variables in the translation.

1.14 A Sample Translation to C

The output from GREAT MIGRATIONS FORTRAN does not look like machine translation. To present some of the design

features of the translator, consider the following example program which computes the mean and variance of a set of

values.

Input Output Notes
SUBROUTINE EX001(VAL,N,XBAR,VAR)

 DIMENSION VAL(N)

 XBAR=0.0

 VAR=0.0

 DO 10 J = 1,N

 XBAR = XBAR + VAL(J)

 10 CONTINUE

 XBAR = XBAR/N

 DO 15 J = 1,N

 S = VAL(J) - XBAR

 VAR = VAR + S*S

 15 CONTINUE

 VAR = VAR/(N-1)

 RETURN

 END

void ex001(float *val,int n,float *xbar,float *var)

{

auto int j;

auto float s;

 *xbar = *var = 0.0;

 for(j=0; j<n; j++) *xbar += *(val+j);

 *xbar /= n;

 for(j=0; j<n; j++) {

 s = *(val+j)-*xbar;

 *var += (s*s);

 }

 *var /= (n-1);

}

(1)

(2)

(3)-(6)

(5)

(3) (4)

(5)

(7)

(5)

Note (1) that the parameter n is not declared as a pointer, since it is not changed within the routine. GREAT MIGRATIONS

FORTRAN uses what are called "prototypes" of subprogram arguments so that it can generate optimal calling sequences.

These "prototypes" may be specified by the user or may be determined internally by the translator. The above was

internally determined by the translator.

Note (2) that C allows multiple assignments to the same value to be written together. The translator looks for such

assignments and combines them whenever possible.

Note (3) that in FORTRAN the default base for a subscript is 1. Thus, all DO loops which generate subscripts tend to start

at 1. In C, however, subscripts start at zero. This fact makes for much more efficient code. The translator looks for DO

loops whose only purpose is to move through array subscripts and reduces their range to start at zero, thus producing a very

natural looking for-statement and optimizing subscript expressions.

Note (4) that C has "++" and "--" operators which take advantage of the fact that most computers have increment and

decrement operators. The translator uses these operators whenever possible.

Note (5) that C has operators like "+=", "-=", "*=", "/=", etc. The use of these operators ensures that the address of the left-

hand-side of the assignment will only be computed as often as necessary. GREAT MIGRATIONS FORTRAN uses these

operators.

PromulaFortran Translator User's Manual

10

Note (6) that the DO loop running to statement 10 in the FORTRAN code is collapsed into a single compound statement,

and that the now unneeded statement label is removed.

Note (7) that though the DO loop statements in loop 15 cannot be reduced to a single statement, the statement label can still

be removed.

In summary, GREAT MIGRATIONS FORTRAN looks for every opportunity to simplify and optimize the translation and

to make it look as natural as possible in the C language form.

PromulaFortran Translator User's Manual

11

2. COMMAND LINE

To use gmFortran in its simplest mode, type its name, pfc, followed by the name of the FORTRAN file that you wish to

process and then press the [Enter] or [Return] key. This operation assumes that the following files are stored either in the

default path, or more typically, in the path specified via the operating system:

pfc[.exe] The gmFortran executable

pfc.pak The description of the FORTRAN and C dialects to be used.

To compile codes you need to use whatever conventions are appropriate for the C compiler that you are using. Typically

this means that the file

fortran.h

should be copied into the same directory or disk which contains the other include files for the compiler, and the appropriate

gmFortran runtime library file

pfcmsc.lib or libpfc.a or pfcvms.olb

should be copied into the same directory which contains the other library files for the linker.

Note that details on the installation and placement of the gmFortran files are included with the installation instructions

which accompanied the gmFortran product.

There are three ways in which to modify the behavior of gmFortran. The easiest way is via command line switches. This

chapter discusses the use of gmFortran via its command line switches.

In addition, you may supply a configuration file which gives you detailed control over particular aspects of the translation

process and specifies how individual parameters associated with particular subroutines and functions are to be processed.

The use of configuration files is discussed in Chapter 3.

Finally, you may replace the entire dialect description file

pfc.pak

that is controlling the gmFortran translations. Special dialect definition files may be obtained from Great Migrations LLC

upon request.

2.1 Command Line Syntax

The syntax for using gmFortran from the operating system level is as follows:

PFC filename opt1 opt2 opt3

Where:

filename is the name of the FORTRAN file to be converted, optionally preceded by a drive and path specification. If

no extension is supplied, an extension of .for is assumed.

PromulaFortran Translator User's Manual

12

opti is a single character or group of characters (in upper or lower case) indicating a particular switch followed

by any particular information to be associated with that switch. The switch letter(s) plus its associated

information may contain no embedded blanks. The various options are separated by blanks.

The following is an alphabetic listing of the command line switches, the number of the section in which each is discussed,

and a brief description. The remaining sections of this chapter will discuss these switches in detail.

Switch Options Section Characteristic effected by switch

B c,f,o 2.2 Specify your C output

C l,s 2.3 Treatment of short arithmetic

C 0,1,2 2.3 Casting level

CF num 2.4 Details of C output format

CH d,r,s,v 2.5 Treatment of character variables

CM 0,1,2 2.6 Appearance of comments in C output

D c,r 2.7 Treatment of data initializations

DB 2.8 Debugging information in C output

EL 0,1,2,3 2.9 Error message level

EP 2.9 Echo pseudo-code produced

ER 0,1,2,3,4 2.10 Treatment of syntax errors

ES 2.9 Annotated listing of source code

ET 2.9 Annotated listing of C output

EX 2.9 Echo symbol references by line number

EZ 2.9 Intermediate symbols table

F snumb,t,f,v,9 2.11 Input format used

FI s,l 2.12 FORTRAN INTEGER type

G name 2.13 Specify a globals file

G v,s,p,r,d,a 2.14 COMMON variable convention

G pc,ps,pl,pd 2.14 Overall alignment control

I name 2.15 Inline functions file

I s,l 2.16 Target C int type

K a,s 2.17 Treatment of internally generated constants

L num 2.18 Maximum output line width

L m,s 2.19 Link time processing of COMMON initializations

L n,o 2.20 Inclusion of line numbers for debugging

M dialect 2.21 Source language dialect

N *,num 2.22 Nesting indentation to be used in output

NC num 2.23 Inline comments C output margin width

NU 0,1,2 2.24 Upper braces placement convention in C output

NL 1,2 2.24 Lower braces placement convention in C output

O name 2.25 Name of file to receive the C output

O m,s 2.26 Splitting of C output into separate files

P numb 2.27 Miscellaneous prototyping controls

P+ numb 2.27 Additional prototyping control

PA name 2.28 Listing append filename

PH numb 2.28 Listing file page height

PN name 2.28 New listing filename

PW numb 2.28 Listing file page width

QI numb 2.29 Size of compacted statement storage

QE numb 2.29 Size of the line number table

QD numb 2.29 Size of a data block

QX numb 2.29 Size of external information storage

QH numb 2.29 Size of include file information storage

QW numb 2.29 Word size of source platform

R name 2.30 Specify a configuration file

SA num 2.31 Auto storage threshold

PromulaFortran Translator User's Manual

13

Switch Options Section Characteristic effected by switch

SD num 2.31 Dynamic storage threshold

SS num 2.31 Static storage threshold

SV num 2.31 Virtual storage threshold

SZ num 2.31 Dynamic virtual threshold

T 0,1,2 2.32 FORTRAN dialect DO loop assumption

T a,s 2.33 Treatment of internally generated temporaries

UP num 2.34 PUNCH statement unit number

UR num 2.34 READ or ACCEPT statement unit number

UW num 2.34 WRITE or PRINT statement unit number

W name 2.35 Name of file to receive prototype definitions

Y 1,2 2.36 Miscellaneous control flags

X,Y a 2.37 Treatment of multiple assignments convention

X,Y b 2.38 Treatment of single statement nesting brace

X,Y c 2.39 Constants reduction optimization

X,Y ch 2.40 Character optimization

X,Y d 2.41 Treatment of FORTRAN "D" debugging statements

X,Y f 2.42 Use of printf-style formatting

X,Y i 2.43 Initialization check for auto variables

X,Y l 2.44 DO loop counter reduction optimization

X,Y p 2.45 Subprogram argument type checking

X,Y r 2.46 Single precision real arithmetic

X,Y s,sv,sf 2.47 Subscript pointer notation

X,Y u 2.48 Unformatted write optimization

X,Y v 2.49 Subprogram call-by-value arguments

X,Y $ 2.50 Dollar signs as initial symbols in identifiers

Z

name

2.51

Location of FORTRAN files to be included

2.2 Specifying your C output bias — Bc, Bf, Bo

In the October, 1988 issue of Computer Language, Mark Davidson reviews GREAT MIGRATIONS FORTRAN and

declares it the clear winner over its competitors; however, he says "Although the code produced by the translator is not

immediately understandable ... ". Since that review, we have surveyed the users of GREAT MIGRATIONS FORTRAN

extensively to determine how they feel the output code can be made as understandable as possible and have found no clear

consensus. However, users can be divided into three broad categories:

1. Those who want to continue using their present FORTRAN dialect as their programming language. For those users the

C output is of no importance as such. It is merely an intermediate step. It should be designed to compile as quickly as

possible and to produce an efficient as possible executable.

2. Those who are presently FORTRAN programmers, but who want to (or must) become C programmers. For them the C

output should be as close to the original FORTRAN as possible to ease the transition.

3. Those who are C programmers who must now take over a FORTRAN code. For them the C output should look as

much like a standard C program as possible.

This general issue is referred to as "user bias". Those users who want optimized code have the "optimized" bias, those who

want FORTRAN-like code have the "FORTRAN" bias, and those who want C-like code have the "C" bias. When using

GREAT MIGRATIONS FORTRAN this output bias can be selected via a single command line switch. The default bias is

the FORTRAN bias which can be selected via the Bf switch. The C and optimized biases are, however, fully supported by

GREAT MIGRATIONS FORTRAN and may be activated by the Bc and Bo command line switches.

PromulaFortran Translator User's Manual

14

When one of the bias switches is used, it should always go first on the command line, since it controls the selection of

various other switch values. Mixed bias can be produced by following the bias switch itself with other switches.

Regardless of the user bias, the output of GREAT MIGRATIONS FORTRAN does not look like machine translation. To

present some of the design features of the different biases, consider the following example program which computes the

mean and variance of a set of values. The figure below shows the original FORTRAN source code along with the default

translation produced by GREAT MIGRATIONS FORTRAN for the FORTRAN and C biases.

FORTRAN SOURCE FORTRAN BIAS TRANSLATION NOTES

 SUBROUTINE EX001(VAL,N,XBAR,VAR)
 DIMENSION VAL(N)

 WRITE(*,'(1x,a,//)') "ANALYSIS"
 XBAR = 0.0
 VAR = 0.0
 DO 10 J = 1,N
 XBAR = XBAR + VAL(J)
 10 CONTINUE
 XBAR = XBAR / N
 WRITE(*,'(6H Mean=,F10.3)')XBAR
 DO 15 J = 1,N
 S = VAL(J) - XBAR
 VAR = VAR + S * S
 15 CONTINUE
 IF(VAR.NE.0.0) VAR = VAR/(N-1)
 WRITE(*,*) "Variance = ",VAR
 RETURN
 END

 void ex001(val,n,xbar,var)
 long n;
 float val[],*xbar,*var;
 {
 static long j;
 static float s;
 WRITE(OUTPUT,VFMT,"(1x,a,//)",CSTR,"ANALYSIS",0);
 *xbar = 0.0;
 *var = 0.0;
 for(j=0; j<n; j++) {
 *xbar = *xbar+val[j];
 }
 *xbar = *xbar/n;
 WRITE(OUTPUT,VFMT,"(6H Mean=,F10.3)",REAL4,*xbar,0);
 for(j=0; j<n; j++) {
 s = val[j]-*xbar;
 *var = *var+s*s;
 }
 if(*var != 0.0) *var = *var/(n-1);
 WRITE(OUTPUT,LISTIO,CSTR,"Variance = ",REAL4,*var,0);
 return;
 }

1,2,3
4

2,3,5
3,5
6
7

4,8-11,13

12,13
11
6
8,9,13
4
11
12,13
10,11
6

FORTRAN SOURCE C BIAS TRANSLATION NOTES

 SUBROUTINE EX001(VAL,N,XBAR,VAR)
 DIMENSION VAL(N)

 WRITE(*,'(1x,a,//)') "ANALYSIS"
 XBAR = 0.0
 VAR = 0.0
 DO 10 J = 1,N
 XBAR = XBAR + VAL(J)
 10 CONTINUE
 XBAR = XBAR / N
 WRITE(*,'(6H Mean=,F10.3)')XBAR
 DO 15 J = 1,N
 S = VAL(J) - XBAR
 VAR = VAR + S * S
 15 CONTINUE
 IF(VAR.NE.0.0) VAR = VAR/(N-1)
 WRITE(*,*) "Variance = ",VAR
 RETURN
 END

void ex001(val,n,xbar,var)
long n;
float val*,*xbar,*var;
{
static long j;
static float s;
 printf(" ANALYSIS\n\n\n");
 *xbar = *var = 0.0;

 for(j=0; j<n; j++) *xbar += *(val+j);

 *xbar /= n;
 printf(" Mean=%10.3f\n",*xbar);
 for(j=0; j<n; j++) {
 s = *(val+j)-*xbar;
 *var += (s*s);
 }
 if(*var != 0.0) *var /= (n-1);
 printf("Variance = %16.6E\n",*var);
 return;
 }

1,2,3
4

2,3,5
3,5
6
7

4,8-11,13

12,13
11
6
8,9,13
4
11
12,13
10,11
6

In general, the objective of the FORTRAN bias is to make the C output correspond as closely as possible to the FORTRAN

original, while still producing correct C. Extensive use is made of defined symbols to achieve this goal. In addition, every

effort is taken to keep the source and output statements in correspondence. The objectives of the C bias, on the other hand,

are to make the output as C-like as possible. No attempt is made to maintain a statement by statement correspondence and,

whenever possible, FORTRAN I/O statements, along with associated FORMAT specifications, are translated into

traditional C I/O statements.

The lines in the figure above are annotated with note numbers. The notes are as follows:

Note (1) that the parameter n is not declared as a pointer, since it is not changed within the routine. GREAT

MIGRATIONS FORTRAN uses what are called "prototypes" of subprogram arguments so that it can generate optimal

PromulaFortran Translator User's Manual

15

calling sequences. These prototypes may be specified by the user or may be determined internally by the translator. The

above was internally determined. Technically, all parameters in FORTRAN are passed as pointers. For FORTRAN codes

that make use of this fact and mix types across calls, GREAT MIGRATIONS FORTRAN may be told to make all

parameters pointers. Alternatively, the user can specify individual prototypes via a separate file.

Note (2) that ANSI FORTRAN requires that default integers and reals both occupy the same amount of memory, typically

4 bytes. Therefore, by default GREAT MIGRATIONS FORTRAN declares FORTRAN integers as long. If on your

platform C ints are already long or if in your source FORTRAN dialect FORTRAN integers are short, GREAT

MIGRATIONS FORTRAN may be told to translate INTEGER as int or as short.

Note (3) that in C all symbols must be defined prior to their use; therefore, GREAT MIGRATIONS FORTRAN declares all

parameters and local variables explicitly. Even in the FORTRAN bias, no attempt is made to maintain a direct

correspondence between FORTRAN declarations and C declarations.

Note (4) that the declaration of the val vector differs between the C and the FORTRAN biases. In the FORTRAN bias the

C brackets notation is used which, though different from standard FORTRAN notation, is preferred by many to the

traditional C pointer notation used by the C bias. This notation may be controlled via command line switches.

Note (5) that most implementations of FORTRAN treat variables as though they were static — i.e., each variable is

assigned its own memory location which remains undisturbed even when the routine containing it is not active. The user

may specify that variables be declared as "auto". In general, the user of GREAT MIGRATIONS FORTRAN has extensive

control over the allocation and memory status of variables.

Note (6) that C and FORTRAN have very different ways of specifying coded write conversions. For the FORTRAN bias,

all of the original FORTRAN machinery is maintained. The actual WRITE statement is translated into a C WRITE

statement which consists of a series of keywords followed by the parameters associated with those keywords. In the C bias,

FORTRAN WRITE statements are translated into the C printf or fprintf functions whenever possible. When not possible,

the C bias uses the same translation as the FORTRAN bias. Note in the above that both list-directed and FORMAT-

controlled statements are processed. For formatted statements the equivalent printf specification is used. For list directed

conversions GREAT MIGRATIONS FORTRAN uses a default set of specifications which may be modified by the user.

Note (7) that C allows multiple assignments to the same value to be written together. Under the C bias, the translator looks

for such assignments and combines them whenever possible. The FORTRAN bias does not by default perform these

combinations, since they destroy the correspondence between source and output statements. This feature is also controllable

via a command line switch.

Note (8) that in FORTRAN the default base for a subscript is 1. Thus, all DO loops which generate subscripts tend to start

at 1. In C, however, subscripts start at zero. This fact makes for much more efficient code. The translator looks for DO

loops whose only purpose is to move through array subscripts and reduces their range to start at zero, thus producing a very

natural-looking for statement and optimizing subscript expressions. The DO loop reduction feature is on for all biases by

default, but it may be turned off via a command line switch.

Note (9) that C has "++" and "" operators which take advantage of the fact that most computers have increment and

decrement operators. The translator uses these operators whenever possible for all biases.

Note (10) that C allows any conditional statement to form a compound statement with a single statement, while FORTRAN

allows this only for the IF statement. In the C bias this compounding is performed whenever possible; while in the

FORTRAN bias a compound statement is formed only if the source was compound.

Note (11) that C has operators like "+=", "-=", "*=", "/=", etc. The use of these operators ensures that the address of the left-

hand side of the assignment will not be computed more often than is necessary. The C bias uses the operators, the

FORTRAN bias does not.

Note (12) that the statement labels and CONTINUE statements ending the two DO loops are not needed for any other

purpose. Unneeded statement labels are always removed.

PromulaFortran Translator User's Manual

16

2.3 Arithmetic Conversions — CL, Cs, C0, C1, C2, C3

In C, if a binary operator like + or * has operands of different types the lower type is promoted to the higher type

automatically by the compiler. Alternatively, if operands of the same type are combined then the result is of that type. As

GREAT MIGRATIONS FORTRAN processes source code, it keeps track of the types of all operands involved in

expressions and determines when any conversions need to be performed. Normally, however, it only shows these

conversions in the C output if they would not be performed automatically by the C compiler.

Alternatively, the convention that operands of the same type are not promoted can cause trouble for short integer arithmetic,

since most FORTRAN compilers promote all short integer calculations to long.

Explicit conversions in C can be forced in any expression with a cast which looks as follows:

 (type) expression

This cast converts the expression to the indicated type. The C casting level option allows one to control which casts are

"forced" in the C. Both aspects of promotion are controlled via this switch. The switch itself may occur more than once on

the command line. Its individual settings are as follows:

Setting Meaning

C0 Specifies that all promotions between operands of different types be forced in the C output.

C1 Specifies that all promotions between different operands involving any integer types be forced, but

that conversions between float and double not be forced.

C2 Specifies that only those conversions between fixed point and floating point be forced, but that other

conversions not be forced.

C3 Is the default and specifies that only those casts needed to maintain the integrity of a calculation be

maintained.

Cs Specifies that short integer calculations are to be done using short arithmetic.

CL Is the default and specifies that short integer calculations are to be done using long arithmetic.

As an example, consider the following simple FORTRAN code that computes the square of a weighted mean.

 SUBROUTINE DEMO(VAL,NVAL,WEIGHT,SQ)

 DIMENSION VAL(*)

 INTEGER*2 NVAL,WEIGHT,POW

 XBAR = 0

 POW = 2

 DO 10 I = 1,NVAL

 XBAR = XBAR + VAL(I)

 10 CONTINUE

 XBAR = XBAR/(NVAL*WEIGHT)

 SQ = XBAR ** POW

 RETURN

 END

The default C output for this example looks as follows:

void demo(val,nval,weight,sq)

int nval,weight;

float *val,*sq;

PromulaFortran Translator User's Manual

17

{

static int Pow;

static long i;

static float xbar;

 xbar = 0.0;

 Pow = 2;

 for(i=0; i<nval; i++) xbar += *(val+i);

 xbar /= ((long)nval*weight);

 *sq = pow(xbar,(double)Pow);

}

Notice that there are only two casts shown. The long cast on the product between nval and weight is needed in case this

product exceeds the maximum value of a short integer. This topic is discussed below in a subsection on arithmetic with

short integer variables. The other cast is on the variable Pow in the exponentiation. Though exponentiation is a binary

operator in FORTRAN, it is not in C; therefore, in this cast the double is necessary in order to make the parameter for the

pow function have the proper type. The xbar parameter does not require a forced cast because C automatically promotes a

float to a double when it passes it by value.

The same output using the Cs switch is as follows:

void demo(val,nval,weight,sq)

int nval,weight;

float *val,*sq;

{

static int Pow;

static long i;

static float xbar;

 xbar = 0.0;

 Pow = 2;

 for(i=0; i<nval; i++) xbar += *(val+i);

 xbar /= (nval*weight);

 *sq = pow(xbar,(double)Pow);

}

It is identical with the above except that the cast on the short integer conversion is not shown. Be careful, this version might

produce an incorrect result. See the subsection below for a detailed discussion of arithmetic with short integer variables.

Let us now go to extremes. The following is the same output using the C0 cast which requests that all casts be explicitly

shown.

void demo(val,nval,weight,sq)

int nval,weight;

float *val,*sq;

{

static int Pow;

static long i;

static float xbar;

 xbar = 0.0;

 Pow = 2;

 for(i=1L; i<=(long)nval; i++) xbar = (float)((double)xbar+

 (double)*(val+(short)i-1));

 xbar = (float)((double)xbar/(double)((long)nval*(long)

 weight));

 *sq = (float)pow((double)xbar,(double)Pow);

}

In all likelihood you would never want to run GREAT MIGRATIONS FORTRAN in this mode unless you are interested in

seeing all of the "promoting" that actually goes on. Notice for example that all floating point calculations are promoted to

double and then reduced back to float. Note that constants also get promoted; thus, in the for statement the value of 1

assigned to i is now shown as 1L. Finally, note that the long cast forced on nval by the CL setting in fact causes a long

PromulaFortran Translator User's Manual

18

cast on weight. This is how this convention forces short arithmetic to be done as long arithmetic. It might be instructive to

see this example again, not with C0 but with Cs which will not force these long promotions.

void demo(val,nval,weight,sq)

int nval,weight;

float *val,*sq;

{

static int Pow;

static long i;

static float xbar;

 xbar = 0.0;

 Pow = 2;

 for(i=1L; i<=(long)nval; i++) xbar = (float)((double)xbar+

 (double)*(val+(short)i-1));

 xbar = (float)((double)xbar/(double)(nval*weight));

 *sq = (float)pow((double)xbar,(double)Pow);

}

The other effect of forcing the casts is that this process blocks the DO loop reduction algorithm. Thus, in the initial version,

the loop was reduced to start at zero; but now it starts at one. We decided to do this since forcing the casting level probably

means that you are very concerned about the arithmetic being performed. Since loop reduction performs additional integer

arithmetic, we turn it off. As one might fear, the cast to double is too late. The division is done at the integer*2 level and the

possibly overflowed result is promoted to double. Thus, using C0 to fix the short arithmetic problem only shows us what

the problem is.

Moving up to C1, the following example shows the C output using the C1 casting level.

void demo(val,nval,weight,sq)

int nval,weight;

float *val,*sq;

{

static int Pow;

static long i;

static float xbar;

 xbar = 0.0;

 Pow = 2;

 for(i=1L; i<=(long)nval; i++) xbar += *(val+(short)i-1);

 xbar /= (double)((long)nval*(long)weight);

 *sq = pow(xbar,(double)Pow);

}

As specified, the float-double casts are no longer forced, but all fixed point casts are forced. At the C2 casting level, the

following is the result.

void demo(val,nval,weight,sq)

int nval,weight;

float *val,*sq;

{

static int Pow;

static long i;

static float xbar;

 xbar = 0.0;

 Pow = 2;

 for(i=0; i<nval; i++) xbar += *(val+i);

 xbar /= (double)((long)nval*weight);

 *sq = pow(xbar,(double)Pow);

}

Now only the "mixed-mode" cast is forced. Integer arithmetic is again free, so the loop reduction is also allowed.

PromulaFortran Translator User's Manual

19

2.3.1 Arithmetic with Short Integer Variables

In moving from one environment to another, one must always be concerned with the accuracy of floating point arithmetic;

however, there is also a real problem with fixed point arithmetic even when dealing with identical word sizes. This section

concerns itself with short integer arithmetic in non-short integer environments. There is a real semantics issue here: the

same program compiled in different environments behaves differently even though these environments have the same word

size. Consider the following FORTRAN program which does short integer additions, multiplications, and divisions in a

variety of contexts.

 PROGRAM VARI2

 INTEGER*2 I1,I2,I3,I4

 INTEGER*2 ISUM,IPROD,IQUOT

 INTEGER*4 JSUM,JPROD,JQUOT

 REAL*4 RSUM,RPROD,RQUOT

 REAL*8 DSUM,DPROD,DQUOT

 I1 = 20000

 I2 = 30000

 I3 = 200

 I4 = 300

 ISUM = I1 + I2 <—— Note addition overflow

 IPROD = I3 * I4 <—— Note multiplication overflow

 IQUOT = (I1 + I2) / I4 <—— Note intermediate overflow

 JSUM = I1 + I2

 JPROD = I3 * I4

 JQUOT = (I1 + I2) / I4

 RSUM = I1 + I2

 RPROD = I3 * I4

 RQUOT = (I1 + I2) / I4

 DSUM = I1 + I2

 DPROD = I3 * I4

 DQUOT = (I1 + I2) / I4

 WRITE(*,'(24H Short Integer Results: ,3I13)')

 + ISUM,IPROD,IQUOT

 WRITE(*,'(24H Long Integer Results: ,3I13)')

 + JSUM,JPROD,JQUOT

 WRITE(*,'(24H Short Real Results: ,3F13.5)')

 + RSUM,RPROD,RQUOT

 WRITE(*,'(24H Long Real Results: ,3F13.5)')

 + DSUM,DPROD,DQUOT

 STOP

 END

In running this example with various FORTRAN compilers, always on machines with 16-bit short integers (VAX, IBM

mainframe, IBM PC), we have obtained the following three results:

1. Universal promotion to long

 Short Integer Results: -15536 -5536 166

 Long Integer Results: 50000 60000 166

 Short Real Results: 50000.00000 60000.00000 166.00000

 Long Real Results: 50000.00000 60000.00000 166.00000

2. No automatic promotion to long

 Short Integer Results: -15536 -5536 -51

 Long Integer Results: -15536 60000 -51

 Short Real Results: -15536.00000 -5536.00000 -51.00000

 Long Real Results: -15536.00000 -5536.00000 -51.00000

PromulaFortran Translator User's Manual

20

3. Selective promotion to long

 Short Integer Results: -15536 -5536 166

 Long Integer Results: 50000 60000 166

 Short Real Results: 50000.00000 -5536.00000 166.00000

 Long Real Results: 50000.00000 -5536.00000 166.00000

In reviewing these results, a negative number means that a short integer overflow has occurred. The typical FORTRAN

result is the first one. In this instance, the output of all integer calculations is a long. That result is then converted to the

desired result type. Notice that even the intermediate addition in the division example is calculated as a long.

In the second case, the result of any integer calculation is also always short, regardless of the surrounding context. This type

of result is unusual for mainframe FORTRANs and is common for PC FORTRANs. Note that Microsoft FORTRAN allows

the user to select which type of convention is to be followed as a side-effect of the "WORDSIZE" metacommand.

The third case is strange and difficult to deal with. The particular result above can be gotten from VS FORTRAN. Note that

in an integer context, universal promotion to integer is followed. Also, in all cases the intermediate addition result is

promoted to long. But for some reason the multiplication result is allowed to overflow while the addition result is not.

In designing GREAT MIGRATIONS FORTRAN we allow the user to select whether he wants universal promotion to long

or no automatic promotion to long. We have no provision for selective promotions. Note that selective and universal

promotion differ only in overflow conditions, so users from such environments should use the universal promotion to long

convention. The default convention is universal promotion. No automatic promotion is selected via the "CS" command line

switch.

From a readability standpoint, the best convention is unfortunately not the cleanest one. In C, the results of all short binary

operators are short. The only way to force C to produce a long result is to convert the arguments to long prior to the

calculation. The C output for the assignments in the above FORTRAN program under the universal promotion convention

is as follows:

void main(argc,argv)

int argc;

char* argv[];

{

static int i1,i2,i3,i4,isum,iprod,iquot;

static double dsum,dprod,dquot;

static long jsum,jprod,jquot;

static float rsum,rprod,rquot;

 ftnini(argc,argv);

 i1 = 20000;

 i2 = 30000;

 i3 = 200;

 i4 = 300;

 isum = (long)i1+i2;

 iprod = (long)i3*i4;

 iquot = ((long)i1+i2)/i4;

 jsum = (long)i1+i2;

 jprod = (long)i3*i4;

 jquot = ((long)i1+i2)/i4;

 rsum = (long)i1+i2;

 rprod = (long)i3*i4;

 rquot = ((long)i1+i2)/i4;

 dsum = (long)i1+i2;

 dprod = (long)i3*i4;

 dquot = ((long)i1+i2)/i4;

 ftnopen(6,FILEN,"EX002.OUT",9,STATUS,"NEW",0);

 fprintf(LUN(6)," Short Integer Results: %13d%13d%13d\n",isum,iprod,iquot);

 fprintf(LUN(6)," Long Integer Results: %13ld%13ld%13ld\n",jsum,jprod,jquot);

 fprintf(LUN(6)," Short Real Results: %13.5f%13.5f%13.5f\n",rsum,rprod,rquot);

 fprintf(LUN(6)," Long Real Results: %13.5f%13.5f%13.5f\n",dsum,dprod,dquot);

 exit(0);

}

PromulaFortran Translator User's Manual

21

Note that in each case the left–hand argument is converted to long; thus, causing the entire expression to be evaluated in

that manner. The result of running this version is shown below.

 Short Integer Results: -15536 -5536 166

 Long Integer Results: 50000 60000 166

 Short Real Results: 50000.00000 60000.00000 166.00000

 Long Real Results: 50000.00000 60000.00000 166.00000

Note that it agrees with the universal promotion to long result shown above.

The simpler alternative is shown below. No conversions to long are made. Thus, overflows occur in every expression.

void main(argc,argv)

int argc;

char* argv[];

{

static int i1,i2,i3,i4,isum,iprod,iquot;

static double dsum,dprod,dquot;

static long jsum,jprod,jquot;

static float rsum,rprod,rquot;

 ftnini(argc,argv);

 i1 = 20000;

 i2 = 30000;

 i3 = 200;

 i4 = 300;

 isum = i1+i2;

 iprod = i3*i4;

 iquot = (i1+i2)/i4;

 jsum = i1+i2;

 jprod = i3*i4;

 jquot = (i1+i2)/i4;

 rsum = i1+i2;

 rprod = i3*i4;

 rquot = (i1+i2)/i4;

 dsum = i1+i2;

 dprod = i3*i4;

 dquot = (i1+i2)/i4;

 ftnopen(6,FILEN,"EX002.OUT",9,STATUS,"NEW",0);

 fprintf(LUN(6)," Short Integer Results: %13d%13d%13d\n",isum,iprod,iquot);

 fprintf(LUN(6)," Long Integer Results: %13ld%13ld%13ld\n",jsum,jprod,jquot);

 fprintf(LUN(6)," Short Real Results: %13.5f%13.5f%13.5f\n",rsum,rprod,rquot);

 fprintf(LUN(6)," Long Real Results: %13.5f%13.5f%13.5f\n",dsum,dprod,dquot);

 exit(0);

}

The result of running this translation is shown below.

 Short Integer Results: -15536 -5536 -51

 Long Integer Results: -15536 -5536 -51

 Short Real Results: -15536.00000 -5536.00000 -51.00000

 Long Real Results: -15536.00000 -5536.00000 -51.00000

This result agrees with the no automatic promotion to long output from above, and is probably wrong for most applications.

It should be noted that all other FORTRAN to C translators for the PC that we have reviewed produced only the no

automatic promotion to long result.

If your program uses any short integer variables, be certain to consider this semantics problem.

PromulaFortran Translator User's Manual

22

2.4 Detailed C Output Format — CF1, CF2, CF4, CF8, CF16

Though the user has complete control over the actual content of the C output produced by gmFortran by using various other

command line switches and by modifying the content of the configuration file (see the chapter on the configuration file),

there are still a few miscellaneous aspects of the look of the C output that can be controlled:

(1) the use of whitespace surrounding operators

(2) the amount of whitespace to be used in the switch statement

(4) the case of identifiers

(8) the amount of whitespace in structure and common definitions

(16) the display of constant parameters as constants

The values of the CF switches may also be combined to obtain composite effects; thus, any CF switch value between 0 and

31 is valid. The default setting is CF0.

Consider, for example, the following FORTRAN code fragment:

 SUBROUTINE TEST

 COMMON/ALPHA/IVAL,JVAL,KVAL

 PARAMETER(I3=3,I5=I3+2)

 IVAL = JVAL + KVAL - I5

 GOTO(10,20,30) IVAL

10 WRITE(*,*) 'IVAL = 1'

20 RETURN

30 STOP

 END

The default translation for this fragment is as follows:

void test()

{

#define i3 3

#define i5 (i3+2)

extern char Xalpha[];

typedef struct {

 int ival,jval,kval;

} Calpha;

auto Calpha *Talpha = (Calpha*) Xalpha;

 Talpha->ival = Talpha->jval+Talpha->kval-i5;

 switch(Talpha->ival){case 1: goto S10;case 2: goto S20;case 3: goto S30;

 default: break;}

S10:

 WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);

S20:

 return;

S30:

 STOP(NULL);

#undef i3

#undef i5

}

There is no whitespace within the expression "Talpha->jval+Talpha->kval-i5", the typedef and the switch statement

are horizontally written to reduce whitespace, the identifiers in C have all been reduced to lower case, and the definition of

i5 is still shown as i3+2.

PromulaFortran Translator User's Manual

23

The same fragment with the CF1 switch is as follows:

void test()

{

#define i3 3

#define i5 (i3 + 2)

extern char Xalpha[];

typedef struct {

 int ival,jval,kval;

} Calpha;

auto Calpha *Talpha = (Calpha*) Xalpha;

 Talpha->ival = Talpha->jval + Talpha->kval - i5;

 switch(Talpha->ival){case 1: goto S10;case 2: goto S20;case 3: goto S30;

 default: break;}

S10:

 WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);

S20:

 return;

S30:

 STOP(NULL);

#undef i3

#undef i5

}

Now the expressions Talpha->jval + Talpha->kval - i5 and i3 + 2 have been widened, but the remainder of the

C output is as before.

The same fragment with the CF2 switch is as follows:

void test()

{

#define i3 3

#define i5 (i3+2)

extern char Xalpha[];

typedef struct {

 int ival,jval,kval;

} Calpha;

auto Calpha *Talpha = (Calpha*) Xalpha;

 Talpha->ival = Talpha->jval+Talpha->kval-i5;

 switch(Talpha->ival) {

 case 1: goto S10;

 case 2: goto S20;

 case 3: goto S30;

 default: break;

 }

S10:

 WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);

S20:

 return;

S30:

 STOP(NULL);

#undef i3

#undef i5

}

In this version blanks are not inserted in expressions, but the switch statement is now vertical. Note that the appearance of

the braces and indentation is controlled via the NU and NL switches, which are described in another section of this chapter.

The CF4 switch produces the following result:

void TEST()

{

PromulaFortran Translator User's Manual

24

#define I3 3

#define I5 (I3+2)

extern char XALPHA[];

typedef struct {

 int IVAL,JVAL,KVAL;

} CALPHA;

auto CALPHA *TALPHA = (CALPHA*) XALPHA;

 TALPHA->IVAL = TALPHA->JVAL+TALPHA->KVAL-I5;

 switch(TALPHA->IVAL){case 1: goto S10;case 2: goto S20;case 3: goto S30;

 default: break;}

S10:

 WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);

S20:

 return;

S30:

 STOP(NULL);

#undef I3

#undef I5

}

Here all user supplied identifiers are shown in upper case (the traditional FORTRAN style) as opposed to lower case (the

contemporary C style).

Using the CF8 switch gives the following C result:

void test()

{

#define i3 3

#define i5 (i3+2)

extern char Xalpha[];

typedef struct {

 int ival;

 int jval;

 int kval;

} Calpha;

auto Calpha *Talpha = (Calpha*) Xalpha;

 Talpha->ival = Talpha->jval+Talpha->kval-i5;

 switch(Talpha->ival){case 1: goto S10;case 2: goto S20;case 3: goto S30;

 default: break;}

S10:

 WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);

S20:

 return;

S30:

 STOP(NULL);

#undef i3

#undef i5

}

In this version the typedef statement used to define the structure of the COMMON block is shown vertically. Note again

that the appearance of the braces and indentation is controlled via the NU and NL switches, which are described in another

section of this chapter.

Finally, the CF16 switch produces the following result:

void test()

{

#define i3 3

#define i5 5

extern char Xalpha[];

typedef struct {

PromulaFortran Translator User's Manual

25

 int ival,jval,kval;

} Calpha;

auto Calpha *Talpha = (Calpha*) Xalpha;

 Talpha->ival = Talpha->jval+Talpha->kval-i5;

 switch(Talpha->ival){case 1: goto S10;case 2: goto S20;case 3: goto S30;

 default: break;}

S10:

 WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);

S20:

 return;

S30:

 STOP(NULL);

#undef i3

#undef i5

}

In this version the definition of i5 has been simplified to its simple value of 5.

The effects of the switches may be combined by adding their values. For example, CF11 = 1 + 2 + 8 could be used to

maximize whitespace. It produces the following result:

void test()

{

#define i3 3

#define i5 (i3 + 2)

extern char Xalpha[];

typedef struct {

 int ival;

 int jval;

 int kval;

} Calpha;

auto Calpha *Talpha = (Calpha*) Xalpha;

 Talpha->ival = Talpha->jval + Talpha->kval - i5;

 switch(Talpha->ival) {

 case 1: goto S10;

 case 2: goto S20;

 case 3: goto S30;

 default: break;

 }

S10:

 WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);

S20:

 return;

S30:

 STOP(NULL);

#undef i3

#undef i5

}

With this setting the expressions are widened with whitespace and the switch and typedef statements have a vertical form;

however, parameter values are still shown in their original form and identifiers are in lower case.

2.5 Treatment of CHARACTER Variables — CHd, CHr, CHs, CHv

By far the most difficult task to be faced by the processor is that of dealing with FORTRAN character manipulation. The

problem is that, despite the efforts of the various standards committees, FORTRAN as a living computer language has no

unified approach to character manipulation.

FORTRAN was originally designed to do "formula translation". It had little use for characters other than to label the results

of calculations. FORTRAN 66 has no CHARACTER data type and has no character manipulation statements other than

PromulaFortran Translator User's Manual

26

formatted I/O operations. Character data is simply hidden in whatever variable is convenient. Once a programmer stores

character data in a "numeric" variable it is up to him to ensure that he does not use that variable for anything else.

As the language matured, a CHARACTER type was added and some minimal machinery was included to manipulate these

types of variables. However, since there were many FORTRAN 66 programs still in existence, the use of the new

CHARACTER type did not preclude using the old character management techniques as well. Things such as equivalencing

numeric variables and character variables were completely valid.

When the 77 FORTRAN standards were established, the committee rightly concluded that the way in which languages like

IBM FORTRAN level H had implemented characters was clearly not machine transportable and was not acceptable.

Therefore, they made all FORTRAN 66 techniques of hiding character data in numeric variables illegal. In addition, they

placed several restrictions on the placement and handling of character variables, all intended to improve the portability of

the language.

After the FORTRAN 77 standard came out, however, no compiler vendor felt that he could afford to lose his customers by

telling them that they had to convert all of their FORTRAN programs into the new standard; therefore, all compiler vendors

put features into their compilers which allowed existing programs to still operate. The standards committee, however, had

totally ignored the problem of what to do with existing programs. An aside here is that we first attempted to write a

processor which would take older dialects of FORTRAN to the 77 standard. This effort proved impossible. The languages

are simply incompatible. FORTRAN 77 does not have the openness of C.

Since there was no standard mixed 66 - 77 FORTRAN, all the vendors created their own. Still today, as new compilers are

created, even for the PC, they differ in how they deal with this problem of 66 versus 77 FORTRAN. The problem is now

compounded in that particular programs are being written not for either standard but rather for the incompatible hybrid

combinations.

In designing gmFortran we decided that the major barrier to using existing FORTRAN programs in a new machine

environment was this incompatibility. If a program were written in pure FORTRAN 77, then any one of the existing

compilers could probably process it with no problem. Unfortunately, few programs are written in pure 77 FORTRAN, and

as time passes the possible hosts for these programs disappear.

Our treatment of CHARACTER data attempts to deal with all of the dialects with which we are familiar. If a program hides

its characters in numeric variables, no problem. If a program mixes character and non-character variables in COMMON

blocks or across subroutine parameters, no problem. If a program assumes that a CHARACTER*20 in one place is a

CHARACTER*1(20) in another place, no problem. If it worked in the original, then it will work in the C version.

A character variable is treated simply as a sequence of chars. It has no other structure. A CHARACTER*4 is identical to a

CHARACTER*2(2) or a CHARACTER*1(4) or a sequence of characters hidden in an INTEGER*4. The elements of a

CHARACTER array are stored one after another with no intervening NULL characters or character counts or intermediate

character pointers. This storage of character data is simple and allows the easy simulation of the various "tricks" allowed by

the various dialects.

If FORTRAN had no subprograms there would be no problems. Unfortunately, FORTRAN subprograms allow for variable

length characters, and the various system operations allow for the total mixture of character strings of any length. To deal

with a variable character string, the length of that string must be known, since the storage technique for character variables

itself does not have this information. This is an especially difficult problem, since the length of a given character string is

defined not globally, but rather by the context of its use.

The solution is difficult to accept, but appears to be dictated by the needed generality of the translation. If a given program

does not use variable length characters (CHARACTER*(*)) in subprograms, then there is no problem. Programs using

FORTRAN 66 conventions and programs using FORTRAN 77 conventions can both be handled straightforwardly by

translating character variables into C arrays of char. If a program does use the CHARACTER*(*) construct, however, then

all references to character variables in the FORTRAN program are translated into a pair of values — a pointer to the start of

the characters being manipulated and an integer value which defines the length of the character string at that point in the

code. To distinguish these two cases the user must tell gmFortran what assumptions his program is making about the

PromulaFortran Translator User's Manual

27

availability of character string length information. In addition, the user must specify whether he is mixing character and

non-character variables across subprograms.

To make life more difficult, there are three alternative ways in which the character address and character length can be

joined:

(1) The address and length can become an ordered pair when the character information is passed to a subprogram;

(2) The character lengths can be saved and passed together at the end of each call;

(3) A separate entity, termed a "descriptor", can be formed which contains the address and length.

The second approach above is the default one taken by gmFortran. It is the most common approach used by other

FORTRAN processors.

The CHr (CHaracter raw) command line switch tells gmFortran simply to translate FORTRAN character variables into C

arrays of char. When this switch is active, references to variable length character strings in subprograms cause a syntax

error.

The CHs (CHaracter string) command line switch tells gmFortran to treat all references to character variables as ordered

pairs — a pointer and a length. These two values are always shown side-by-side. This allows full use of variable length

character strings, but makes the translations more complicated and difficult to maintain.

The CHd (CHaracter dynamic) switch, which is the default, is a more complicated approach than the one above. Though

CHs is able to deal with all uses of variable length character strings, it is not able to deal with arbitrary mixtures of

character and non-character subprogram arguments. Using CHd, character string lengths are collected at the back of

subprogram calls, rather than being paired with their sources directly. In addition, string concatenations are dynamically

allocated to allow for arbitrary complexity across subprograms, and substring expressions are calculated via a temporary in

some cases. Though CHd conversion does make the relation between FORTRAN source and C output more complex than

do the other two switches, its result is highly readable and produces correct results in all cases that we have seen. The CHd

approach is sufficiently robust to deal with all situations and is therefore the default setting.

The CHv (CHaracter vector) switch, is by far the most complicated approach. It has all the robustness of the CHd setting. It

differs from CHd in that intermediate "descriptor" variables are created which contain the address and length information.

The addresses of these intermediate variables are then passed as arguments. This approach has the advantage that there is a

one-to-one correspondence between arguments in the FORTRAN and the C. The disadvantage is that additional logic is

needed to create the descriptor variables.

In the following subsections a series of examples are presented to show how the four switches CHr, CHs, CHd, and CHv

treat FORTRAN character manipulation.

2.5.1 Initializing Character Values

The first example shows how character variables are initialized. It presents a CHARACTER type declaration with

associated initializations. Though character initialization is performed in the same manner via the four character

manipulation switches, the technique required brings home the difference between the approaches to character strings

between FORTRAN and C.

The following FORTRAN code simply initializes a character array NAME with the names Charles, Frederick, Andrew,

Mary, and Mary again. Note that the notation used is straightforward, and that a simplified notation can be used to give the

last two names the same value.

 SUBROUTINE DEMO

 CHARACTER*10 NAME(4:8)/'Charles','Frederick'

 + ,'Andrew',2*'Mary'/

PromulaFortran Translator User's Manual

28

 WRITE(*,*) NAME

 END

The default C representation for this example is shown below.

void demo()

{

static char name[50] = {

 'C','h','a','r','l','e','s',' ',' ',' ','F','r','e','d',

 'e','r','i','c','k',' ','A','n','d','r','e','w',' ',' ',

 ' ',' ','M','a','r','y',' ',' ',' ',' ',' ',' ','M','a',

 'r','y',' ',' ',' ',' ',' ',' '

};

 WRITE(OUTPUT,LISTIO,DO,5,STRG,name,10,0);

}

Note first that name is simply declared as an array of char containing 50 entries. All structure has been reduced to a simple

vector. The compiler itself, however, remembers the structure and uses it when necessary.

Note second that the initialization of the name array shows up one of the quirks of C. There is no way to specify a sequence

of characters without using cumbersome notation, because the notation

"Charles"

would generate a null-terminated string and the notation

'Charles'

is not accepted by many compilers, even though it seems completely clear and unambiguous.

Note third in the initializations another point about which more will be said in other sections. The definition of 'Mary'

must be repeated twice, since C has no equivalent of n*value notation used in FORTRAN. Note also that FORTRAN

character strings are always padded with blanks and not nulls as is the convention in C. It is this fact that makes C and

FORTRAN character manipulation completely incompatible. For C then, a FORTRAN CHARACTER variable is treated

simply as an array of char and not as a C string.

The discussion in this chapter of the Dr (Data runtime) flag presents an alternative approach to the above, in which a small

amount of runtime efficiency can be sacrificed to improve the readability of the above.

2.5.2 Subprogram Arguments

The subsection above highlighted that aspect of character manipulation which is common to all four approaches to

character manipulation. This subsection describes the major way in which the three approaches differ.

Consider the following simple FORTRAN code fragment which calls the FORTRAN system function index and a user

written function jindex. Both these functions take two character string arguments.

 SUBROUTINE DEMO(I,J)

 CHARACTER*12 NAME

 CHARACTER*4 INITIAL

 I = INDEX(NAME,INITIAL)

 J = JINDEX(NAME,INITIAL)

 RETURN

 END

The simplest treatment of this code is obtained via the CHr flag. It is as follows:

PromulaFortran Translator User's Manual

29

void demo(i,j)

int *i,*j;

{

extern int jindex();

static char name[12],initial[4];

 *i = fifindex(name,12,initial,4);

 *j = jindex(name,initial);

 return;

}

In this version, notice first that the FORTRAN intrinsic function index is converted to fifindex which is the gmFortran

runtime library function equivalent. In addition, the lengths of the two character strings are passed as well, since fifindex

needs this information. The treatment of FORTRAN system functions is not affected by the CH flags. Under CHr, the call

to the jindex subprogram is quite different. Here the subprogram is simply passed pointers to the start of the two character

arrays. No length information is given. If jindex does not need this information, then the above is the cleanest treatment;

however, in most cases it is insufficient.

The treatment under the CHs flag looks as follows:

void demo(i,j)

int *i,*j;

{

extern int jindex();

static char name[12],initial[4];

 *i = fifindex(name,12,initial,4);

 *j = jindex(name,12,initial,4);

 return;

}

Under this treatment the jindex subprogram is treated in exactly the same manner as the index function. The lengths of

the character strings follows directly after the pointers to their starting points. This treatment works in most cases, but not in

the case where character and non-character arguments are both passed to the subprogram.

The CHd result is shown below:

void demo(i,j)

int *i,*j;

{

extern int jindex();

static char name[12],initial[4];

 *i = fifindex(name,12,initial,4);

 *j = jindex(name,initial,12,4);

 return;

}

This treatment differs from the one under CHr in that character lengths are passed to the subprogram, and it differs from

CHs in that the lengths are not directly associated with their pointers; rather, they are collected and placed at the end of the

call. Note again that the call to the system function index is unaffected.

Finally, the treatment under the CHv flag is as follows:

void demo(i,j)

int *i,*j;

{

extern int jindex();

static char name[12],initial[4];

static string T1 = { NULL, 0 };

static string T2 = { NULL, 0 };

 *i = fifindex(name,12,initial,4);

 T1.a = name; T1.n = 12;

PromulaFortran Translator User's Manual

30

 T2.a = initial; T2.n = 4;

 *j = jindex(&T1,&T2);

 return;

}

In this version the temporary variables T1 and T2 are introduced to contain the addresses and lengths. Note that the "string"

variable type can easily be replaced by a particular "descriptor" type as required by particular platforms. This topic is

discussed extensively in the chapter on the configuration file under the topic of "keyword replacement".

More complicated treatments of the character arguments than the CHs treatment are needed because of examples such as

the following:

 SUBROUTINE DEMO1(I,J)

 CHARACTER NAME*12,INITIAL*4

 J = INDEX(NAME,INITIAL)

 I = JINDEX(NAME,INITIAL)

 RETURN

 END

 SUBROUTINE DEMO2(I,J)

 INTEGER NAME(3),INITIAL

 J = INDEX(NAME,INITIAL)

 I = JINDEX(NAME,INITIAL)

 RETURN

 END

 SUBROUTINE DEMO3(I,J)

 CHARACTER NAME*12

 INTEGER INITIAL

 J = INDEX(NAME,INITIAL)

 I = JINDEX(NAME,INITIAL)

 RETURN

 END

In this example, the system function index and the user function jindex are both called with CHARACTER arguments

and with INTEGER arguments in different places in the program. The CHs treatment of the above looks as follows:
void demo1(i,j)

int *i,*j;

{

extern int jindex();

static char name[12],initial[4];

 *j = fifindex(name,12,initial,4);

 *i = jindex(name,12,initial,4);

 return;

}

void demo2(i,j)

int *i,*j;

{

extern int jindex();

static int name[3],initial;

 *j = fifindex(name,12,&initial,4);

 *i = jindex(name,&initial);

 return;

}

void demo3(i,j)

int *i,*j;

{

extern int jindex();

static char name[12];

static int initial;

 *j = fifindex(name,12,&initial,4);

 *i = jindex(name,12,&initial);

 return;

}

PromulaFortran Translator User's Manual

31

Note that no matter how the jindex subprogram is treated, the above cannot hope to execute properly, since the ordering

of the arguments is destroyed via the placement of lengths following the character arguments. Again, notice that the index

system function is unaffected by these games. The CHd result below shows the best approach:

void demo1(i,j)

int *i,*j;

{

extern int jindex();

static char name[12],initial[4];

 *j = fifindex(name,12,initial,4);

 *i = jindex(name,initial,12,4);

 return;

}

void demo2(i,j)

int *i,*j;

{

extern int jindex();

static int name[3],initial;

 *j = fifindex(name,12,&initial,4);

 *i = jindex(name,&initial);

 return;

}

void demo3(i,j)

int *i,*j;

{

extern int jindex();

static char name[12];

static int initial;

 *j = fifindex(name,12,&initial,4);

 *i = jindex(name,&initial,12);

 return;

}

With the lengths all moved to the back, the calls to jindex at least always begin with the two pointers. Remember that we

are not dealing only with well-written FORTRAN codes. Things such as the above often occur in "real" FORTRAN

programs.

Finally, the listing below shows the translation using the CHv switch.

void demo1(i,j)

int *i,*j;

{

extern int jindex();

static char name[12],initial[4];

static string T1 = { NULL, 0 };

static string T2 = { NULL, 0 };

 *j = fifindex(name,12,initial,4);

 T1.a = name; T1.n = 12;

 T2.a = initial; T2.n = 4;

 *i = jindex(&T1,&T2);

 return;

}

void demo2(i,j)

int *i,*j;

{

extern int jindex();

static int name[3],initial;

 *j = fifindex(name,12,&initial,4);

 *i = jindex(name,&initial);

 return;

PromulaFortran Translator User's Manual

32

}

void demo3(i,j)

int *i,*j;

{

extern int jindex();

static char name[12];

static int initial;

static string T1 = { NULL, 0 };

 *j = fifindex(name,12,&initial,4);

 T1.a = name; T1.n = 12;

 *i = jindex(&T1,&initial);

 return;

}

As with CHd, this version at least keeps the argument positions correct.

2.5.3 Substrings

Once the CHd or CHv options are selected, the relation between character variables and their character lengths becomes

much more dynamic than with the other two approaches. As a result, various other minor problems associated with

FORTRAN character management can be solved. Consider the following code fragment:

 SUBROUTINE DEMO1

 CHARACTER NAME*12,INITIAL*4

 INTEGER I,J

 INITIAL = NAME(5:8)

 INITIAL = NAME(I:J)

 INITIAL = NAME(INDEX(NAME,INITIAL):J)

 RETURN

 END

In this example a substring of the name variable is being stored in the initial variable. In the third statement a

complicated expression is used to compute the start of the substring. Under CHr or CHs, the C looks as follows:

void demo1()

{

static int i,j;

static char name[12],initial[4];

 ftnsac(initial,4,(name+4),4);

 ftnsac(initial,4,(name+i-1),j-(i-1));

 ftnsac(initial,4,(name+fifindex(name,12,initial,4)-1),

 j-(fifindex(name,12,initial,4)-1));

 return;

}

The basic problem is that to use a substring both a starting position and length are needed. The starting position is simply

min-1; while the length can be computed as max-(min-1). In the simple case where the substring range is constant,

gmFortran performs the computation at compile time. When the range is not constant, the computation must be inserted in

the code. This can be seen in the second and third examples. The third example shows the problem. Since the value of min

is needed twice in the computations, the min expression is evaluated twice. This double evaluation is inefficient.

Under the CHd and CHv approach, the descriptor is used. This looks as follows:

void demo1()

{

static char name[12],initial[4];

static int i,j;

static string T1;

 ftnscopy(initial,4,(name+4),4,NULL);

PromulaFortran Translator User's Manual

33

 ftnscopy(initial,4,(name+i-1),j-(i-1),NULL);

 T1.n=fifindex(name,12,initial,4)-1;T1.a=name+T1.n;T1.n=j-T1.n;

 ftnscopy(initial,4,T1.a,T1.n,NULL);

 return;

}

Under this approach the two members of the T1 are computed using the min only once. In the following copy request the

members of T1 are then used rather than the source. Notice that CHd and CHv also translate character assignment

differently. This issue is discussed in the next subsection under character concatenation.

2.5.4 Character Concatenations

It is from its treatment of string concatenation that CHd (CHaracter dynamic) gets its name. Both CHr and CHs allow for

static concatenations but deal only with simple examples involving concatenations done on the fly. Consider the following

FORTRAN fragment:

 SUBROUTINE DEMO1

 CHARACTER SUM*13,INITIAL*4

 INITIAL = "ONE"

 SUM=INITIAL // "PLUS " // INITIAL

 OPEN(1,FILE="C:"//SUM)

 CALL DEMO2(SUM // "PLUS THREE", SUM // "PLUS TWO")

 RETURN

 END

This fragment shows not only a concatenation associated with an assignment, but also concatenations as passed to the OPEN

operation and as passed as subprogram arguments. The C for this fragment under CHs would be as follows:

void demo1()

{

extern void demo2();

static char sum[13],initial[4];

 ftnsac(initial,4,"ONE",3);

 ftnsac(sum,13,ftnads(ftnads(initial,4,"PLUS ",5),9,initial,4),13);

 OPEN(1,FILEN,ftnads("C:",2,sum,13),15,0);

 demo2(ftnads(sum,13,"PLUS THREE",10),23,ftnads(sum,13,"PLUS TWO",8),21);

 return;

}

In this code a simple function ftnads which returns a pointer to a char is used to perform all the concatenations. Each call

to ftnads adds another string to a static array. In the case of the assignment statement, the temporary result in ftnads is

copied into the result variable immediately after it is computed. For the OPEN and the argument cases, however, the result is

left in ftnads. For the OPEN this does not matter, but in the case of the arguments the second call to ftnads either

destroys the first argument or concatenates the second to it. Under either case demo2 will not produce the right result.

The CHd approach is general. String concatenations themselves are simpler and dynamic allocations are allocated memory

at runtime. The following is the default CHd C output for the above:

void demo1()

{

extern void demo2();

static char sum[13],initial[4];

static string T1,T2;

 ftnscopy(initial,4,"ONE",3,NULL);

 ftnscopy(sum,13,initial,4,"PLUS ",5,initial,4,NULL);

 ftnsallo(&T1,"C:",2,sum,13,NULL);

 OPEN(1,FILEN,T1.a,T1.n,0);

 free(T1.a);

PromulaFortran Translator User's Manual

34

 ftnsallo(&T1,sum,13,"PLUS THREE",10,NULL);

 ftnsallo(&T2,sum,13,"PLUS TWO",8,NULL);

 demo2(T1.a,T2.a,T1.n,T2.n);

 free(T1.a);

 free(T2.a);

 return;

}

In the case of assignment, the ftnscopy function replaces the combined effect of ftnads and ftnsac as presented earlier.

The ftnscopy function takes a variable number of arguments, terminated by a NULL. It concatenates the second and

beyond strings directly into the first. In the case of dynamic allocations the string type introduced in the previous

subsection is combined with a function ftnsallo. This function computes the length needed for the concatenation,

dynamically allocates memory for it, and then does the copies. The results are stored in the string temporary passed as the

first argument. This approach is completely general. The only problem is that, once the result of the concatenation is no

longer needed, its memory must be freed. This adds a bit of additional code.

The CHv translation of this fragment is as follows:

void demo1()

{

extern void demo2();

static char sum[13],initial[4];

static string T1 = { NULL, 0 };

static string T2 = { NULL, 0 };

 ftnscopy(initial,4,"ONE",3,NULL);

 ftnscopy(sum,13,initial,4,"PLUS ",5,initial,4,NULL);

 ftnsallo(&T1,"C:",2,sum,13,NULL);

 OPEN(1,FILEN,T1.a,T1.n,0);

 free(T1.a);

 ftnsallo(&T1,sum,13,"PLUS THREE",10,NULL);

 ftnsallo(&T2,sum,13,"PLUS TWO",8,NULL);

 demo2(&T1,&T2);

 free(T1.a);

 free(T2.a);

 return;

}

Notice that the call to demo2 now receives the descriptor pointers directly. This is the only context in which the CHv

formulation is simpler than the CHd one.

2.5.5 Character Treatment Conclusion

The default CHd flag does produce slightly longer translations in some complicated cases. Alternatively, the code it

produces is almost always faster. It is strongly recommended that the CHr and CHs flags only be used in special cases

where a particularly simple conversion is being performed.

The CHv flag should only be used if external libraries or system functions which assume descriptors must be called. In this

case the user can modify the string type to reflect the actual required type. See the chapter on the configuration file for

more information on this topic.

2.6 Appearance of COMMENTS in C Output — CM0, CM1, CM2

GREAT MIGRATIONS FORTRAN translates both embedded and inline comments. Embedded comments are FORTRAN

statements with a 'C' or an '*' in column 1. Inline comments usually are placed on the same line as a FORTRAN statement

starting to the right of an '!' (VAX FORTRAN convention) or a '/*' (PRIME FORTRAN convention) which indicates

where the statement ends and the comment begins.

PromulaFortran Translator User's Manual

35

The comment control switches CM0, CM1, and CM2 simply specify whether comments from the source program should be

included in the translation and what form to use if they are included. The CM0 switch excludes comments; the CM1 switch

includes them and blocks comments which follow each other, while CM2 includes comments but does not block them.

Normally, for the optimized bias CM0 is active; and for the other biases, including the default, CM1 is active.

To see the difference between CM1, which blocks comments, and CM2 which does not, consider the following code.

 SUBROUTINE TEST(I,J,K)

C Compute the value of I using the following relation:

C J + K - I = 5

 I = J + K - 5

 END

The default C output, which uses CM1, produces the following output.

void test(i,j,k)

long *i,*j,*k;

{

/*

 Compute the value of I using the following relation:

 J + K - I = 5

*/

 *i = *j+*k-5L;

}

In this output, the comments associated with the statement have been grouped and combined into a single C multiline

comment. The alternative, using CM2, produces the following:

void test(i,j,k)

long *i,*j,*k;

{

/* Compute the value of I using the following relation:*/

/* J + K - I = 5*/

 *i = *j+*k-5L;

}

In this output, each FORTRAN comment line becomes an equivalent C comment line.

Note that the NCn switch described in another section of this chapter describes the conventions used for inline comments.

2.7 Treatment of DATA Initializations — Da, Dc, Dr

The FORTRAN language has an excellent notation for describing the initial values to be assigned to FORTRAN variables.

The following summarizes the FORTRAN syntax:

DATA nlist/clist/ [[,]nlist/clist/]...

Where:

nlist is a list of names to be initially defined. Each name in the list can take one of the forms:

var is a variable name.

array is an array name.

element is an array element name (i.e., subscripted array name.)

substring is a substring of a character variable or array element.

dolist is an implied DO list of the form:

PromulaFortran Translator User's Manual

36

(dlist, i=init,term[,incr])

Where:

dlist is a list of array element names and implied DO lists. Subscript expressions

must consist of integer constants and active control variables from DO list.

i is an integer variable called the implied DO variable.

init is an integer constant, symbolic constant, or expression specifying the initial

value, as for DO loops.

term is an integer constant, symbolic constant, or expression specifying the

terminal value, as for DO loops.

incr is an integer constant, symbolic constant, or expression specifying the

increment, as for DO loops.

clist is a list of constants or symbolic constants specifying the initial values. Each item in the list can take

the form:

c, r*c, r(c[,c...]), r((c[,c...]))

Where:

c is a constant or symbolic constant.

r is a repeat count that is an unsigned nonzero integer constant or the symbolic name of such a

constant. The repeat count can repeat the value of a single constant, or can repeat the values of a

list of constants enclosed in parentheses. To specify repetition of a complex constant, another set

of parentheses must be used.

In addition to DATA statements themselves, the declaration of any variable be it in a DIMENSION statement, or a type

statement, or a COMMON statement may be followed by a set of initialization values enclosed in slashes.

The biggest problem in the translation of initializations from FORTRAN to C relates to a limitation in C syntax. Simply

stated, there is no equivalent of the n*value notation in FORTRAN. Thus, if you need to initialize a large array with a

single value, you must write that value over and over again. The other problem has to do with initializing a numeric

variable with a character constant, which C does not allow in its initializations.

The default setting for GREAT MIGRATIONS FORTRAN uses the C static variable initialization notation for FORTRAN

DATA initialization of local variables. This is the most efficient method and works for most cases. The alternative is to use

a combination of FORTRAN READ NAMELIST and internal file capabilities to set the data initialization values at

runtime. This method is less efficient because it requires the construction of tables in the code, and because it must be

executed. This method is always used for initializations to COMMON and when you use the DR (data runtime) switch on

the command line.

2.7.1 Overview of Initialization Problem

The following example shows a set of data initializations which highlight several important points about DATA statements

in FORTRAN.

 SUBROUTINE DEMO

 DIMENSION B(5), X(5,5), C(10)

 DATA A/4.2/,B(1)/5.4/

 DATA ((X(J,I),I=1,J),J=1,5)/1,2,2,3*3,4*4,5*5/

 DATA J/4/,(C(J),J=1,10)/10*2.0/

 1 FORMAT(1X,10F10.1)

 2 FORMAT(1X,I10)

 WRITE(*,1) A, B

 WRITE(*,1) C

PromulaFortran Translator User's Manual

37

 WRITE(*,2) J

 DO 10 J = 1,5

 WRITE(*,1) (X(J,I),I=1,5)

 10 CONTINUE

 STOP

 END

Note first in the initialization of X that the value of the dummy subscript J is used as a terminal point for the subscript I.

This is allowed in DATA statements. Note next that, in the following DATA statement, a program variable J is given the

value of 4, and then a dummy variable J in the DATA statement is allowed to run from 1 to 10. Dummy variables in DATA

statements are not program variables and are independent of them.

The listing below shows the default translation of the above example.

void demo()

{

static float b[5] = {

 5.4,0.0,0.0,0.0,0.0

};

static float x[5][5] = {

 1.0,2.0,3.0,4.0,5.0,0.0,2.0,3.0,4.0,5.0,0.0,0.0,

 3.0,4.0,5.0,0.0,0.0,0.0,4.0,5.0,0.0,0.0,0.0,0.0,5.0

};

static float c[10] = {

 2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0

};

static float a = 4.2;

static long j = 4;

static long i;

static char* F1[] = {

 "(1x,10f10.1)"

};

static char* F2[] = {

 "(1x,i10)"

};

 WRITE(OUTPUT,FMT,F1,1,REAL4,a,DO,5,REAL4,b,0);

 WRITE(OUTPUT,FMT,F1,1,DO,10,REAL4,c,0);

 WRITE(OUTPUT,FMT,F2,1,INT4,j,0);

 for(j=1L; j<=5L; j++) {

 WRITE(OUTPUT,FMT,F1,1,MORE);

 for(i=0L; i<5L; i++) {

 WRITE(REAL4,x[i][j-1],MORE);

 }

 WRITE(0);

 }

 STOP(NULL);

}

Note that values not explicitly defined in the DATA statement are given a value of 0, blanks for character strings. Note also

that the initializations of X and J are correct.

The following listing shows the same translation using the DR command line switch.

void demo()

{

static float b[5];

static float x[5][5];

static float c[10];

static float a;

static long j;

static long i;

PromulaFortran Translator User's Manual

38

static int ftnsiz[] = {1,1,5,1,1,25,1,1,10};

static namelist DATAVAR[] = {

"b",b,6,ftnsiz,"x",x,6,ftnsiz+3,"c",c,6,ftnsiz+6,

"a",&a,6,NULL,"j",&j,5,NULL

};

static char *DATAVAL[] = {

"$DATAVAR",

"b=5.4,4*0.0,x=1.0,2.0,3.0,4.0,5.0,0.0,2.0,3.0,4.0,"

"5.0,2*0.0,3.0,4.0,5.0,",

"3*0.0,4.0,5.0,4*0.0,5.0,c=10*2.0,a=4.2,j=4,",

"$END"

};

static FIRST = 1;

static char* F1[] = {

 "(1x,10f10.1)"

};

static char* F2[] = {

 "(1x,i10)"

};

 if(FIRST) {

 FIRST=0;

 fiointu((char*)DATAVAL,0,2);

 fiornl(DATAVAR,5,NULL);

 }

 WRITE(OUTPUT,FMT,F1,1,REAL4,a,DO,5,REAL4,b,0);

 WRITE(OUTPUT,FMT,F1,1,DO,10,REAL4,c,0);

 WRITE(OUTPUT,FMT,F2,1,INT4,j,0);

 for(j=1L; j<=5L; j++) {

 WRITE(OUTPUT,FMT,F1,1,MORE);

 for(i=0L; i<5L; i++) {

 WRITE(REAL4,x[i][j-1],MORE);

 }

 WRITE(0);

 }

 STOP(NULL);

}

See the discussion of NAMELIST in the FORTRAN Compiler User's Manual for more information on namelist. In essence,

to do the data initialization at runtime, GREAT MIGRATIONS FORTRAN invents a NAMELIST which contains all of the

variables involved in data initializations. This is done in the initialization of ftnsiz which contains the array bound

specifications, and in the initialization of the structure DATAVAR which contains the namelist specification. Next, the data

quantity lists and values are converted into namelist read input format and stored in an internal character file called

DATAVAL. Finally, a variable FIRST is introduced which triggers the calls to the runtime processing functions needed to

initialize the actual data values. NAMELIST is a much neglected and maligned feature of FORTRAN which solves this

particular problem very nicely.

2.7.2 The Initialization Switches

As is discussed above, C is needlessly weak in the area of data initialization. Since we cannot change C, we must

accommodate this weakness in our C output conventions. The D command line switch specifies when data initializations

are to be performed and what storage type initialized variables should have. Its individual settings are as follows:

Setting Meaning

Dc This is the default setting, despite its problems. It requests that initialization produced by the

DATA statement to local variables be implemented at compile time. The initialization values are

actually placed in the C source code.

PromulaFortran Translator User's Manual

39

Dr This setting requests that data initializations be copied from the DATA statement into

NAMELIST form into an internal character file so that they can be read into the actual variables

at runtime.

Da This setting modifies the behavior of the Dc flag by specifying that variables initialized at

compile time should be declared as being "auto" as opposed to the default of "static".

A summary example is included here to show the effects of this switch. The following program contains several data

initializations.

 PROGRAM DEMO

 DIMENSION A(50)/10*0.0,40*1.0/

 CHARACTER NAME*4(4)/4HFred,2*'Mary',3HJoe/

 CALL DEMO1(A)

 STOP

 END

 SUBROUTINE DEMO1(A)

 DIMENSION A(50)

 DATA VAL/55.6/

 DO 10 I = 1,50

 10 A(I) = A(I) * val

 RETURN

 END

These initializations are performed either as part of the declaration or in an explicit DATA statement. The D switch treats

both types of initializations in the same manner.

The following is the default translation of the example above.

void main(argc,argv)

int argc;

char* argv[];

{

extern void demo1();

static float a[50] = {

 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,

 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

 1.0,1.0

};

static char name[16] = {

 'F','r','e','d','M','a','r','y','M','a','r','y',

 'J','o','e',' '

};

 ftnini(argc,argv,NULL);

 demo1(a);

 STOP(NULL);

}

void demo1(a)

float a[];

{

static float val = 55.6;

static long i;

 for(i=0L; i<50L; i++) {

 a[i] = a[i]*val;

 }

 return;

}

PromulaFortran Translator User's Manual

40

The two primary problems to note are that C has no equivalent of the n*value notation and that a non-null terminated

sequence of characters can only be written as individual elements enclosed in single quotes. Nonetheless, this way of

initializing variables is much more efficient than the runtime way and is the default.

The following shows the same translation with the Dr switch set.

void main(argc,argv)

int argc;

char* argv[];

{

extern void demo1();

static float a[50];

static char name[16];

static int ftnsiz[] = {1,1,50,1,1,4};

static namelist DATAVAR[] = {

"a",a,6,ftnsiz,"name",name,16,ftnsiz+3

};

static char *DATAVAL[] = {

"$DATAVAR",

"a=10*0.0,40*1.0,name='Fred',2*'Mary','Joe',",

"$END"

};

 ftnini(argc,argv,NULL);

 fiointu((char*)DATAVAL,0,2);

 fiornl(DATAVAR,2,NULL);

 demo1(a);

 STOP(NULL);

}

void demo1(a)

float a[];

{

static float val;

static long i;

static namelist DATAVAR[] = {

"val",&val,6,NULL

};

static char *DATAVAL[] = {

"$DATAVAR",

"val=55.6,",

"$END"

};

static FIRST = 1;

 if(FIRST) {

 FIRST=0;

 fiointu((char*)DATAVAL,0,2);

 fiornl(DATAVAR,1,NULL);

 }

 for(i=0L; i<50L; i++) {

 a[i] = a[i]*val;

 }

 return;

}

In this translation GREAT MIGRATIONS FORTRAN has constructed logic and simple static initializations which allow

the variable values to be read into the actual variables at runtime. Using this technique, the value strings can be kept simple.

Also, any problems having to do with weak-typing or hiding characters are easily solved. This runtime initialization gives

us all the flexibility we need, but it does require that extra code be linked with the program, and that the value be stored

"twice".

Finally, the listing below shows the C output when using the Da switch:

PromulaFortran Translator User's Manual

41

void main(argc,argv)

int argc;

char* argv[];

{

extern void demo1();

auto float a[50] = {

 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,

 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0

};

auto char name[16] = {

 'F','r','e','d','M','a','r','y','M','a','r','y',

 'J','o','e',' '

};

 ftnini(argc,argv,NULL);

 demo1(a);

 STOP(NULL);

}

void demo1(a)

float a[];

{

auto float val = 55.6;

static long i;

 for(i=0L; i<50L; i++) {

 a[i] = a[i]*val;

 }

 return;

}

This version declares the initialized variables as auto. Note that many C compilers are unable to compile this version. The

effect of this auto declaration is that the variables are initialized at their specified values each time the function containing

them is entered.

2.8 Turn on Debugging Mode — DB
When using gmFortran as a compiler it is often convenient to use a debugger. The DB switch makes this possible. When

used, the debugger will refer to the original FORTRAN source code rather than to the intermediate C code. This flag is

actually only a macro for the following flag settings:

CM0: Turn comments off

Ln: Include line number information

L0: Do not generate newlines within statement output

Qe32000: Allow 32000 bytes for line number information

These flags are discussed in detail elsewhere in this chapter.

2.9 Echo Control Options — ES, ET, EX, EZ, EP, EL
Except for its initial banner, gmFortran is normally silent, unless a fatal error is encountered. Messages are sent to standard

output and may be redirected or may be sent to a listing file (see section on the PN and PA switches). Note that error

messages themselves are discussed in the GREAT MIGRATIONS FORTRAN Compiler manual. The echo control options

may be used to send additional information to the listing output. This information includes the following:

Option Information sent to listing output

EL1 Warnings about potentially serious inconsistencies or usages in the FORTRAN source code

PromulaFortran Translator User's Manual

42

EL2 Comments about possibly non-portable code or about code that may be incorrect and the

warnings from above

EL3 Notes about standard FORTRAN violations and other miscellaneous observations and

comments and warnings from above.

EP A listing of the intermediate pseudo-code produced by the compiler.

ES An annotated listing of the source code.

ET An annotated listing of the C output code.

EX An alphabetical listing of the symbols used in the source along with a summary description of

each and a cross-reference listing of symbol references by line number.

EZ A listing of the intermediate symbol information produced by the compiler.

2.9.1 Warnings, Notes, and Comments
The form and meaning of the warnings, notes, and comments are discussed in the GREAT MIGRATIONS FORTRAN

Compiler manual in its chapter on error messages. Suffice to say that gmFortran does extensive syntax checks while it is

processing the source code and extensive consistency checks after it has processed each subprogram.

The following is a sample listing produced which shows the type of messages that might be produced at the EL1 level:

390: utest.for: W818: The argument "ia" is being defined with type integer*4 when it has been passed an argument of

type character.

The "W" appended to the error number indicates a warning. Messages at this level can be ignored, but they typically

indicate potentially serious problems.

At the EL2 level the following additional types of messages are issued:

54: utest.for: C870: The array OBUF is being subscripted with less than 1 expressions.

380: utest.for: C815: A data value of type character is being assigned to the variable IA of type integer*4.

520: utest.for: C816: The binary type character is being used where type integer*2 is expected.

558: utest.for: C861: Data is being allocated to common storage via the variable SEATRD.

820: utest.for: C866: The real*4 type has previously been assigned to UC_.

At this level in addition to warnings other usages are isolated that should either be checked or that represent potentially

serious portation problems.

Finally, at the EL3 level the following additional types of messages are issued:

37: utest.for: N858: The identifier THERMA1 with more than 6 characters is nonstandard.

184: utest.for: N864: Declarative statements following executable statements is nonstandard.

223: utest.for: N851: The use of inline comments is nonstandard.

295: utest.for: N872: Equivalencing CBUF of type character*80 with IBUF of type INTEGER*2 is nonstandard.

343: utest.for: N853: The standard delimiter for a character constant is the single quote.

431: utest.for: N858: The identifier PRANDOM_INDX$ with more than 6 characters is nonstandard.

474: utest.for: N806: Omitting the comma after the I FORMAT specification is nonstandard.

545: utest.for: N823: The COMMON block DIR1 has character*1 variable VFORMS and an unspecified variable

OPTEV.

722: utest.for: N801: The INCLUDE statement is nonstandard.

1: STRUC6.INC: N801: The STRUCTURE statement is nonstandard.

PromulaFortran Translator User's Manual

43

800: utest.for: N833: The non-parenthetical form of the PARAMETER statement is nonstandard.

As can be seen, the EL3 level generates many messages and is primarily intended for those who are trying to write pure

standard conforming code.

2.9.2 Annotated Listing of Source Code
The following listing was produced via the ES option for a simple subprogram referencing a single include file:

GREAT MIGRATIONS FORTRAN Compiler V4.00 Date: 08/11/92 Time: 09:35 Page: 1

File: utest.for

If Line# Nl Source
-- ----- -- ------
 1 SUBROUTINE STRUC6
 2 INCLUDE 'STRUC6.INC'

 1 1 STRUCTURE /DATE/

 1 2 1 INTEGER*4 DAY,MONTH

 1 3 1 INTEGER*4 YEAR

 1 4 1 END STRUCTURE

 1 5 C

 1 6 C STRUCTURE /TIME/ APP_TIME(2)

 1 7 C LOGICAL*1 HOUR,MINUTE

 1 8 C END STRUCTURE

 1 9 C

 1 10 C This is the same as:

 1 11 C

 1 12 C STRUCTURE /TIME/

 1 13 C LOGICAL*1 HOUR,MINUTE

 1 14 C END STRUCTURE

 1 15 C RECORD /TIME/ APP_TIME(2)

 1 16 C

 1 17 STRUCTURE /TIME/

 1 18 1 LOGICAL*1 HOUR,MINUTE

 1 19 1 END STRUCTURE

 1 20

 1 21 STRUCTURE /APPOINTMENT/

 1 22 1 RECORD /DATE/ APP_DATE

 1 23 1

 1 24 1 RECORD /TIME/ APP_TIME(2)

 1 25 1

 1 26 1 CHARACTER*20 APP_MEMO(4)

 1 27 1 LOGICAL*1 APP_FLAG

 1 28 1 END STRUCTURE

 1 29 RECORD /APPOINTMENT/ NEXT_APP,APP_LIST(7)

 1 30 RECORD /DATE/ TODAY

 3 WRITE(6,*) '********* STRUC6.OUT'

 4 DO 10 I = 1,7

 5 1 CALL GET_DATE(I,TODAY)

 6 1 WRITE(6,*) TODAY.DAY,TODAY.MONTH,TODAY.YEAR

 7 1 APP_LIST(I).APP_DATE = TODAY

 8 1 TODAY.DAY = TODAY.DAY + 1

 9 1 10 END DO

 10 5 FORMAT(3I5)

 11 NEXT_APP = APP_LIST(1)

 12 OPEN(1,FILE='STRUC6.BIN',FORM ='UNFORMATTED',STATUS='UNKNOWN')

 13 WRITE(1) NEXT_APP

 14 WRITE(1) APP_LIST

 15 END

The heading which is printed at the top of each page contains the name of this compiler along with its current version

number on the left-hand-side of the page. The right-hand-side normally contains the name of the file being compiled, the

PromulaFortran Translator User's Manual

44

date, the time, and the page number relative to the file. In this case the page width was set to be narrow, so the name of the

file is placed on a second line.

The annotated listing itself contains the include file number (If), the line number within the source file, the nesting level of

the statement, and the actual source code statement. The include file number is left blank for statements in the original

source file. The nesting level indicator is used with declaration statements when structures are being defined. It indicates

the level of nesting within the structure. For executable statements the nesting level indicator indicates the degree of nesting

within DO and/or IF statements. If there is no current nesting then the nesting level is left blank.

2.9.3 Symbol Listing and Cross Reference Table

The following symbol listing and cross reference table was produced using the Ex option. The table consists of 4 sections:

Include files, symbols referenced, symbol references by line number, and statement label types and references. In general,

in these tables all user defined symbols are shown in uppercase, while all descriptive symbols are shown in lowercase.

The include files section simply lists all include files encountered to date in the compilation along with the sequence

number assigned to them. Note that the base source file has a number of zero. If there are no include files referenced in the

current subprogram, then this section is omitted.

The philosophy behind the design of the symbols referenced table is that the user will use this table when he wants

information about a particular symbol, whose status he may not be familiar with but whose identifier he knows or has seen

somewhere in the listing. The report consists of a single alphabetical list of each symbol referenced in the subprogram. For

each symbol its object type, its storage status, its binary type, and a comment are provided.

The object type is straightforward. There are thirteen possible entries: constant, parameter, variable,

subroutine, function, intrinsic, namelist, entry, statefunc, structure, record, pointer, and

common. These names correspond directly to the possible FORTRAN object types. It should be mentioned that members

within structure definitions are treated simply as variables or records. This convention is compatible with the approach of

using a single alphabetized list of all symbols.

The storage status of a symbol can be one of four different things. For subprogram arguments it is specified as argument.

For variables in common blocks, it is the name of the common block containing the variable. For members of structures, it

is the name of structure containing the member. For simple variables it is one of the following: static, auto,

dynamic, or virtual. See the Sa and Ss switches for a description of static versus auto storage. Dynamic and virtual

variables can be created via the GREAT MIGRATIONS interface described in the GREAT MIGRATIONS FORTRAN

Compiler manual.

The type of a variable is simply its type specification. For records it is the structure type of the record.

The comment associated with the symbol is a function of its object type. For constant integer parameters — i.e, those that

may be used in other declaration statements — the comment specifies the value of the parameter as specified or computed.

For variables or records, the dimensionality is given and for arrays the total size in bytes. For subprograms the number of

arguments is given along with the assumed type of each argument. Note that in the C tradition, gmFortran makes extensive

use of subprogram prototypes and always makes certain that argument types are consistent. If they are not it issues a

warning.

The symbol reference by line number table is simply that. Along with the line number a use type code is also specified —

'D' means 'defined', 'M' means 'modified', 'U' means 'used', and 'P' means 'passed to a subprogram'. If a symbol has multiple

references in a single statement, then only one reference is reported.

Note that if include files are involved, then the line number is followed by the include file sequence number. If include files

are not involved, then a simple sequence number is used.

GREAT MIGRATIONS FORTRAN Compiler V4.00 Date: 08/11/92 Time: 09:35 Page: 2

File: utest.for

Include files used in unit:

PromulaFortran Translator User's Manual

45

Seq Filename
--- --------
 1 STRUC6.INC

Symbols referenced in SUBROUTINE STRUC6

Identifier Object Storage Type Comment
---------- ------ ------- ---- -------
APP_DATE record APPOINTMENT DATE scalar

APP_FLAG variable APPOINTMENT logical*1 scalar

APP_LIST record static APPOINTMENT 1d-array(679)

APP_MEMO variable APPOINTMENT character*20 1d-array(80)

APP_TIME record APPOINTMENT TIME 1d-array(4)

APPOINTMENT structure

DATE structure

DAY variable DATE integer*4 scalar

GET_DATE subroutine 2 args(integer*4,

 unspecified)

HOUR variable TIME logical*1 scalar

I variable static integer*4 scalar

MINUTE variable TIME logical*1 scalar

MONTH variable DATE integer*4 scalar

NEXT_APP record static APPOINTMENT scalar

TIME structure

TODAY record static DATE scalar

YEAR variable DATE integer*4 scalar

Symbol references by line number in SUBROUTINE STRUC6

Identifier Line.If:u (D=defined, M=modified, U=used, P=passed)
---------- --------- ----------- ----------- ------- ---------
APP_DATE 22.01:D 7.00:U

APP_FLAG 27.01:D

APP_LIST 29.01:D 7.00:M 11.00:U 14.00:U

APP_MEMO 26.01:D

APP_TIME 24.01:D

APPOINTMENT 21.01:D

DATE 1.01:D

DAY 2.01:D 6.00:U 8.00:U

GET_DATE 5.00:U

HOUR 18.01:D

I 4.00:M 5.00:P 7.00:U

MINUTE 18.01:D

MONTH 2.01:D 6.00:U

NEXT_APP 29.01:D 11.00:M 13.00:U

TIME 17.01:D

TODAY 30.00:D 5.00:P 6.00:U 7.00:U

 8.00:M

YEAR 3.01:D 6.00:U

Statement label types and references by line number in SUBROUTINE STRUC6

Label Type Line.If:u (D=defined, U=used, A=assigned)
----- ---- --------- ----------- ------- -----------
5 format 10.00:D

10 statement 4.00:U 9.00:D

The statement label types and references table is a numerical listing of the statement labels, along with their type,

statement or format, and a listing of the lines where they are referenced.

If the subprogram contains EQUIVALENCE statements, then a fifth table type is generated: the equivalence pairs table.

Given the code fragment below:

 48 SUBROUTINE ANA1

 49 INTEGER BUF1(2048), BUF2(2048), BUF3(2048)

 50 BYTE OBUF(32767)

 51 EQUIVALENCE (BUF2(1), OBUF(1))

PromulaFortran Translator User's Manual

46

 52 EQUIVALENCE (BUF3, OBUF)

 62 END

The following equivalence pairs table is produced:

Equivalence pairs:

Dependent Base Offset

--------- ---- ------

BUF2 OBUF 0

BUF3 OBUF 0

The base variable is the variable whose storage is being used to contain the dependent variable. The offset is the byte offset

within the base variable of the start of the dependent variable.

2.9.4 Intermediate Compiler Tables

The EP and EZ switches can be used to generate a listing of the intermediate compiler tables — EZ lists the symbol tables,

while EP lists the pseudo-code generated. The following is a simple program along with the listing formed by the EP and

EZ switches.

 PROGRAM TEST

 INTEGER I,J,K

 PRINT *, 'I+J/K = ',(I+J)/K

 STOP

 END

Include files used in unit:

Seq Filename

--- --------

Symbols defined in unit:

Base Identifier Obj Flag Inf2 Incf Typ Ref Normal Cref Tflags Adr Valsize

---- ---------- --- ---- ---- ---- --- --- ------ ---- ------ --- -------

278 I 1 0 0 0 5 0 0 1 18 0 4

286 J 1 0 0 0 5 0 0 1 18 0 4

294 K 1 0 0 0 5 0 0 1 18 0 4

Pcode generated by unit:

Location Operation

-------- ---------

00000 nop

00001 sto

00002 lst

00003 lsc "I+J/K = ", 8

00006 wrv 17

00009 lda i, 278, 1

00012 ldr i, 278, 1

00015 lda j, 286, 1

00018 ldr j, 286, 1

00021 adi

00022 lda k, 294, 1

00025 ldr k, 294, 1

00028 dvl

00029 wrv 5

00032 wln

PromulaFortran Translator User's Manual

47

00033 ner

00034 nop

00035 stn

00036 nop
00037 eop

These tables show the detailed information generated to form the C translation. A detailed discussion of the actual symbol

conventions and pseudo-code is beyond the scope of this manual. Individuals desiring additional information may contact

Great Migrations LLC.

2.9.5 Annotated Listing of C Output

In addition to the annotated listing of the source code, a similar listing can also be obtained for the C output produced. The

following is the listing produced with the ET flag during the processing of the code used earlier.

If Line# Nl Translation

-- ----- -- -----------

 1 #define SPROTOTYPE

 2 #include "fortran.h"

 3 void struc6()

 4 {

 5 typedef struct {

 6 long day,month,year;

 7 } Sdate;

 8 typedef struct {

 9 unsigned char hour,minute;

 10 } Stime;

 11 typedef struct {

 12 Sdate app_date;Stime app_time[2];char app_memo[80];unsigned char

app_flag;

 13 } Sappointment;

 14 /*

 15 STRUCTURE /TIME/ APP_TIME(2)

 16 LOGICAL*1 HOUR,MINUTE

 17 END STRUCTURE

 18

 19 This is the same as:

 20

 21 STRUCTURE /TIME/

 22 LOGICAL*1 HOUR,MINUTE

 23 END STRUCTURE

 24 RECORD /TIME/ APP_TIME(2)

 25 */

 26 extern void get_date();

 27 static Sappointment next_app,app_list[7];

 28 static Sdate today;

 29 static long i,D2;

 30 WRITE(6,LISTIO,STRG,"********* STRUC6.OUT",20,0);

 31 for(i=1,D2=(7-i+1); D2>0; D2--,i+=1) {

 32 1 get_date(&i,&today);

 33 1

WRITE(6,LISTIO,INT4,today.day,INT4,today.month,INT4,today.year,0);

 34 1 app_list[i-1].app_date = today;

 35 1 today.day = today.day+1L;

 36 }

 37 next_app = app_list[0];

 38 OPEN(1,FILEN,"STRUC6.BIN",10,STATUS,"UNKNOWN",FORM,"UNFORMATTED",0);

 39 WRITE(1,BYTE,&next_app,(int)(sizeof(Sappointment)),0);

 40 WRITE(1,BYTE,app_list,(int)(7*sizeof(Sappointment)),0);

 41 }

PromulaFortran Translator User's Manual

48

2.10 Treatment of Syntax Errors — ER0, ER1, ER2, ER3, ER4

gmFortran is like any other FORTRAN compiler in that in order to translate the source code, it must also validate it — i.e.,

check it for any syntax errors. Syntax errors may arise for a variety of reasons:

(1) An actual syntax error

(2) Use of a dialectal feature not supported by the currently active language definition file.

(3) An improperly used command line switch.

(4) A problem with a subprogram parameter.

The basic assumption in the design of gmFortran is that existing, valid FORTRAN programs are being processed; therefore,

a syntax error means that a mismatch of some sort exists between gmFortran and the dialect being processed. By default,

therefore, gmFortran stops processing when a syntax error occurs. The switch ER0 specifies this behavior. The switches

ER1 through ER4 specify that processing should continue despite the syntax error.

With gmFortran, if processing is to continue despite an error then gmFortran must be told how to produce the C output

given a statement in the source program which it cannot translate. The ER1 through ER4 switches differ in how the error

statement appears in the C output. Consider the following simple program which contains an illegal character in its second

statement.

 PROGRAM TEST

 I = J @ K

 STOP

 END

The ER1 switch specifies that syntax errors block at C compilation time. In other words, when a syntax error is encountered

a message is issued, but processing continues. The statement producing the error will be entered into the C output in the

form:

 SYNTAX ERROR: errno, statement

Thus, the program above produces the following C code under ER1:

void main(argc,argv)

int argc;

char* argv[];

{

static long i,j;

 ftnini(argc,argv,NULL);

 SYNTAX ERROR: 145,"I = J @ K"

 STOP(NULL);

}

Any attempt to compile the output will cause errors at that time. This setting allows you to see all your errors at one time,

but blocks you from actually using the results.

The ER2 switch specifies that syntax errors block at link time. It behaves exactly like ER1 above, except that the following

is entered into the C output:

 SYNTAXERROR(errno,"statement");

Thus, the program above produces the following C code under ER2:

void main(argc,argv)

PromulaFortran Translator User's Manual

49

int argc;

char* argv[];

{

static long i,j;

 ftnini(argc,argv,NULL);

 SYNTAXERROR(145,"I = J @ K");

 STOP(NULL);

}

This setting allows you to process all errors at once and to go ahead with a provisional compilation; however, the

unsatisfied external SYNTAXERROR will block any attempt to link the program.

The ER3 switch specifies that syntax errors cause a runtime error to be issued. This switch behaves exactly like ER1 and

ER2 above, except that the following is entered into the C output:

puts("ERROR errno statement");

Thus, the program above produces the following C code under ER3:

void main(argc,argv)

int argc;

char* argv[];

{

static long i,j;

 ftnini(argc,argv,NULL);

 puts("ERROR 145 I = J @ K");

 STOP(NULL);

}

This setting allows you to process all errors at once, and to go ahead and form an executable; however, when you execute it

you will get error messages when the offending statements are encountered.

Finally, the ER4 switch specifies that syntax errors cause warnings only. This switch is like the ones above except that the

following is entered into the C output:

 /* SYNTAX ERROR: errno, statement */

Thus, the program above produces the following C code under ER4:

void main(argc,argv)

int argc;

char* argv[];

{

static long i,j;

 ftnini(argc,argv,NULL);

/* SYNTAX ERROR: 145,"I = J @ K" */

 STOP(NULL);

}

Obviously, this setting treats errors simply as warnings; however, the resultant executable will not behave correctly.

2.11 FORTRAN Input Format Used — Fsnum, Ft, Ff, Fv, F9
In the good old days the one thing that was always the same was the basic line format used to enter FORTRAN programs.

But all good things must end. Now there are at least 5 different major variations of the FORTRAN entry format that we

know of. The F command line switch allows you to specify the entry format that you are using. There is an extensive

discussion of the different formats in the GREAT MIGRATIONS FORTRAN Compiler Manual. That discussion will not

be repeated here. The individual settings associated with this flag are mutually exclusive and are as follows:

PromulaFortran Translator User's Manual

50

Fsnum Selects the standard fixed format with an ending column of n. The default setting is Fs72, which is that good-

old format referred to above.

Ft Selects tab format which comes from the VAX FORTRANs.

Ff Selects the free-form format which is relatively typical of those FORTRANs that accepted "terminal input".

Fv Selects the VS FORTRAN free-form format.

F9 Selects the Fortran 90 format

2.12 Source FORTRAN Integer Type — FIs, FIl
There is variation between FORTRAN compilers as to whether the default type of the INTEGER specification should be

INTEGER*2 or INTEGER*4. In fact, an interesting aspect of many modern FORTRAN compilers is that the user may

specify whether the default integer type is to be a short 16 bit representation or a long 32 bit representation on the command

line.

The FIs and FIl command line switches in gmFortran allow for this specification. The FIs specification says that the default

integer type is short, INTEGER*2; while FIl specifies that it is long, INTEGER*4. The default setting for this switch is FIl

for the standard FORTRAN dialect.

2.13 Gname — Name of File Containing Global Symbols
The GREAT MIGRATIONS application management system and gmFortran can be used in tandem to upgrade existing

codes. The interface between these two systems truly adds value to existing FORTRAN programs.

The global symbols file, whose default extension is 'glb' contains a list of program variables that are to be made "global" for

use by the GREAT MIGRATIONS Application Development System. The content of this file and the general topic of the

GREAT MIGRATIONS interface are described in detail in the GREAT MIGRATIONS FORTRAN Compiler Manual.

2.14 Common Variables Convention — Ga, Gd, Gp, Gs, Gr, Gv
That aspect of FORTRAN which has the highest likelihood of causing translation errors and/or user readability objections

is the COMMON statement. Every storage trick and weak-typing trick imagined gets used in the nuances of changing

COMMON block definitions through a large program. There is no ideal way to deal with common blocks. gmFortran

translates common blocks in one of six ways. These are controlled via the G command switch. The individual settings

associated with this switch are mutually exclusive and are as follows:

Set Meaning

Gp Define common blocks via local pointers and varying typedefs. This is the default setting. In

particular, COMMON block identifiers are declared simply as external char storage areas. Locally,

the address of that storage area is assigned to a structure pointer whose members are defined in the

same manner as the COMMON definition in the subprogram being translated. This technique works

in all cases except where byte alignment adjustments are needed. The problem with this technique is

that it is ugly and that it must use expressions of the form Cblock->var to refer to members in the

block. These expressions require pointer arithmetic at run-time and, therefore, produce inefficient

code, especially on the PC when "large" or "huge" memory models are in effect.

Gd This is a variation of the Gp option, except that it may produce better code for some environments.

Under Gp local auto variables are introduced as structure pointers; while under Gd the same

syntactic effect is achieved via a defined symbol.

PromulaFortran Translator User's Manual

51

Gs Defines COMMON blocks as static structures with varying internal composition. In particular, this

technique defines each occurrence of the COMMON block as an external structure whose members

are defined in the same manner as they are defined in the subprogram being translated. This

technique produces readable code and generates relatively efficient code. The problem is that many

compilers consider redefining an external with a detailed structure repeatedly in different functions

to be a typing error. Some give warnings and others consider this a fatal error. If this technique

works with your compiler, and if it does not offend your own view of "symbol typing", then this

technique is highly recommended. Note that it can be used freely with the Om flag discussed

elsewhere.

Gr Defines COMMON blocks as raw static vectors of char. This technique is used when an exact block

layout is required or when the efficiency of the Gs technique is desired in an environment where it

cannot be used. Here, the variable positions within the block are calculated using alignment and

wordsize specifications that are supplied via the dialect definition. Actual variable references then

become references to the COMMON block name plus the calculated position. The COMMON

variable identifiers within the block disappear. The code generated is efficient; however, if you

intend to maintain the code in its C form, it is difficult to read. This technique is highly

recommended for those who are using gmFortran simply as a preprocessor to their C compiler, with

no real interest in the intermediate C output.

Gv Defines COMMON variables as independent external symbols. This technique should only be used

when you are building a function library or when all COMMON blocks are always defined in

precisely the same way. This setting removes the COMMON blocks from the translation; thus, it is

the inverse of the technique above which removes the variables within the blocks. With this

technique the variables themselves become external symbols. If appropriate, this setting produces

very readable and clean code; however, if used in the wrong context it can produce hash.

Ga This treatment assumes that the user has himself allocated or assigned memory for the common

areas; thus, the COMMON variable itself becomes a structure pointer as opposed to a structure, as

assumed by all other treatments. The COMMON symbol itself is defined as an instantiated pointer

to that structure; thus, giving a very clean looking translation.

Examples of the use of this flag are presented here. The following FORTRAN subroutine contains two COMMON blocks.

 SUBROUTINE DEMO

 CHARACTER C1*15,C2*10

 COMMON/ALPHA/A(10,10),B(5),C,D

 COMMON/BETA/C1(10),C2(5)

 A(1,1) = C

 B(5) = D

 C1(1)(3:12) = C2(4)

 RETURN

 END

Below is the default translation for this example which uses the Gp setting.

void demo()

{

extern char Xalpha[],Xbeta[];

typedef struct {

 float a[10][10],b[5],c,d;

} Calpha;

auto Calpha *Talpha = (Calpha*) Xalpha;

typedef struct {

 char c1[150],c2[50];

} Cbeta;

auto Cbeta *Tbeta = (Cbeta*) Xbeta;

 Talpha->a[0][0] = Talpha->c;

PromulaFortran Translator User's Manual

52

 Talpha->b[4] = Talpha->d;

 ftnscopy((Tbeta->c1+2),10,(Tbeta->c2+30),10,NULL);

 return;

}

char Xalpha[428];

char Xbeta[200];

In the function itself, the COMMON blocks ALPHA and BETA are defined simply as arrays of char, note NOT pointers to

char. Next there are typedefs whose names are constructed by appending a C to the block name which defines the local

structure of the block. Next there is an auto pointer defined, name constructed by adding a T to the block name, which

points to the start of the char storage area. This double definition with a typedef and then a variable of that type is needed

because the assignment of the address of the common storage area requires a cast to avoid a compiler error or warning. As

was said above, the big problem with this translation technique is that it must use the -> operator. This operator does

pointer arithmetic, which on the PC can be relatively inefficient with some memory models. Finally, the storage areas for

the blocks themselves are reserved as global storage areas with the maximum size defined for each block.

The translation below is produced via the Gd setting.

void demo()

{

extern char Xalpha[],Xbeta[];

typedef struct {

 float a[10][10],b[5],c,d;

} Calpha;

#define Talpha ((Calpha*) Xalpha)

typedef struct {

 char c1[150],c2[50];

} Cbeta;

#define Tbeta ((Cbeta*) Xbeta)

 Talpha->a[0][0] = Talpha->c;

 Talpha->b[4] = Talpha->d;

 ftnscopy((Tbeta->c1+2),10,(Tbeta->c2+30),10,NULL);

 return;

#undef Talpha

#undef Tbeta

}

char Xalpha[428];

char Xbeta[200];

This translation is very similar to the one above except that the definition of the symbol Tbeta is accomplished via a define

as opposed to a variable.

The translation below, which uses the Gs setting, is our favorite if you and your compiler can accept it.

void demo()

{

extern struct {

 float a[10][10],b[5],c,d;

} Xalpha;

extern struct {

 char c1[150],c2[50];

} Xbeta;

 Xalpha.a[0][0] = Xalpha.c;

 Xalpha.b[4] = Xalpha.d;

 ftnscopy((Xbeta.c1+2),10,(Xbeta.c2+30),10,NULL);

 return;

}

char Xalpha[428];

char Xbeta[200];

PromulaFortran Translator User's Manual

53

This translation comes closest to looking like the original FORTRAN, and produces relatively efficient code. In addition,

there is no need to introduce extra symbols into the code. The problem is that this is technically not valid code. At best it

would flunk an introductory course in C. The common blocks are being defined in different ways in different places in the

code.

The translation below has the same efficiency as the one above and is perfectly valid C programming. It is produced with

the Gr setting.

void demo()

{

extern char Xalpha[],Xbeta[];

 (float)Xalpha = *(float*)(Xalpha+420);

 ((float)(Xalpha+400)+4) = *(float*)(Xalpha+424);

 ftnscopy((Xbeta+2),10,((Xbeta+150)+30),10,NULL);

 return;

}

char Xalpha[428];

char Xbeta[200];

Here the problem is that the COMMON storage has been stripped of all its variable names; thus, the code is difficult to

read. What is beta+150 for example. Use this flag if you are not interested in the intermediate C output or if you require

special COMMON block layouts.

The simplest translation of this example is produced by the Gv setting and is shown below.

void demo()

{

extern float Xa[10][10],Xb[],Xc,Xd;

extern char Xc1[],Xc2[];

 Xa[0][0] = Xc;

 Xb[4] = Xd;

 ftnscopy((Xc1+2),10,(Xc2+30),10,NULL);

 return;

}

float Xa[100],Xb[5],Xc,Xd;

char Xc1[150],Xc2[50];

Here the COMMON variables themselves are the external symbols. If the COMMON was done carefully in the FORTRAN

or if you are intending to build a library and wish to simplify the externals structure, then this setting gives a very clean and

efficient translation. We use it often, but be careful.

The final translation of this example is produced by the Ga setting and is shown below.

void demo()

{

extern struct Xalpha {

 float a[10][10],b[5],c,d;

} *Calpha;

#define Talpha (*Calpha)

extern struct Xbeta {

 char c1[150],c2[50];

} *Cbeta;

#define Tbeta (*Cbeta)

 Talpha.a[0][0] = Talpha.c;

 Talpha.b[4] = Talpha.d;

 ftnscopy((Tbeta.c1+2),10,(Tbeta.c2+30),10,NULL);

 return;

#undef Talpha

#undef Tbeta

}

PromulaFortran Translator User's Manual

54

Note that we now have a simple pointer to a structure and no actual structures allocated. This technique is most typically

used when C code is already present in the application, or when special techniques are being used to reference the

COMMON blocks.

A final comment on the treatment of common blocks has to do with the need to form multiple symbols from the original

COMMON identifier. By default, gmFortran uses 'T', 'C', and 'X' prefixes. These conventions can be easily changed via a

configuration file as discussed in the following chapter. Remember in establishing these conventions, however, that many

versions of FORTRAN allow local symbols or even COMMON members to have the same identifier as a COMMON

block.

2.14.1 Overall Alignment Control with Gp — Gpc, Gps, Gpl, Gpd
In examining the translation of the sample code under the Gp option, note that the common structures are defined as simple

arrays of char with the appropriate length at the end of the compilation:

char Xalpha[428];

char Xbeta[200];

These declarations are needed to force the linker to allocate sufficient space for each common area. Now most, but not all,

linkers will allocate such areas on an appropriate byte boundary to ensure that no alignment errors will occur relative to the

first byte. For those linkers which do not perform this allocation automatically, the modified Gp switch can be used. The

Gpc switch is the default for Gp which says to declare the external areas as simple arrays of char. Gps declares them as

arrays of short, thus forcing 2-byte alignment; Gpl declares them as arrays of long, thus forcing 4-byte alignment; and Gpd

declares them as arrays of double, thus forcing 8-byte alignment.

2.15 Iname — Name of File Containing Inline Functions
Various C compilers have conventions which allow you to mark certain functions as having special properties. A typical

such marker is Inline which, when it precedes a function declaration, indicates that the code for that function is to be

compiled inline. There are other such markers as well in other C environments — especially the Macintosh and Windows.

An inline functions file simply contains a list of function names, each entered on a separate line. Those functions are

assigned the special marker. Thus, as an example, consider the following inline function file test.inl:

ialpha

when used via the command line switch Itest to process the following FORTRAN program:

 PROGRAM TEST

 I = IALPHA(J)

 K = JALPHA(J)

 STOP

 END

 FUNCTION IALPHA(J)

 IALPHA = J * 6

 RETURN

 END

 FUNCTION JALPHA(J)

 IALPHA = J + 6

 RETURN

 END

The translation produced is as follows:

void main(argc,argv)

int argc;

char* argv[];

PromulaFortran Translator User's Manual

55

{

_Inline extern long ialpha();

extern long jalpha();

static long i,j,k;

 ftnini(argc,argv,NULL);

 i = ialpha(&j);

 k = jalpha(&j);

 STOP(NULL);

}

_Inline long ialpha(j)

long *j;

{

static long ialpha;

 ialpha = *j*6L;

 return ialpha;

}

long jalpha(j)

long *j;

{

static long jalpha,ialpha;

 ialpha = *j+6L;

 return jalpha;

}

Note that the function IALPHA has been assigned the special marker, while the function JALPHA has not.

The actual marker _Inline can be easily changed via a configuration file as discussed in the following chapter.

2.16 Target C Int Type — Is, Il
An interesting and excellent feature of C is the way in which it defines fixed point integer values as:

short meaning a relatively narrow range of values but requiring less storage

long meaning a relatively wide range of values but requiring more storage

int meaning the most efficient fixed point storage technique which might be short or long, depending upon the

machine.

FORTRAN has no real equivalent of the int type. Its integers are either short or long. In gmFortran, therefore, integer

declarations are translated as either short or long, with int being used instead of the appropriate one. The I command

switch tells gmFortran whether int is short or long. Its settings are mutually exclusive and are as follows:

Is Specifies that int is short.

Il Specifies that int is long.

The default setting for this switch depends upon the environment in which gmFortran is implemented. Environments with

short ints have Is as the default; while environments with long ints have Il as a default. This switch should be changed

ONLY if cross-compilation is intended. Specifying the wrong default int type will produce incorrect results.

The following FORTRAN code contains three types of INTEGER declarations.

 SUBROUTINE DEMO

 INTEGER*2 I,J

 INTEGER*4 M,N

 INTEGER K,L

 WRITE(*,*) I,J,K,L,M,N

 RETURN

PromulaFortran Translator User's Manual

56

 END

The C code below shows the translation which has an Is setting.

void demo()

{

static int i,j;

static long m,n,k,l;

 WRITE(OUTPUT,LISTIO,INT2,i,INT2,j,INT4,k,INT4,l,INT4,m,INT4,n,0);

 return;

}

In the translation the INTEGER*2 variables are shown as int since int is short. The Is setting has no effect on the

meaning of INTEGER as opposed to INTEGER*2 versus INTEGER*4. The binary type of INTEGER is defined via the FIs and

FIl switches.

The following shows the same FORTRAN translated with the Il setting.

void demo()

{

static short i,j;

static int m,n,k,l;

 WRITE(OUTPUT,LISTIO,INT2,i,INT2,j,INT4,k,INT4,l,INT4,m,INT4,n,0);

 return;

}

Note I and J are short and the rest are int. Everything else is the same. What has changed is only how the variables are

labeled.

2.17 Treatment of Internally Generated Constants — Ka, Ks
If GREAT MIGRATIONS FORTRAN encounters a constant subprogram argument which must be passed by address, it

introduces a variable to contain this value. The K switch allows you to control the storage type of these variables. The K

switch has two settings

Setting Meaning

Ks Declare internal constants as static (C bias default)

Ka Declare internal constants as auto (FORTRAN bias default)

Consider the following simple FORTRAN fragment:

 SUBPROGRAM DEMO

 CALL ALPHA(I,3.0)

 STOP

 END

Its default translation is as follows:

void demo()

{

extern void alpha();

static float K1 = 3.0;

static long i;

 ftnini(argc,argv,NULL);

 alpha(&i,&K1);

 STOP(NULL);

PromulaFortran Translator User's Manual

57

}

In this translation a static variable K1 is introduced whose value contains the appropriate constant. The address of this

variable is then passed to the subprogram. The Ks switch produces the above. Under Ka the translation is as follows:

void demo()

{

extern void alpha();

auto float K1 = 3.0;

static long i;

 ftnini(argc,argv,NULL);

 alpha(&i,&K1);

 STOP(NULL);

}

In this translation the variable K1 is declared as being auto. Under this declaration its value will be refreshed upon each

invocation of the subroutine. In some cases the use of Ka and Ks can produce different results as the following discussion

explains.

A constant is a fixed value. Note that in most implementations of FORTRAN, including this one, the value of a constant

can be changed by passing it to a subprogram as a parameter. As an example, the following code will produce a sequence

of values from 2 to 11.

 PROGRAM DEMO

 DO 10 I = 2,10

 CALL ALPHA(1)

 CALL BETA(1)

 10 CONTINUE

 STOP

 END

 SUBROUTINE ALPHA(I)

 I = I + 1

 RETURN

 END

 SUBROUTINE BETA(I)

 WRITE(*,*) I

 RETURN

 END

The default translation of this example is as follows:

void main(argc,argv)

int argc;

char* argv[];

{

extern void alpha(),beta();

static long K1 = 1;

static long i;

 ftnini(argc,argv,NULL);

 for(i=2L; i<=10L; i++) {

 alpha(&K1);

 beta(&K1);

 }

 STOP(NULL);

}

void alpha(i)

long *i;

{

 *i = *i+1L;

 return;

}

PromulaFortran Translator User's Manual

58

void beta(i)

long *i;

{

 WRITE(OUTPUT,LISTIO,INT4,*i,0);

 return;

}

The reason for the sequence of values is that the value of the constant is stored in a constants table or, in the C translation,

in a static variable. Multiple occurrences of the same constant use the same constant storage point; thus, the constant ends

up behaving just like a variable. There are many ways around this problem, assigning the value to the variable K1 for

example; however, most FORTRAN compilers do the equivalent of the above.

Though, presumably, no one would write code such as the preceding deliberately, such code sequences do occur. This is

one of those gray areas of FORTRAN that can cause problems that appear when any sort of migration is attempted.

Programs that seem to work great under one FORTRAN implementation suddenly malfunction under another.

2.18 Maximum Output Line Width — Lnum
A minor issue has to do with how long to make the C output when very long statements need to be written. The default

setting is 80 characters wide — the width of a typical editor window. If desired you may select any value. This flag effects

the look of the output only.

A setting of zero specifies that all output associated with a given executable source statement should be placed on a single

line. This setting is used with the Ln switch which places line-number directives in the C output listing. Note that some C

compilers cannot process very long input lines. For these use Lmax, where max is the longest line width which can be

accepted.

2.19 Link Time Processing of COMMON Data Modules — Lm, Ls

There is a real problem in processing C via FORTRAN having to do with the initialization of COMMON variables via

DATA statements. The FORTRAN standard clearly states that COMMON variables may only be initialized in BLOCK

DATA subprograms; however, most FORTRAN dialects allow usages such as the following:

 SUBROUTINE TEST

 COMMON/BLOCK/I,J

 DATA I,J/5,6/

 PRINT *,I,J

 STOP

 END

in which the variables I and J in the COMMON block BLOCK are initialized via a DATA statement.

The default translation for this subroutine looks as follows.

void test()

{

extern char Xblock[];

typedef struct {

 long i,j;

} Cblock;

auto Cblock *Tblock = (Cblock*) Xblock;

static int FIRST = 1;

static namelist DATAVAR[] = {

"i",Xblock,5,NULL,"j",(Xblock+4),5,NULL

};

static char *DATAVAL[] = {

"$DATAVAR",

"i=5,j=6,",

PromulaFortran Translator User's Manual

59

"$END"

};

 if(FIRST) {

 FIRST=0;

 fiointu((char*)DATAVAL,0,2);

 fiornl(DATAVAR,2,NULL);

 }

 WRITE(OUTPUT,LISTIO,INT4,Tblock->i,INT4,Tblock->j,0);

 STOP(NULL);

}

The details of this translation approach which uses an extension of the FORTRAN NAMELIST capability are discussed in

the section on the Dc and Dr command line switches. In essence, the effect of this approach is that the initialization values

will be assigned to the variables I and J at the time that the function TEST is first called.

The problem addressed by the Lm and Ls switches is that initializing these two variables at the time that TEST is first called

may be incorrect. Many of the dialects that allow local data initializations to COMMON variables assume that those

initializations are performed at link time; or, at least, that they are performed prior to the execution of any of the user's

code. For these implementations TEST need not even be explicitly called to obtain the I and J values.

Using the Ls switch produces the following translation for the above.

void test()

{

extern char Xblock[];

typedef struct {

 long i,j;

} Cblock;

auto Cblock *Tblock = (Cblock*) Xblock;

static int FIRST = 1;

static namelist DATAVAR[] = {

"i",Xblock,5,NULL,"j",(Xblock+4),5,NULL

};

static char *DATAVAL[] = {

"$DATAVAR",

"i=5,j=6,",

"$END"

};

 if(FIRST) {

 FIRST=0;

 fiointu((char*)DATAVAL,0,2);

 fiornl(DATAVAR,2,NULL);

 return; <==== (1)

 }

 WRITE(OUTPUT,LISTIO,INT4,Tblock->i,INT4,Tblock->j,0);

 STOP(NULL);

}

void ftnblkd() { <==== (2)

test();

}

There are two important changes in this translation relative to the previous one. Note first that a return has been added to

the block of code that controls the initializations of the variables. This return allows us to perform an additional call to this

function, independently of any calls that may be made by the application itself. Note second that a function called ftnblkd

has been added to the bottom of the code which performs the initial call to test.

The ftnblkd function is the default BLOCK DATA subprogram which is called each time a program is started.

Consequently, the COMMON initializations within test are now treated as an extension of the BLOCK DATA system

and behave in the same way as BLOCK DATA initializations.

PromulaFortran Translator User's Manual

60

Unfortunately, this approach only works if all COMMON initializations are performed in the same module. In cases where

multiple modules are being combined, perhaps via libraries, to form a single executable, there will be multiple ftnblkd

functions created. This multiple creation will then cause a linker error.

The Om switch is used to deal with this problem. The following translation is produced for the above using Om.

void test()

{

extern char Xblock[];

typedef struct {

 long i,j;

} Cblock;

auto Cblock *Tblock = (Cblock*) Xblock;

static int FIRST = 1;

static namelist DATAVAR[] = {

"i",Xblock,5,NULL,"j",(Xblock+4),5,NULL

};

static char *DATAVAL[] = {

"$DATAVAR",

"i=5,j=6,",

"$END"

};

 if(FIRST) {

 FIRST=0;

 fiointu((char*)DATAVAL,0,2);

 fiornl(DATAVAR,2,NULL);

 return;

 }

 WRITE(OUTPUT,LISTIO,INT4,Tblock->i,INT4,Tblock->j,0);

 STOP(NULL);

}

void BD_test() { <==== (3)

test();

}

In addition, the following message is set to standard output.

Creating COMMON data module: BD_test

With this approach, the initialization call within in each module is given a unique name, and the message alerts the user that

he must provide an ftnblkd function which calls the individual module initialization control functions. Note that the

actual convention used to form the initialization names can be easily changed via a configuration file as discussed in the

following chapter.

2.20 Inclusion of Line Numbers for Debugging — Ln, L0
For platforms that support the UNIX dbx debugger or its equivalent, FORTRAN codes can be debugged using the original

source FORTRAN lines. To activate this capability, the Ln switch is used. This switch tells gmFortran to include line

number and source file information in its intermediate C output so that it can later be used by the debugger. For best effects

the following three switches should also be used: Bo, L0, Qe32000. See the relevant sections in this chapter for detailed

descriptions of these switches. Bo selects the optimized bias. This is needed to give gmFortran maximum flexibility in

maintaining a clear correspondence between the source FORTRAN and the target C. L0 specifies that no newlines should

be inserted in the listing. This is needed to maintain the line numbering system. Qe32000 allocates room for the emissions

table which is needed to generate the line number information.

2.21 FORTRAN Dialect Selection Flags — Mdialect
The gmFortran processor is a general-purpose, multi-dialect, and portable FORTRAN processor. It runs on multiple

platforms and supports both the ANSI FORTRAN 66 and ANSI FORTRAN 77 standard dialects, as well as a large number

of common extensions such as those found in the following commercial compilers: VAX FORTRAN, PDP FORTRAN,

PromulaFortran Translator User's Manual

61

PRIME FORTRAN, Data General FORTRAN, and Sun FORTRAN. Some Fortran 90 extensions are also supported. In

cases where different versions of FORTRAN have conflicting features or conventions, a dialect selection option switch can

be used to select the desired set. The particular dialect options which the compiler supports are as follows:

Option Dialect Reference

Mvax Vax FORTRAN Programming in VAX FORTRAN, AA-D034D-TE, September 1984,

Digital Equipment Corporation.

Mpdp PDP FORTRAN PDP-11 FORTRAN Language Reference Manual, AA-1855D-TC,

December 1979, Digital Equipment Corporation.

Mp77 Prime FORTRAN 77 FORTRAN 77 Reference Guide, Fifth edition, Release T1.0-21.0, January

1988, Prime Computer, Inc.

Mpiv Prime FORTRAN IV The FORTRAN Reference Guide, FDR3057, by Anthony Lewis, March

1980, Prime Computer Inc.

Msun Sun FORTRAN Sun FORTRAN Reference Manual, 800-3418-10, March 1990, Dun

Microsystems, Inc.

Mufn Unisys FieldData

FORTRAN

 Sperry Univac Series 1100 FORTRAN V Level 4R1 Programmer

Reference, 1979, Sperry Rand Corporation.

Mhny *Honeywell FORTRAN RCS FORTRAN Reference Manual, Order Number DG75, Rev. 3

(GTEDS), December 1981, GTE Data Services Incorporated.

Mf90 *Fortran 90 Fortran 90, X3J3/S8.115, June 1990, The FORTRAN Technical

Committee of the American National Standards Institute.

Mdge *Data General

FORTRAN

 FORTRAN 77 Reference Manual, 093-000162-02, October 1983, Data

General Corporation.

Mfn5 *Cyber FORTRAN 5 FORTRAN Version 5 Reference Manual, July 1983, Control Data

Corporation.

* Indicates partial support only

This particular option should only be used if code is being moved directly from one of these compilers to the GREAT

MIGRATIONS compiler.

2.22 Nesting Indentation to be Used in the Output — N*, N0, Nn
The N*, N0, and Nn switches specify how nesting is to be indicated in the C output. The N* switch specifies that no nesting

indentation is to be used in the output. This is the default setting for the optimized bias. The N0 switch specifies that a tab

character is to be used for each nesting level. The advantage of this selection is that it minimizes the size of the output file,

while still showing nesting. The disadvantage is that tab characters are generally expanded to 8 characters, which makes

listings containing multiple nesting levels difficult to read. The Nn switch specifies the number of blanks to be used for

each output nesting level explicitly. The default indentation setting for the FORTRAN and C biases is N4. This gives a

clean listing, but makes the output file somewhat larger than would be achieved via N0.

2.23 Inline Comments Output Margin Width — NCnum

The NCn switch controls the margin to be associated with inline comments when the CM1 or CM2 switches are active. The

default value for this switch is 35. This value specifies that the inline comment associated with a particular output statement

PromulaFortran Translator User's Manual

62

should be displayed on the same line as the statement beginning at column position 35. If the statement is longer than 35

characters, the comment should begin immediately after the end of the statement. Other settings have equivalent meanings.

A switch setting of NC0 will force all inline comments to follow their associated statements directly.

2.24 Upper and Lower Braces Convention in C — NU0, NU1, NU2, NL1, NL2
A major area of disagreement about the readability of C has to do with the placement of braces in nested structures. If the

brace placement convention does not match your desired convention, you will probably have trouble feeling comfortable

with the output. By using the brace placement flags in conjunction with the indentation width switches, discussed in the

sections on Nnumb and NCnum, any reasonable placement convention can be achieved.

The NU0 switch specifies that the upper brace is to be on the same line with the statement causing the nesting increase.

The NU1 switch specifies that the upper brace is on the next line at the indentation point used for the old nesting level.

The NU2 switch specifies that the upper brace is on the next line at the indentation point used for the new nesting level.

The NL1 switch specifies that the lower brace is on the next line at the indentation point for the previous nesting level.

The NL2 switch specifies that the lower brace is on the next line at the indentation point for the current nesting level.

The default is NU0, NL1 and generates the following:

conditional {

 statement 1

 statement 2

}

The user may also select the following styles:

 NU0, NL2 NU1, NL1 NU1, NL2

conditional { conditional conditional

 statement 1 { {

 statement 2 statement 1 statement 1

 } statement 2 statement 2

 } }

 NU2, NL1 NU2, NL2

conditional conditional

 { {

 statement 1 statement 1

 statement 2 statement 2

} }

2.25 Name of the File to Receive the C Output — Oname
Normally, GREAT MIGRATIONS FORTRAN sends the intermediate C output produced to a file with the same name as

the input with its extension changed to "c". If some other file is to receive the C intermediate output, then use the O switch

to specify its name. There should be no whitespace between the "O" of the switch and the name of the file.

2.26 Splitting of Output into Separate Files — Os, Om
By default, GREAT MIGRATIONS FORTRAN writes all of its translated output to a file with the same name as the input

file, but with the extension changed to ".c". In some instances, if you are building a library or if you intend to do extensive

editing of the output, it is convenient to have the C code corresponding to each C function written to a separate file with the

same name as the function. The O switch gives you this capability. Its mutually exclusive settings are as follows:

PromulaFortran Translator User's Manual

63

Setting Meaning

Om Writes each function to a separate file with the same name as the function and

with the extension ".C".

Os Writes all output to the same file. This is the default.

Because of the fact that many C constructs, such as define and typedef, have module scope the Om flag can also be used to

avoid a problem with the treatment of COMMON blocks as discussed in the section on the global variables convention flag.

The cleanest treatment can be achieved via the Gs switch which defines COMMON blocks as static structures with varying

internal composition. In particular, this technique defines each occurrence of the COMMON block as an external structure

whose members are defined in the same manner as they are defined in the subprogram being translated. This technique

produces readable code and generates relatively efficient code. The problem is that many compilers consider redefining an

external with a detailed structure repeatedly in different functions to be a typing error. If you are using such a compiler,

then the Om switch can be used to overcome it.

2.27 Miscellaneous Prototyping Control Flags — Pnumb, P+numb
The P command line switch introduces 15 flags for use in dealing with the prototypes and other output issues faced by

gmFortran. What brings these flags together is that all are primarily focused on the differences in semantics between

FORTRAN and C. The flags and their values are as follows:

1 Include definitions of int functions when listing external function references.

2 Include ANSI prototypes with declarations of functions passed as arguments.

4 Exclude referenced function prototypes from the prototype output file.

8 Exclude defined function prototypes from the prototype output file.

16 Ignore prototypes for definitions.

32 Treat user prototypes as system functions.

64 Write gmFortran style prototypes, not C type.

128 Write all function decls to header file.

256 Use ANSI C function declarations.

512 Make parameters always take explicit value type.

1024 Exclude undefs from the translation.

2048 Force variables to have explicit character type.

4096 Define equivalences via a #define.

8192 Use parameter identifiers in equivalences.

16384 Display include files separately.

Any combination of these flags can be obtained by summing the desired values and then associating that sum with the P

switch. Alternatively, individual flags may be turned on by using the P+numb form of the switch.

PromulaFortran Translator User's Manual

64

2.27.1 P1 — Include Definitions of int Functions
The first flag forces the definitions of int functions when listing the external functions referenced within a given prototype.

This flag is on by default. If a referenced function is not defined in a given module, then C assumes that it is an int;

however, many C compilers give a warning when this assumption is made. Consider the following simple FORTRAN

subroutine

 SUBROUTINE TEST

 J = 99

 I = IFUNC(J)

 R = RFUNC(J)

 PRINT *,I,R

 STOP

 END

which references two external functions: IFUNC and RFUNC.

The default translation for this subroutine is as follows.

void test()

{

extern int ifunc();

extern float rfunc();

static int j,i;

static float r;

 j = 99;

 i = ifunc(&j);

 r = rfunc(&j);

 WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);

 STOP(NULL);

}

Notice that both ifunc and rfunc are explicitly declared. By default the P1 flag is on. Turning the P1 flag off produces the

following.

void test()

{

extern float rfunc();

static int j,i;

static float r;

 j = 99;

 i = ifunc(&j);

 r = rfunc(&j);

 WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);

 STOP(NULL);

}

In this version, the fact that ifunc is an int is assumed by the compiler, therefore, no explicit declaration is given.

2.27.2 P2 — Use ANSI Prototypes for Argument Functions
The second flag associates a full ANSI C prototype with external function declarations passed as arguments when those

functions contain arguments which are passed by value. This flag is needed only in very specialized cases where detailed

prototype checking is needed. By default this flag is off. Consider the following simple test program.

 SUBROUTINE TEST(IFUNC,RFUNC)

 R = RFUNC(99)

 I = IFUNC(56.7)

 PRINT *,I,R

 STOP

PromulaFortran Translator User's Manual

65

 END

When processed using the Yv switch, which allows call-by-value arguments, the following C translation is produced.

void test(ifunc,rfunc)

int (*ifunc)();

float (*rfunc)();

{

static float r;

static int i;

 r = (*rfunc)(99);

 i = (*ifunc)(56.7);

 WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);

 STOP(NULL);

}

Notice that the types of the arguments are not specified in the declarations for ifunc and rfunc. Using the P2 flag

produces the following result.

void test(ifunc,rfunc)

int (*ifunc)(float);

float (*rfunc)(int);

{

static float r;

static int i;

 r = (*rfunc)(99);

 i = (*ifunc)(56.7);

 WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);

 STOP(NULL);

}

Now the function declarations use the full ANSI C form for the function declarations.

2.27.3 P4,P8 — Exclude Referenced or Defined Prototypes
When processing a FORTRAN code, gmFortran builds an internal table containing the prototypes for all subprograms

encountered either by reference or by definition. If desired, these prototypes can be written to a file via the W switch,

described elsewhere in this chapter. The P4 and P8 flags associated with the P switch block either those functions only

referenced via the code or those functions only defined in the code.

The following FORTRAN code

 SUBROUTINE ALPHA(IA,GVAL)

 R = RFUNC(IA)

 I = IFUNC(GVAL)

 PRINT *,I,R

 STOP

 END

 FUNCTION RFUNC(I)

 RFUNC = I * I

 RETURN

 END

contains references to three subprograms — ALPHA, RFUNC, and IFUNC. ALPHA is defined only; RFUNC is both defined and

referenced; and IFUNC is referenced only. Processing this code with the Wname switch will produce the following list of

prototypes.

float rfunc(long*);

long ifunc(float*);

void alpha(long*,float*);

PromulaFortran Translator User's Manual

66

All three subprograms are included. Now using the P4 switch produces the following two only, since IFUNC, which was

not defined, is excluded.

void alpha(long*,float*);

float rfunc(long*);

Alternatively, using the P8 switch produces the following list

float rfunc(long*);

long ifunc(float*);

in which ALPHA is excluded since it was not referenced.

The effect of these switches can be most easily seen via the use of the Wname switch which actually writes out internally

generated prototypes; however, remember that gmFortran can be asked to do extensive argument checking via other

command line switches and via its warning message system. The P4 and P8 flags control the contexts in which internal

prototypes are retained and therefore effect the operation of all of these functions.

2.27.4 P16 — Ignore Prototypes for Definitions
The P16 flag is used to modify the behavior of the Yp switch. The Yp switch is described later in this chapter. In essence,

the Yp flag ensures that passed subprogram argument types are consistent. As a result of this flag, prototypes are formed

when subprograms are first referenced or defined. When the first reference to a subprogram disagrees with the later

definition of that subprogram, the Yp switch must enforce the prototype. This can be seen in the following FORTRAN code

 SUBROUTINE ALPHA(IA,GVAL)

 R = RFUNC(IA)

 I = IFUNC(GVAL)

 PRINT *,I,R

 STOP

 END

 FUNCTION RFUNC(A)

 RFUNC = ABS(A)

 RETURN

 END

in which the function RFUNC is called with an INTEGER argument; however, when the RFUNC function is later defined, that

argument is a FLOAT. The translation of this code under the Yp switch is shown below.
void alpha(ia,gval)

long *ia;

float *gval;

{

extern long ifunc();

extern float rfunc();

static float r;

static long i;

 r = rfunc(ia);

 i = ifunc(gval);

 WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);

 STOP(NULL);

}

float rfunc(a)

long *a; <==========

{

static float rfunc;

 rfunc = fifiabs(*a); <=========

 return rfunc;

}

PromulaFortran Translator User's Manual

67

Note that the argument a is shown and is used as a long to agree with the earlier reference. If this behavior is not desired,

the P16 flag will block the Yp switch from changing defined function argument types. The translation of the test code using

both Yp and P16 becomes the following.

void alpha(ia,gval)

long *ia;

float *gval;

{

extern long ifunc();

extern float rfunc();

static float r;

static long i;

 r = rfunc(ia);

 i = ifunc(gval);

 WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);

 STOP(NULL);

}

float rfunc(a)

float *a; <=====

{

static float rfunc;

 rfunc = fifabs(*a); <=====

 return rfunc;

}

2.27.5 P32 — Treat User Prototypes as System Functions
When gmFortran translates a reference to an external subprogram which is not a system function, it always includes an

extern declaration for that function. This is true even when user prototypes are being read by gmFortran. Consider the

following FORTRAN code

 SUBROUTINE ALPHA(IA,GVAL)

 R = RFUNC(IA)

 I = IFUNC(GVAL)

 PRINT *,I,R

 STOP

 END

 FUNCTION RFUNC(I)

 RFUNC = ABS(I)

 RETURN

 END

when translated using the following prototype file

float rfunc(long);

produces the following C translation.

void alpha(ia,gval)

long *ia;

float *gval;

{

extern long ifunc();

extern float rfunc(); <====

static float r;

static long i;

 r = rfunc(*ia);

 i = ifunc(gval);

 WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);

 STOP(NULL);

PromulaFortran Translator User's Manual

68

}

float rfunc(i)

long i;

{

static float rfunc;

 rfunc = fifiabs(i);

 return rfunc;

}

Note that the function rfunc is explicitly given an extern declaration. Many users of gmFortran use the same prototype

files when they process FORTRAN codes and later when they compile the C outputs. In these cases the simple extern

declaration of rfunc can interfere with the full ANSI declaration. The P32 flag simply removes the extern declarations for

functions defined via user supplied prototypes. The same translation as above, with the additional use of P32, produces the

following translation.

void alpha(ia,gval)

long *ia;

float *gval;

{

extern long ifunc(); <====

static float r;

static long i;

 r = rfunc(*ia);

 i = ifunc(gval);

 WRITE(OUTPUT,LISTIO,INT4,i,REAL4,r,0);

 STOP(NULL);

}

float rfunc(i)

long i;

{

static float rfunc;

 rfunc = fifiabs(i);

 return rfunc;

}

In this translation note that ifunc still has an extern declaration, but that rfunc no longer has.

2.27.6 P64 — Write PFC Style Prototypes, not C Type
As is discussed extensively in the section on the treatment of CHARACTER variables, gmFortran must add a character

length argument to the subprograms which use FORTRAN CHARACTER variables. As a result, the argument list for such

functions differs in their C form from their original FORTRAN form.

Consider the following FORTRAN subroutine with two CHARACTER*10 arguments.

 SUBROUTINE ALPHA(IA,GVAL)

 CHARACTER*10 IA,GVAL

 PRINT *,IA,GVAL

 STOP

 END

The default prototype written for this function under the default CHd character treatment switch is as follows.

void alpha(char*,char*,int,int);

Alternatively, this prototype becomes

void alpha(char*,int,char*,int);

PromulaFortran Translator User's Manual

69

when the CHs switch is used. Depending upon the context, either of these prototypes would be appropriate for use with a

later C compilation; however, if the intent is to use the prototypes with gmFortran, then the following is needed.

void alpha(string,string);

This prototype does not have the character treatment assumption already decomposed. This prototype is produced when the

P64 switch is used.

2.27.7 P128 — Write All Function decls to Header File
The following sample FORTRAN code shows a potentially serious problem for gmFortran.

 PROGRAM DEMO

 CALL IALPHA("Hello"," World")

 STOP

 END

 FUNCTION IALPHA(IA,GVAL)

 CHARACTER*(*) IA,GVAL

 PRINT *,IA,GVAL

 IALPHA = LEN(IA) + LEN(GVAL)

 END

This code shows a function which writes the concatenation of two strings and then returns the length of that concatenation.

The only reference to this function is via a CALL statement — i.e., the fact that IALPHA also returns a value is being

ignored.

The default translation for this code is shown below.

void main(argc,argv)

int argc;

char* argv[];

{

extern void ialpha(); <======

 ftnini(argc,argv,NULL);

 ialpha("Hello"," World",5,6);

 STOP(NULL);

}

long ialpha(ia,gval,P1,P2) <======

char *ia,*gval;

int P1,P2;

{

static long ialpha;

 WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);

 ialpha = P1+P2;

 return ialpha;

}

This C code will generate a fatal error from most contemporary C compilers since the status of ialpha is first as a void

function and later as a long function. To avoid this problem, gmFortran must be told to delay the writing of any function

declarations until the entire code has been read. Once the best information about each function is acquired, all prototypes

can be written to a file which can then be included.

The P128 flag provides this service. The translation of the above code using the P128 flag is shown below.

#include "test.h" <======

void main(argc,argv)

int argc;

char* argv[];

{ <=======

 ftnini(argc,argv,NULL);

PromulaFortran Translator User's Manual

70

 ialpha("Hello"," World",5,6);

 STOP(NULL);

}

long ialpha(ia,gval,P1,P2)

char *ia,*gval;

int P1,P2;

{

static long ialpha;

 WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);

 ialpha = P1+P2;

 return ialpha;

}

Note that an include has been added to the front of the code and that the code itself contains no extern declarations. The file

test.h is as follows.

extern long ialpha();

This declaration of ialpha is correct and reflects the best information available.

2.27.8 P256 — Use ANSI C Function Declarations
By default gmFortran is designed to produce a C output which will compile on as many different platforms as possible.

Consequently, it uses the old-style function declaration form which is compatible with all C compilers rather than the ANSI

form which is compatible only with contemporary compilers. The default translation for the following FORTRAN code

 SUBROUTINE DEMO

 CALL IALPHA("Hello"," World")

 STOP

 END

 SUBROUTINE IALPHA(IA,GVAL)

 CHARACTER*(*) IA,GVAL

 PRINT *,IA,GVAL

 END

is as follows.

void demo() <======

{

extern void ialpha();

 ialpha("Hello"," World",5,6);

 STOP(NULL);

}

void ialpha(ia,gval,P1,P2) <=======

char *ia,*gval;

int P1,P2;

{

 WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);

}

Note that the function arguments are listed and then typed separately. The P256 flag will produce the following translation.

void demo(void)

{

extern void ialpha();

 ialpha("Hello"," World",5,6);

 STOP(NULL);

}

void ialpha(char *ia,char *gval,int P1,int P2)

{

PromulaFortran Translator User's Manual

71

 WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);

}

In this form, the argument list also contains the typing information.

2.27.9 P512 — Make Parameters Always Take Explicit Value Type
There is a difference between various dialects of FORTRAN as to the treatment of untyped PARAMETERs. All

contemporary dialects require that PARAMETERs be typed in the same manner as other variable symbols; however, some

assign untyped PARAMETERs the type of the constant which they represent. Consider the following FORTRAN code.

 SUBROUTINE ALPHA(IA,GVAL)

 PARAMETER(AVAL = 99)

 PARAMETER(IVAL = 10.2)

 IA = AVAL

 GVAL = IVAL

 RETURN

 END

Most compilers type AVAL as a float constant and IVAL as an integer constant. Adjustments are made to the constants

themselves to obtain the correct type. To correspond to this practice, the gmFortran translation of the above is as follows.

void alpha(ia,gval)

long *ia;

float *gval;

{

#define aval 99.0 <====

#define ival (long)10.2 <====

 *ia = aval;

 *gval = ival;

 return;

#undef aval

#undef ival

}

Note that the constants themselves have changed type to accommodate the typing of the PARAMETER symbols.

The P512 flag gives the opposite interpretation, as can be seen in the following translation.

void alpha(ia,gval)

long *ia;

float *gval;

{

#define aval 99 <====

#define ival 10.2 <====

 *ia = aval;

 *gval = ival;

 return;

#undef aval

#undef ival

}

Under this translation the constants retain their original types and the PARAMETERs are assigned the types of those

constants.

2.27.10 P1024 — Exclude undefs From the Translation
Examining the translations of the preceding part brings another fundamental difference between FORTRAN and C to light.

In FORTRAN, PARAMETERs have scope only within the subprogram in which they are defined; while in C the

corresponding #defines have file scope. Consequently, whenever PARAMETERs are translated via #defines they must also

PromulaFortran Translator User's Manual

72

be undefined via #undef at the end to simulate the FORTRAN scope. In those cases where FORTRAN subprograms

correspond to files in C, the necessity for the #undef is removed.

The P1024 flag turns off the #undefs. The following is the same translation as presented above with the P1024 flag turned

on.

void alpha(ia,gval)

long *ia;

float *gval;

{

#define aval 99.0

#define ival (long)10.2

 *ia = aval;

 *gval = ival;

 return;

}

2.27.11 P2048 — Force Variables to Have Explicit Character Type
Another issue having to do with typing is the mixture of CHARACTER and non-character information within non-integer

variables. The following FORTRAN code represents the sort of situation that can occur.

 PROGRAM DEMO

 INTEGER IA(2),IB(2)

 DATA IA/5Hhello/

 DATA IB/6H World/

 IC = IALPHA(IA,IB)

 PRINT *,IC

 STOP

 END

 FUNCTION IALPHA(IA,GVAL)

 CHARACTER*(*) IA,GVAL

 PRINT *,IA,GVAL

 IALPHA = LEN(IA) + LEN(GVAL)

 END

A subprogram which explicitly assumes character variables has been intermixed with one that hides characters in

INTEGER variables. To make the situation clearer, the lengths of the character arguments are explicitly used by the

subprogram — both in the free-form PRINT and in the computation of the return value.

The default translation for this program does not produce correct results.

void main(argc,argv)

int argc;

char* argv[];

{

extern long ialpha();

static long ia[2];

static long ib[2];

static long ic;

static int ftnsiz[] = {1,1,2,1,1,2};

static namelist DATAVAR[] = {

"ia",ia,5,ftnsiz,"ib",ib,5,ftnsiz+3

};

static char *DATAVAL[] = {

"$DATAVAR",

"ia='hell','o',ib=' Wor','ld',",

"$END"

};

 ftnini(argc,argv,NULL);

 fiointu((char*)DATAVAL,0,2);

PromulaFortran Translator User's Manual

73

 fiornl(DATAVAR,2,NULL);

 ic = ialpha(ia,ib); <=====

 WRITE(OUTPUT,LISTIO,INT4,ic,0);

 STOP(NULL);

}

long ialpha(ia,gval,P1,P2)

char *ia,*gval;

int P1,P2;

{

static long ialpha;

 WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);

 ialpha = P1+P2;

 return ialpha;

}

When the IALPHA function is called, gmFortran does not know that that function will expect the lengths of the character

vectors. One way to solve this problem is to provide an explicit prototype, as shown below.

long ialpha(string,string);

Using this prototype to augment the translation, produces the following translation.

void main(argc,argv)

int argc;

char* argv[];

{

extern long ialpha();

static long ia[2];

static long ib[2];

static long ic;

static int ftnsiz[] = {1,1,2,1,1,2};

static namelist DATAVAR[] = {

"ia",ia,5,ftnsiz,"ib",ib,5,ftnsiz+3

};

static char *DATAVAL[] = {

"$DATAVAR",

"ia='hell','o',ib=' Wor','ld',",

"$END"

};

 ftnini(argc,argv,NULL);

 fiointu((char*)DATAVAL,0,2);

 fiornl(DATAVAR,2,NULL);

 ic = ialpha(ia,ib,8,8); <=====

 WRITE(OUTPUT,LISTIO,INT4,ic,0);

 STOP(NULL);

}

long ialpha(ia,gval,P1,P2)

char *ia,*gval;

int P1,P2;

{

static long ialpha;

 WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);

 ialpha = P1+P2;

 return ialpha;

}

This translation is correct and will probably produce acceptable results. There are two disadvantages to the prototype

approach. First, all the function prototypes must be known — note that these can be produced by gmFortran. Once

produced, the translation can then be done a second time using them. The other problem is that the variables IA and IB are

still being treated as integer variables, even though it is clear from the context that they are being used to contain character

values.

PromulaFortran Translator User's Manual

74

The P2048 flag forces variables to have an explicit character type when this appears to be obvious from the context. As is

true of many other flags and switches, this one is a translation aid — it is not guaranteed to produce correct results in all

cases. The translation of the above using P2048 without any additional prototype needed is the following.
void main(argc,argv)

int argc;

char* argv[];

{

extern long ialpha();

static char ia[8] = {

 'h','e','l','l','o',' ',' ',' '

};

static char ib[8] = {

 ' ','W','o','r','l','d',' ',' '

};

static long ic;

 ftnini(argc,argv,NULL);

 ic = ialpha(ia,ib,4,4); <====

 WRITE(OUTPUT,LISTIO,INT4,ic,0);

 STOP(NULL);

}

long ialpha(ia,gval,P1,P2)

char *ia,*gval;

int P1,P2;

{

static long ialpha;

 WRITE(OUTPUT,LISTIO,STRG,ia,P1,STRG,gval,P2,0);

 ialpha = P1+P2;

 return ialpha;

}

Note that IA and IB are now treated as character variables. Their initialization is quite natural. Note, however, that the

string lengths are allocated at their binary size, which is not the desired value in this context.

2.27.12 P4096 — Define Equivalences via a #define
Another area in which C and FORTRAN differ is "address aliasing". Basically, programs occasionally need to refer to the

same area of memory in different ways. In C, pointers are used. In FORTRAN, EQUIVALENCE statements are used. The

following FORTRAN program contains a simple example.

 PROGRAM DEMO

 INTEGER IA(10),IB(2)

 EQUIVALENCE (IA(5),IB(2))

 READ(*,*) IA

 PRINT *,IB

 END

Within this program the array IB is being used to refer to the fourth and fifth members of the array IA. The default

translation for this example in C looks as follows.

void main(argc,argv)

int argc;

char* argv[];

{

static long ia[10];

static long *ib = (ia+3);

 ftnini(argc,argv,NULL);

 READ(INPUT,LISTIO,DO,10,INT4,ia,0);

 WRITE(OUTPUT,LISTIO,DO,2,INT4,ib,0);

}

PromulaFortran Translator User's Manual

75

In this translation the variable IB is defined as a pointer which points to the fourth member of the array IA (note that C uses

zero based subscripts). This translation is relatively clean; however, it does introduce an additional pointer variable. This

translation is selected as the default because the symbol IB remains defined, thus making debugging simpler.

An alternative translation can be produced via the P4096 flag. This translation is shown below.

void main(argc,argv)

int argc;

char* argv[];

{

static long ia[10];

#define ib ((ia+3))

 ftnini(argc,argv,NULL);

 READ(INPUT,LISTIO,DO,10,INT4,ia,0);

 WRITE(OUTPUT,LISTIO,DO,2,INT4,ib,0);

#undef ib

}

Notice that IB is now implemented with a define. It is not an actual memory location in the final code. Alternatively,

repeated uses of IB might generate inefficient code if its value must be computed upon each use.

2.27.13 P8192 — Use Parameter Identifiers in Equivalences
As discussed in the section on the P4096 flag, the processing of FORTRAN EQUIVALENCE into C is difficult and clumsy

at best. To complicate the situation, PARAMETER values are often used within EQUIVALENCE declarations. The

following is the equivalent of the code presented above, using PARAMETERs.

 PROGRAM DEMO

 PARAMETER(IAOFF = 5)

 INTEGER IA(10),IB(2)

 EQUIVALENCE (IA(IAOFF),IB(IAOFF-3))

 READ(*,*) IA

 PRINT *,IB

 END

In the default translation, to ensure that the positions are correctly computed, the values of the parameters are used in the C

produced. This can be seen in the following default translation of the above.

void main(argc,argv)

int argc;

char* argv[];

{

#define iaoff 5

static int ia[10];

static int *ib = (ia+3); <=====

 ftnini(argc,argv,NULL);

 READ(INPUT,LISTIO,DO,10,INT4,ia,0);

 WRITE(OUTPUT,LISTIO,DO,2,INT4,ib,0);

#undef iaoff

}

The pointer expression for the IB variable is the same as when constants were used. In most cases the actual parameters

forms can also be used. The P8192 flag forces this use. Using P8192, the following is produced.

void main(argc,argv)

int argc;

char* argv[];

{

#define iaoff 5

PromulaFortran Translator User's Manual

76

static int ia[10];

static int *ib = (ia+iaoff-2); <====

 ftnini(argc,argv,NULL);

 READ(INPUT,LISTIO,DO,10,INT4,ia,0);

 WRITE(OUTPUT,LISTIO,DO,2,INT4,ib,0);

#undef iaoff

}

This form now uses the #defined value for IAOFF; however, a different computation must be used.

2.27.14 P16384 — Display Include Files Separately
Another issue which must be dealt with in translation has to do with include files. Ideally, FORTRAN include files should

be translated into C include files. The problems involved here are two-fold. First, FORTRAN and C have very different

scope rules. In FORTRAN include files are typically included within subprograms, whereas in C they are included at the

front of files. The second problem is that it is often necessary to reorder the symbols when moving from FORTRAN to C.

This reordering is greatly complicated by the need to retain the content of each include separately. Consider the following

FORTRAN source along with two include files.

TEST.FOR

 PROGRAM DEMO

 INCLUDE "TEST1.INC"

 INCLUDE "TEST2.INC"

 READ(*,*) IA

 PRINT *,IB

 END

TEST1.INC

C

C Define the needed sizes

C

 PARAMETER(NA = 100)

 PARAMETER(NB = 200)

TEST2.INC

C

C Define the common data

C

 COMMON/ALPHA/IA(NA),IB(NB)

The default translation is shown below.

void main(argc,argv)

int argc;

char* argv[];

/*

 Define the needed sizes

*/

{

/*

 Define the common data

*/

#define na 100L

#define nb 200L

extern char Xalpha[];

typedef struct {

 long ia[na],ib[nb];

} Calpha;

auto Calpha *Talpha = (Calpha*) Xalpha;

 ftnini(argc,argv,NULL);

 READ(INPUT,LISTIO,DO,(int)(na),INT4,Talpha->ia,0);

 WRITE(OUTPUT,LISTIO,DO,(int)(nb),INT4,Talpha->ib,0);

#undef na

#undef nb

}

PromulaFortran Translator User's Manual

77

char Xalpha[1200];

In this translation the information from the include files has been incorporated into the translation.

Using the P16384 flag, three output files are created: test.c, TEST1.h, and TEST2.h. These are shown below.

test.c

 void main(argc,argv)

 int argc;

 char* argv[];

 {

 #include "TEST1.h"

 #include "TEST2.h"

 ftnini(argc,argv,NULL);

 READ(INPUT,LISTIO,DO,(int)(na),INT4,Talpha->ia,0);

 WRITE(OUTPUT,LISTIO,DO,(int)(nb),INT4,Talpha->ib,0);

 }

 char Xalpha[1200];

TEST1.h

 #ifndef ICF_TEST1

 /*

 Define the needed sizes

 */

 #define na 100L

 #define nb 200L

 #define ICF_TEST1

 #endif /*ICF_TEST1 */

TEST2.h

 #ifndef ICF_TEST2

 /*

 Define the common data

 */

 #endif /*ICF_TEST2 */

 extern char Xalpha[];

 typedef struct {

 long ia[na],ib[nb];

 } Calpha;

 auto Calpha *Talpha = (Calpha*) Xalpha;

 #ifndef ICF_TEST2

 #define ICF_TEST2

 #endif /*ICF_TEST2 */

The test.c file corresponds precisely with the original FORTRAN insofar as the placement and order of the include are

concerned, since the include could well be included multiple times within a given file. Each file defines its own internal

variable to keep symbols such as #defines from occurring multiple times. This convention, which is needed to overcome the

scope differences between FORTRAN and C, presents an excellent opportunity to do away with the #undefs discussed

earlier, at least insofar as the PARAMETERs within include files are concerned.

To give some idea of how complicated the actual production of the above files is, the listing file produced is shown below.

If Line# Nl Translation

-- ----- -- -----------

 1 #define SPROTOTYPE

 2 #include "fortran.h"

 3 void main(argc,argv)

 4 int argc;

 5 char* argv[];

 6 {

 7 #include "TEST1.h"

 1 8 #ifndef ICF_TEST1

 1 9 /*

 1 10 Define the needed sizes

 1 11 */

PromulaFortran Translator User's Manual

78

 12 #include "TEST2.h"

 2 13 #ifndef ICF_TEST2

 2 14 /*

 2 15 Define the common data

 2 16 */

 1 17 #define na 100L

 1 18 #define nb 200L

 2 19 #endif /*ICF_TEST2 */

 2 20 extern char Xalpha[];

 2 21 typedef struct {

 2 22 long ia[na],ib[nb];

 2 23 } Calpha;

 2 24 auto Calpha *Talpha = (Calpha*) Xalpha;

 25 ftnini(argc,argv,NULL);

 26 READ(INPUT,LISTIO,DO,(int)(na),INT4,Talpha->ia,0);

 27 WRITE(OUTPUT,LISTIO,DO,(int)(nb),INT4,Talpha->ib,0);

 28 }

 1 29 #define ICF_TEST1

 1 30 #endif /*ICF_TEST1 */

 2 31 #ifndef ICF_TEST2

 2 32 #define ICF_TEST2

 2 33 #endif /*ICF_TEST2 */

 34 char Xalpha[1200];

Note that the writing of the three files is completely intertwined.

2.28 Listing File Control — PAname, PHnumb, PNname, PWnumb
As described earlier, the E flags produce various types of listing and reports about the code being translated — its content,

compiled form, and its C form. The PA, PH, PN, and PW switches determine the characteristics of the file to receive the

listing.

PAname specifies the name of a file to which the listing currently being produced is to be appended. If no file with the

specified name exists, then one is created. PNname, on the other hand, specifies the name of a new file to receive the

listing. If the named file already exists, it is truncated. If the specified name under either PA or PN has no extension, an

extension of lst is assumed.

The PH and PW flags specify the desired output page height and width. The default setting for PH is 80 lines and that for

PW is 132 characters. The reports produced are quite large, and the minimum setting allowed for PW is 80 characters. Note

that the symbol table widths are adjusted to fit into the specified page size; however, the source code listing is truncated if

the source line display becomes too wide.

2.29 Quantity Control Flags — QInumb, QEnumb, QDnumb, QXnumb,

QHnumb, QWnumb
Generally, GREAT MIGRATIONS examines its environment to determine the resources and values that it assigns to its

internal processing controls. In some cases the user needs to be able to override the default settings for the quantities

assigned, in particular, the following settings may be controlled:

Flag Quantity controlled

QInumb Size of compacted statement storage

QEnumb Size of the line number table

QDnumb Size of a data block

QXnumb Size of external information storage

QHnumb Size of include file information storage

QWnumb Word size of source platform

PromulaFortran Translator User's Manual

79

2.29.1 QInumb — Size of Compacted Statement Storage
As GREAT MIGRATIONS processes the raw FORTRAN source it strips all blanks and comments and stores the resulting

compacted statement for compilation. The size of the storage area for this compacted statement is 5120 characters. This is

sufficient for a statement with over 70 continuation lines. If extremely long statements are being processed or if memory is

at a premium, the size of this area may be changed via the QInumb command line switch.

Note that if the size of the compacted statement storage area is exceeded, the fatal error 522

Statement contains more than nnnnn characters -- use the QIn flag to increase this

value.

is generated.

2.29.2 QEnumb — Size of the Line Number Table
When line number information is being generated in the C output via the Ln or DB command line switches, this switch is

used to indicate the amount of storage to be allocated for this information. When Ln is used, this switch is required; when

DB is used, the default value established for this switch is 32000. To change this default for DB the QEnumb switch must

follow the DB switch of the command line.

Note that if the size of the line number information table is exceeded, the fatal error 532

The line number storage of nnnnn bytes is insufficient, use the QEn flag to increase

it.

is generated.

2.29.3 QDnumb — Size of a Data Block
When GREAT MIGRATIONS encounters data initializations, it must allocate memory equal to the size of the variable to

store these initializations. The values for all variables less than a data block threshold value are allocated into fixed length

blocks using PROMULA's standard internal variable length record processing logic. Variables whose size exceed this

threshold are allocated their own storage areas from system memory. The default setting of this threshold value is 512. On

memory limited machines, large programs that do massive data initializations might want to change this value.

Since this is a tuning value, as opposed to an actual allocation value, no direct message pertaining to it is generated.

2.29.4 QXnumb — Size of External Information Storage
GREAT MIGRATIONS saves the names and types of external symbols that have been declared via EXTERNAL

statements and that have been passed to other functions, but whose final type is not known. See the discussion of the P128

prototyping control flag for detailed information on this topic. GREAT MIGRATIONS also saves names of those

subprograms that have initializations for COMMON blocks. See the discussion of link time processing of COMMON data

modules — the Lm and Ls command line switches — for a discussion of this storage.

The default setting for the QXnumb switch is 2000. If the external symbols storage area is exceeded, the fatal error 519

The unresolved external symbol storage of nnnn bytes is insufficient, use the QXn

flag to increase it.

is generated.

2.29.5 QHnumb — Size of Include File Information Storage

PromulaFortran Translator User's Manual

80

When include files are being translated independently of the source codes containing them via the P16384 switch, a storage

area 512 characters large is allocated to control this process. See the discussion of the P16384 switch for a detailed

discussion of this topic. The QHnumb switch can be used to change this value.

If the include file information storage area storage area is exceeded, the fatal error 531

The include file storage of nnnn bytes is insufficient, use the QHn flag to increase

it.

is generated.

2.29.6 QWnumb — Word Size of Source Platform

The typical word size for contemporary platforms is 32 bits with 8 bits per character. This information is internally encoded

as

(bits per word) * 100 + (bits per character)

Thus, the default word size specification value is 3208. When translating source codes from platforms with different word

sizes, the word size value can be changed via the QWnumb switch. Note that moving codes between machines of different

word sizes is potentially very difficult. The C output produced will retain the characteristics of the source platform. If

explicit word size assumptions were made in the source, then those will probably not be well-formed on the target platform.

2.30 Specify a Configuration File — Rname
The R switch allows you to read additional configuration files. These files contain function prototypes and miscellaneous

other configuration information. The format and use of configuration files are discussed in Chapter 3.

Suffice to say here that the Rname switch will read configuration information from the files named. The Rname switch may

occur multiple times, to allow the reading of multiple files. If there is no extension supplied with the first file, then an

extension of .cnf will be assumed. If there is no extension supplied for additional files, an extension of .pro is assumed.

The reason for this is that, typically, when multiple files are read the first contains the configuration information; while the

additional files contain function prototype information.

It should be noted that configuration files may contain command line switch information; thus, a common use of a

configuration file is to supply commonly used switches independently of the command line.

2.31 Storage Threshold Values — SAnum, SDnum, SSnum, SVnum, SZnum
One of the realities that has to be faced in using FORTRAN on small machines is that FORTRAN is extremely naive in its

use of memory. Though the FORTRAN 77 standards committee gave the new language a SAVE statement which was to

have helped, this statement is rarely implemented. In essence, all variables in a FORTRAN program are assigned a unique

and fixed memory location. If you do not have enough memory on your machine to do this, then you are in real trouble.

GREAT MIGRATIONS takes this problem head on since, as consultants, it is the one we have encountered most often in

"downsizing" mainframe codes to the PC. There are four types of memory made available to you via PROMULA.

First, there is static memory. This is the default memory for variables. It is equivalent to the normal FORTRAN memory

allocation. It is wasteful in that local variables all have unique memory locations, but is simple to implement. Also, static

storage has memory between calls. This means that local variables can retain their values between calls to their code. This

is a trick that is often used by older FORTRAN source codes.

Second, there is auto storage. This storage is allocated to the stack each time a function is called. When the function exits,

the storage is returned to the stack for use by other functions. The advantages of auto storage are that it is fast, easy to use,

and economizes on total storage used. The disadvantages are that it has no memory and that it is very limited on PC

platforms where program stacks are typically quite short and always less than 64K on the PC.

PromulaFortran Translator User's Manual

81

Third, there is dynamic storage. Dynamic storage is typically taken from that storage available on the machine which is not

already allocated to the program. This is generally called "the heap". In C it is accessed via the malloc function and is

returned via the free function. The advantages of dynamic storage is that it is most likely to be abundant, and economizes

total storage used. The disadvantages are that it must be explicitly allocated each time a function is entered and freed each

time a function is exited. GREAT MIGRATIONS automatically inserts the code to do this when dynamic storage is used.

Fourth, there is virtual storage. Virtual storage is actually maintained in a disk file. As it is accessed it is "paged" into

memory. The advantages of virtual storage are that it is practically unlimited and, like static storage, has memory. Also

virtual memory is unique in the fact that it remains viable after the program has completed execution. This topic is

discussed in the chapter on the GREAT MIGRATIONS interface in the FORTRAN Compiler User’s Manual. The

disadvantages of virtual memory are that it is slower than the other memory types and that the code using it tends to be

difficult to read. Also, there are problems associated with utility functions which use both virtual and non-virtual pointer

arguments.

Such functions require two versions. This topic is discussed in the chapter on configuration prototypes which allow you to

deal with this problem.

The S switch allows you to specify storage threshold values for five different memory types. Its settings are as follows:

SA Specifies that no variables are to be stored as auto. This is the default setting for this storage type.

SAnum Where num is greater than or equal to zero, specifies that any variable whose size in bytes is greater

than or equal to num but less than any other threshold setting should be stored as an auto variable.

SS Specifies that no variables are to be stored as static.

SSnum Where num is greater than or equal to zero, specifies that any variable whose size in bytes is greater

than or equal to num but less than any other threshold setting should be stored as a static variable. The

default setting for this storage type is Ss0.

SD Specifies that no variables are to be stored as dynamic. This is the default setting for this storage type.

SDnum Where num is greater than or equal to zero, specifies that any variable whose size in bytes is greater

than or equal to num but less than any other threshold setting should be stored as a dynamic variable.

SZ Specifies that no variables are to be stored as dynamic, but taken from the virtual file manager.

SZnum Where num is greater than or equal to zero, specifies that any variable whose size in bytes is greater

than or equal to num but less than any other threshold setting should be stored as a dynamic variable but

should have its values initialized via the virtual memory manager and should have its values returned to

that manager when freed.

SV Specifies that no variables are to be stored as virtual. This is the default setting for this storage type.

SVnum Where num is greater than or equal to zero, specifies that any variable whose size in bytes is greater

than or equal to num but less than any other threshold setting should be stored as a virtual variable.

The effect of these settings is to allocate memory into size ranges. Variables are then allocated to a given storage range. The

example below gives a summary of the storage switch use.

 SUBROUTINE DEMO

 DIMENSION A(10),B(10,10),C(10,10,10),D(10,10,10,10)

 DO 10 I = 1,10

 C(I,I,I) = D(I,I,I,4)

PromulaFortran Translator User's Manual

82

 B(I,I) = C(I,I,1)

 A(I) = B(I,3)

10 CONTINUE

 RETURN

 END

This example contains a variety of arrays having from 40 to 40,000 bytes. The following is the default translation.

void demo()

{

static long i;

static float a[10],b[10][10],c[10][10][10],d[10][10][10][10];

 for(i=0L; i<10L; i++) {

 c[i][i][i] = d[3][i][i][i];

 b[i][i] = c[0][i][i];

 a[i] = b[2][i];

 }

 return;

}

On a PC platform this function would not compile because the d array is too large. Compiling the same example with

SD30000 produces the following result:

void demo()

{

static long i;

static float a[10],b[10][10],c[10][10][10];

auto float *d;

 d=(float*)ftnalloc(40000L);

 for(i=0L; i<10L; i++) {

 c[i][i][i] = *(d+i+(i+(i+30)*10L)*10L);

 b[i][i] = c[0][i][i];

 a[i] = b[2][i];

 }

 goto ELP;

ELP:

 ftnfree((char*)d);

}

The three variables with less than 30,000 bytes have been declared static; while the large array has been declared dynamic.

To define this dynamic array, logic has been added to the beginning and exit of the function to allocate and free the storage

for the d array. Note that GREAT MIGRATIONS adds this logic for you.

Now assume that we want everything to be dynamic. To do this use SS to turn off static and SD0 to make everything

dynamic. The following is the result.

void demo()

{

auto long *i;

auto float *a,*b,*c,*d;

 a=(float*)ftnalloc(40L);

 b=(float*)ftnalloc(400L);

 c=(float*)ftnalloc(4000L);

 d=(float*)ftnalloc(40000L);

 i=(long*)ftnalloc(4L);

 for(*i=0L; *i<10L; *i+=1) {

 *(c+*i+(*i+*i*10L)*10L) = *(d+*i+(*i+(*i+30)*10L)*10L);

 *(b+*i+*i*10L) = *(c+*i+*i*10L);

 *(a+*i) = *(b+*i+20);

 }

 goto ELP;

PromulaFortran Translator User's Manual

83

ELP:

 ftnfree((char*)i);

 ftnfree((char*)d);

 ftnfree((char*)c);

 ftnfree((char*)b);

 ftnfree((char*)a);

}

This probably went too far. We really did not want the simple variable i to be dynamic. Try again with SS to turn off static,

SA0 to use auto for small variables, and SD10 to make everything else dynamic. The following is the result.

void demo()

{

auto long i;

auto float *a,*b,*c,*d;

 a=(float*)ftnalloc(40L);

 b=(float*)ftnalloc(400L);

 c=(float*)ftnalloc(4000L);

 d=(float*)ftnalloc(40000L);

 for(i=0L; i<10L; i++) {

 *(c+i+(i+i*10L)*10L) = *(d+i+(i+(i+30)*10L)*10L);

 *(b+i+i*10L) = *(c+i+i*10L);

 *(a+i) = *(b+i+20);

 }

 goto ELP;

ELP:

 ftnfree((char*)d);

 ftnfree((char*)c);

 ftnfree((char*)b);

 ftnfree((char*)a);

}

As a final example, do the same thing as above except replacing dynamic storage with virtual storage. To do this enter

SS SA0 SV10

The following is the result.

void demo()

{

auto long i;

static long a=32,b=72,c=472,d=4472;

 for(i=0L; i<10L; i++) {

 (float)vmsdel(c+(i+(i+i*10L)*10L)*4) = *(float*)vmsuse(d+(i+(i+(i+30)*

 10L)*10L)*4);

 (float)vmsdel(b+(i+i*10L)*4) = *(float*)vmsuse(c+(i+i*10L)*4);

 (float)vmsdel(a+i*4) = *(float*)vmsuse(b+(i+20)*4);

 }

 return;

}

Now the variables have become long static values and references to the variables have been replaced with function

references.

2.32 FORTRAN Dialect Doloop Assumptions — T0, T1, T2
Below is the syntax for the FORTRAN DO statement. It looks very simple; however, what you see is unfortunately not

what you get. FORTRAN compilers vary widely on how the DO statement is executed.

Syntax:

PromulaFortran Translator User's Manual

84

DO [slab[,]] v=e1,e2[,e3]

Where:

slab is the label of an executable statement called the terminal statement of the DO loop. If slab is omitted, the DO

loop is terminated via an END DO statement.

v is an integer, real, or double precision control variable.

e1 is an initial parameter.

e2 is a terminal parameter.

e3 is an optional increment parameter; default is 1.

e1, e2, and e3 are called indexing parameters; they can be integer, real, double precision, or symbolic constants,

variables, or expressions.

The DO statement differs widely between FORTRAN 66 and FORTRAN 77. In FORTRAN 66, the value of v is not

compared with that of e2 until the bottom of the loop; therefore, the loop is always executed once. In FORTRAN 77, the

comparison of v is performed at the top of the loop; therefore, if e1 exceeds e2 initially the loop is never incremented.

Officially, do loops are to be executed as follows:

(1) The expressions e1, e2, and e3 are evaluated and then converted to the type of the control variable v, if necessary,

yielding the values m1, m2, and m3.

(2) The control variable v is assigned the value of m1.

(3) The iteration count is established as follows:

ic = MAX(INT((ms-m1+m3)/m3),mtc)

 where mtc is the minimum iteration count and equals 0 if FORTRAN 66 conventions are desired and 1 if

FORTRAN 77 conventions are desired.

(4) If ic is not zero, the loop is executed, else execution continues beyond the end of the loop.

(5) The control variable is incremented by the value m3, ic is decremented by 1, and execution loops back to step 4.

To translate DO loops in the official manner then requires introducing two temporary variables for each DO loop: the

iteration counter and the value of the increment since this increment may be changed within the loop. Consider the

following FORTRAN subroutine:

 SUBROUTINE DEMO

 INTEGER V,E1,E2,E3

 DO 10 V = E1, E2, E3

 WRITE(*,*) V

10 CONTINUE

 RETURN

 END

In this loop all of the controls are variable. The translation of this loop using the 77 conventions looks as follows:

void demo()

{

static int v,e1,e2,e3,D1,D2;

 for(v=e1,D1=e3,D2=(e2-v+D1)/D1; D2>0; D2--,v+=D1) {

 WRITE(OUTPUT,LISTIO,INT4,v,0);

 }

 return;

}

PromulaFortran Translator User's Manual

85

Note that there are two temporary variables introduced. D1 contains the value of the increment and D2 contains the value of

the iteration count. Thus the first statement in the C for loop performs steps 1, 2, and 3 from above. The second statement

in the C for loop performs the step 4 logic, and the last statement performs the step 5 logic. Note that the calculations are

arranged in such a manner that none of the original e1, e2, or e3 expressions need to be evaluated more than once.

GREAT MIGRATIONS also performs two other simplifications with for loops. First, if the body of the loop can be

reduced to a single statement, then the simple form of the for statement is used. Also, the statement number is deleted if it

is only being used as the terminating point of the loop.

When 66 conventions are in effect, the loop must be forced to execute at least once. To implement this the C ternary

operator ?: is used. The following is the translation of the above, with the T1 command line option set, which requests 66

style DO loops.

void demo()

{

static int v,e1,e2,e3,D1,D2;

 for(v=e1,D1=e3,D2=(D2=(e2-v+D1)/D1)>0?D2:1; D2>0; D2--,v+=D1) {

 WRITE(OUTPUT,LISTIO,INT4,v,0);

 }

 return;

}

Since many are not familiar with this notation the expression

D2 = (D2=(e2-v+D1)/D1) > 0 ? D2 : 1

has the following value. Using D2 as a temporary variable, set it equal to the value of the iteration count as before. If that

temporary value is greater than 0, set D2 equal to it; else set D2 equal to 1. Clearly this is the desired value. Note that other

approaches introduce an additional temporary variable which is set true initially and false on increment which forces

execution of the loop at least once. Clearly the approach here is cleaner.

Of course, the same logic as above holds for loops with floating point controls. The following is an example.

 SUBROUTINE DEMO

 DO 10 V = E1, E2, E3

 WRITE(*,*) V

10 CONTINUE

 RETURN

 END

This is the same as before, but E1, E2, E3, and V are all floating point. The translation is as follows:

void demo()

{

static int D2;

static float v,e1,e2,e3,D1;

 for(v=e1,D1=e3,D2=(e2-v+D1)/D1; D2>0; D2--,v+=D1) {

 WRITE(OUTPUT,LISTIO,REAL4,v,0);

 }

 return;

}

The result is almost identical except that D2, the iteration count, is typed as a fixed point value as is required by the

specification. On the other hand, D1 which contains the increment is the same type as the iteration variable.

The above general translation is needed only if one of the following is true:

PromulaFortran Translator User's Manual

86

(1) The increment is a variable expression

(2) The maximum is a complex expression or is changed inside the loop.

(3) The control variable is changed inside the loop.

Most DO loops do not meet the above criteria; therefore, a much simpler form of the loop can be used. Consider the

following which shows the same example as before, except the increment is fixed constant.

 SUBROUTINE DEMO

 INTEGER V,E1,E2

 DO 10 V = E1, E2, 3

 WRITE(*,*) V

10 CONTINUE

 RETURN

 END

Now there is no need to introduce any temporary variables since the simplistic view of the DO loop gives the same result.

void demo()

{

static int v,e1,e2;

 for(v=e1; v<=e2; v+=3) {

 WRITE(OUTPUT,LISTIO,INT4,v,0);

 }

 return;

}

The final point to be made about DO loops is their close relation to array subscripts. In many instances the DO loop control

variables can be reduced if the control variable is used only as an array subscript. The following example shows this.

 SUBROUTINE DEMO

 INTEGER V,E2

 DIMENSION A(10,10)

 DO 10 V = 1, E2

 A(V,V) = 10.0

10 CONTINUE

 RETURN

 END

In this example the source of the array subscripts are DO loop counters and those counters are used only as subscripts;

therefore, the counters can be reduced, thus simplifying the subscript expression and simplifying the translation of the DO

loop. This particular optimization derives from a particular pattern in FORTRAN programs. It is unlikely that any

generalized optimizer found in a C compiler would detect or perform this optimization.

void demo()

{

static int v,e2;

static float a[10][10];

 for(v=0; v<e2; v++) {

 a[v][v] = 10.0;

 }

 return;

}

GREAT MIGRATIONS supports both FORTRAN 66 and FORTRAN 77 dialects. In most cases this merely means

ignoring various restrictions placed on the language in the 77 standard and then adding the 77 constructs. There is no real

conflict between the two dialects except for one thing — DO statements. DO is probably the most used statement in the

PromulaFortran Translator User's Manual

87

language, except for assignment. What was in the minds of the committee? It must have been a very long night. Anyway,

with FORTRAN 66 the following code fragment will compute a value of 1; while in 77 it will produce a value of zero.

 IVAL = 0

 N = 0

 DO 10 I = 1,N

 IVAL = IVAL + 1

10 CONTINUE

This is because in 77 a DO loop is not executed if at the initial entry the minimum exceeds the maximum; while in 66 all

loops are always executed once.

The above is only half of the nightmare. As we have discussed earlier, when the 77 standard was announced, vendors had to

find a way to still support the older programs. Without fail, all FORTRAN compilers vended since the 77 standard have

supported a control switch which tells the compiler what to do about the DO statement. As will be discussed here, T is our

switch. The problem is that control switches are rarely part of the actual code; therefore, when you have in front of you a

code with logic like the above in it, you have no idea what the expected result is. There is no right translation. Did the

programmer do it intentionally or unintentionally? Did he know that there were two standards? If he did, then which was he

using? If he did not, then what did the JCL that someone probably gave him have in it?

At any rate, if you are processing your own code, then you probably know which dialect you are using. If you are not

translating your own code, then make a guess. The individual settings associated with this flag are as follows:

T0 The minimum DO statement trip count is zero as specified in the FORTRAN 77 standard. This is the default

setting for this switch.

T1 The minimum DO statement trip count is one as specified in the FORTRAN 66 standard.

T2 The minimum DO statement trip count is zero as specified in the FORTRAN 77 standard. Always use the formal

FORTRAN 77 trip count computation when iterating through loops.

The DO statement is, of course, translated via the for statement in C. The following is a simple translation to show the

difference between T0, T1 and T2.

 SUBROUTINE DEMO

 IVAL = 0

 N = 0

 DO 10 I = 1,N

 IVAL = IVAL + 1

10 CONTINUE

 RETURN

 END

The following translation was produced using the default T0 setting.

void demo()

{

static int ival,n,i;

 ival = 0;

 n = 0;

 for(i=1; i<=n; i++) {

 ival = ival+1;

 }

 return;

}

This translation conforms with the 77 standard because C checks the conditional part of the for statement prior to the first

execution. The following shows the same thing using the T1 setting.

PromulaFortran Translator User's Manual

88

void demo()

{

static int ival,n,i;

 ival = 0;

 n = 0;

 for(i=1; i==1 || i<=n; i++) {

 ival = ival+1;

 }

 return;

}

To achieve the desired result, an extra condition has been placed into the for statement to force it through the code at least

once.

Finally, the following shows the same thing translated via the T2 switch.

void demo()

{

static int ival,n,i,D2;

 ival = 0;

 n = 0;

 for(i=1,D2=(n-i+1); D2>0; D2--,i+=1) {

 ival = ival+1;

 }

 return;

}

This switch forces the computation of the trip count variable as specified by the FORTRAN 77 standard.

2.33 Treatment of Internally Generated Temporaries — Ta, Ts
During the processing of FORTRAN codes, GREAT MIGRATIONS must occasionally introduce temporary variables. The

contexts which generate these variables are as follows:

(1) When a computed value must be passed by reference to a subprogram.

(2) When a DO statement must compute a trip count value to control the number of times it executes.

(3) When a variable DIMENSION contains a computed value.

All of these contexts are discussed elsewhere in this chapter. This section discusses the storage status of the temporary

variables generated. The following is a simple code that generates all three types of temporary variables.

 SUBROUTINE DEMO(A,N,M,INC)

 DIMENSION A(N+1,M+1)

 INTEGER V

 DO 10 V = 1, M+1, INC

 CALL TEST(A(V,V)/10.0)

10 CONTINUE

 RETURN

 END

The default C intermediate output for this example looks as follows.

void demo(a,n,m,inc)

int *n,*m,*inc;

float *a;

{

extern void test();

PromulaFortran Translator User's Manual

89

static int T1,T2,v,D4,D5;

static float T3;

 T1 = *n+1;

 T2 = *m+1;

 for(v=1,D4= *inc,D5=(*m+1-v+D4)/D4; D5>0; D5--,v+=D4) {

 T3 = *(a+v-1+(v-1)*T1)/10.0;

 test(&T3);

 }

 return;

}

The temporaries T1 and T2 are introduced to contain the values of the variable dimensions for the array a. The temporaries

D4 and D5 are introduced to contain the increment values and trip count value for the DO statement. Finally, the temporary

T3 is introduced to contain the temporary value whose address must be passed to subroutine test. Notice that all of these

temporaries are assigned to static storage because the default storage for all variables is static (see the section on the storage

control flags). If the above example were compiled using a different storage convention — say SS SA0 — then the

following output would be produced.

void demo(a,n,m,inc)

int *n,*m,*inc;

float *a;

{

extern void test();

auto int T1,T2,v,D4,D5;

auto float T3;

 T1 = *n+1;

 T2 = *m+1;

 for(v=1,D4= *inc,D5=(*m+1-v+D4)/D4; D5>0; D5--,v+=D4) {

 T3 = *(a+v-1+(v-1)*T1)/10.0;

 test(&T3);

 }

 return;

}

As requested, all variables including the temporary ones are now assigned to auto storage. The default setting of the

temporary storage flag Ts specifies that temporary variables have "standard" storage — i.e., that they be assigned a storage

class in the same manner as user defined variables.

The Ta flag requests that all temporaries be assigned to auto storage regardless of the rules being used to allocate other

variables. Using the Ta flag, the following output is generated.

void demo(a,n,m,inc)

int *n,*m,*inc;

float *a;

{

extern void test();

auto int T1,T2,D4,D5;

auto float T3;

static int v;

 T1 = *n+1;

 T2 = *m+1;

 for(v=1,D4= *inc,D5=(*m+1-v+D4)/D4; D5>0; D5--,v+=D4) {

 T3 = *(a+v-1+(v-1)*T1)/10.0;

 test(&T3);

 }

 return;

}

Under this convention, the program variable v is assigned to static storage using the standard storage rules; however, the

temporary variables generated internally are all assigned to auto storage.

PromulaFortran Translator User's Manual

90

2.34 Specifying Unit Numbers — UR, URnum, UP, UPnum, UW, UWnum
FORTRAN has a variety of contexts with I/O statements in which no explicit unit number is provided: PRINT, READ(*,

WRITE(*, PUNCH, ACCEPT, etc. There are a variety of conventions as to what actual units to associate with these

statement forms. The U command line switch allows you to control this number. Note that the GREAT MIGRATIONS

FORTRAN runtime library associates no significance to any particular unit number value. A unit number may be any

integer value.

The URnum command line switch tells GREAT MIGRATIONS to use unit number num with READ or ACCEPT

statements for which no unit number is explicitly shown. The default setting of UR specifies that READ statements for

which no unit is explicitly shown should be directed to standard input.

The UWnum command line switch tells GREAT MIGRATIONS to use unit number num with WRITE or PRINT

statements for which no unit number is explicitly shown. The default setting UW specifies the WRITE or PRINT

statements for which no unit number is explicitly shown should be directed to standard output.

The UPnum command line switch tells GREAT MIGRATIONS to use unit number num with PUNCH statements for

which no unit number is explicitly shown. The default setting UP specifies that PUNCH statements for which no unit

number is explicitly shown should be directed to standard output.

Note that many FORTRAN runtime systems attach special significance to certain unit number values — i.e., many assume

the unit 5 is standard input; while unit 6 is standard output. Others assume that unit 0 is standard input. Especially

interesting is the Prime dialect which assumes that unit 1 is both standard input or standard output, depending upon the

context of its use. See the discussion in the FORTRAN compiler manual on controlling runtime behavior for a discussion of

this topic.

The U command line switches establish unit numbers, they do not establish runtime unit number file connections. This is

done at runtime.

2.35 File to Receive Prototype Definitions — Wname
The W switch allows you to write function prototype files. These files are used to define the arguments and types of

functions being called with the FORTRAN being translated. The format of prototype files conforms to the ANSI C

standard.

The Wname switch will write prototypes either for functions referenced or defined or both. Which prototypes are written

are controlled by the "P" command line switch.

If there is no extension supplied with the name of the file, then an extension of .pro will be assumed.

2.36 Miscellaneous Control Flags — Y1, Y2
There are various translation options which are difficult to classify under a general topic. The Y1 and Y2 switches control

these. The Y1 switch changes the treatment of entry points; while the Y2 switch controls the output form of parameter

identifiers.

Of course, as with the other numeric flags, the composite switch Y3 performs both operations.

2.36.1 The Treatment of Entry Points — Y1
The following FORTRAN source code contains a main entry and two entry points. The parameters associated with the

entries all differ. In addition, the logic of the construct assumes that the value of B set via the call to ISET_BVALUE will be

remembered in the calls to IDOUBLE and to MULTIPLY_A.

CALL ISET_BVALUE(10)

PromulaFortran Translator User's Manual

91

WRITE(*,*) IDOUBLE(5),MULTIPLY_A(2,4)

END

INTEGER FUNCTION IDOUBLE(A)

INTEGER A,R,B

IDOUBLE = A * B

RETURN

ENTRY MULTIPLY_A(A,R)

A = A * R

IDOUBLE = A * B

ENTRY ISET_BVALUE(B)

RETURN

END

We recently processed a large body of VAX-FORTRAN code which made extensive use of this ability to successively set

argument values though independent entry points. The default translation produces the following C output:

void main(argc,argv)

int argc;

char* argv[];

{

extern void iset_bvalue();

extern long idouble(),multiply_a();

static long K1 = 10;

static long K2 = 5;

static long K3 = 2;

static long K4 = 4;

 ftnini(argc,argv,NULL);

 iset_bvalue(&K1);

 WRITE(OUTPUT,LISTIO,INT4,idouble(&K2),INT4,multiply_a(&K3,&K4),0);

}

static long E0000(IENTRY,a,r,b)

int IENTRY;

long *a,*r,*b;

{

static long idouble;

 switch(IENTRY) {

 case 0: goto IDOUBLE;

 case 1: goto MULTIPLY_A;

 case 2: goto ISET_BVALUE;

 }

IDOUBLE:

 idouble = *a * *b;

 return idouble;

MULTIPLY_A:

 *a = *a * *r;

 idouble = *a * *b;

ISET_BVALUE:

 return idouble;

}

long idouble(a)

long *a;

{

 return E0000(0,a,NULL,NULL);

}

long multiply_a(a,r)

long *a,*r;

{

 return E0000(1,a,r,NULL);

}

long iset_bvalue(b)

long *b;

{

 return E0000(2,NULL,NULL,b);

PromulaFortran Translator User's Manual

92

}

This translation treats the individual entry points as if all argument values were reinitialized at each entry point. It is correct

for most FORTRANs, but is not correct for the assumptions made in the example above. Using the Y1 flag produces the

following:
void main(argc,argv)

int argc;

char* argv[];

{

extern void iset_bvalue();

extern long idouble(),multiply_a();

static long K1 = 10;

static long K2 = 5;

static long K3 = 2;

static long K4 = 4;

 ftnini(argc,argv,NULL);

 iset_bvalue(&K1);

 WRITE(OUTPUT,LISTIO,INT4,idouble(&K2),INT4,multiply_a(&K3,&K4),0);

}

static long *E0a,*E0r,*E0b;

static long E0(IENTRY)

int IENTRY;

{

static long idouble;

 switch(IENTRY) {

 case 0: goto IDOUBLE;

 case 1: goto MULTIPLY_A;

 case 2: goto ISET_BVALUE;

 }

IDOUBLE:

 idouble = *E0a * *E0b;

 return idouble;

MULTIPLY_A:

 *E0a = *E0a * *E0r;

 idouble = *E0a * *E0b;

ISET_BVALUE:

 return idouble;

}

long idouble(a)

long *a;

{

 E0a = a;

 return E0(0);

}

long multiply_a(a,r)

long *a,*r;

{

 E0a = a;

 E0r = r;

 return E0(1);

}

long iset_bvalue(b)

long *b;

{

 E0b = b;

 return E0(2);

}

Using this approach, each time the main entry point uses copies of the arguments for the other entries. This approach

produces the desired result for this interpretation.

PromulaFortran Translator User's Manual

93

2.36.2 Output Form of Parameter Identifiers — Y2
Normally, GREAT MIGRATIONS converts all identifiers to lower case. Thus, the following code

SUBROUTINE DEMO(IV)

PARAMETER GoodBye = 0, Hello = 1

IF(IV .EQ. Hello) WRITE(*,*) 'Hello'

IF(IV .EQ. GoodBye) WRITE(*,*) 'GoodBye'

END

produces the following default translation:

void demo(iv)

long *iv;

{

#define goodbye 0

#define hello 1

 if(*iv == hello) WRITE(OUTPUT,LISTIO,STRG,"Hello",5,0);

 if(*iv == goodbye) WRITE(OUTPUT,LISTIO,STRG,"GoodBye",7,0);

#undef goodbye

#undef hello

}

Here, the parameter identifiers have been converted to lower case. It is occasionally desirable, at least for parameter values,

to retain the original notation. The Y2 flag produces the following C output.

void demo(iv)

long *iv;

{

#define GoodBye 0

#define Hello 1

 if(*iv == Hello) WRITE(OUTPUT,LISTIO,STRG,"Hello",5,0);

 if(*iv == GoodBye) WRITE(OUTPUT,LISTIO,STRG,"GoodBye",7,0);

#undef GoodBye

#undef Hello

}

In this translation the parameters have the same case conventions that they had in the FORTRAN source.

2.37 Treatment of Multiple Assignments — Xa, Ya
C allows multiple assignments to the same value to be written together. When the Ya switch is active, the processor looks

for such assignments and combines them whenever possible. The Xa switch excludes this optimization. The Ya flag is

active for the C and optimized biases. The FORTRAN bias does not by default perform these combinations, since they

destroy the correspondence between source and output statements. Therefore, for the default FORTRAN bias Xa is active.

The following code shows a FORTRAN subprogram which contains multiple assignments — i.e., the ival and lval

vectors are both being set equal to 10.

 SUBROUTINE DEMO

 DIMENSION IVAL(10), JVAL(10)

 DO 10 I = 1,10

 IVAL(I) = 10

 JVAL(I) = 10

10 CONTINUE

 RETURN

 END

The default intermediate C output for this subprogram is shown below.

PromulaFortran Translator User's Manual

94

void demo()

{

static int ival[10],jval[10],i;

 for(i=0; i<10; i++) {

 ival[i] = 10;

 jval[i] = 10;

 }

 return;

}

The C output maintains a one-to-one correspondence with the FORTRAN original. The multiple assignments are not

simplified. The same fragment under the Ya flag produces the following.

void demo()

{

static int ival[10],jval[10],i;

 for(i=0; i<10; i++) {

 ival[i] = jval[i] = 10;

 }

 return;

}

Since Ya allows multiple assignments, the two assignment statements have been simplified into one. Notice that this

simplification precedes the braces removal operation. Thus, the subprogram above processed under Ya and Yb produces the

following result.

void demo()

{

static int ival[10],jval[10],i;

 for(i=0; i<10; i++) ival[i] = jval[i] = 10;

 return;

}

Now the two assignments have been collapsed into a single statement and the for loop now contains only that statement.

Consequently under the Yb flag the braces can be removed. The Yb flag is discussed further in another section in this

chapter.

2.38 Treatment of Single Statement Nesting Brace — Xb, Yb
C allows any conditional statement to form a compound statement with a single statement, while FORTRAN allows this

only for the IF statement. When the YB switch is active, this compounding is performed whenever possible; while when the

XB switch is active, a compound statement is formed only if the source was compound. YB is the default for the C and

optimized biases; while XB is the default for the FORTRAN bias.

The following simple subprogram contains a DO loop, a simple IF statement, and a block IF statement.

 SUBROUTINE DEMO

 DIMENSION IVAL(10), JVAL(10)

 DO 10 I = 1,10

 IVAL(I) = 10

 JVAL(I) = 10

10 CONTINUE

 IF(I .EQ. 10) WRITE(*,*) 'I equals 10'

 IF(I .EQ. 11) THEN

 WRITE(*,*) 'I equals 11'

 END IF

 RETURN

 END

The default C intermediate output for this subprogram looks as follows.

PromulaFortran Translator User's Manual

95

void demo()

{

static int ival[10],jval[10],i;

 for(i=1; i<=10; i++) {

 ival[i-1] = 10;

 jval[i-1] = 10;

 }

 if(i == 10) WRITE(OUTPUT,LISTIO,STRG,"I equals 10",11,0);

 if(i == 11) {

 WRITE(OUTPUT,LISTIO,STRG,"I equals 11",11,0);

 }

 return;

}

In this translation only the simple IF statement is treated as a compound statement in C. The default C output attempts to

maintain a one-to-one correspondence between the FORTRAN original and the C.

Processing the above subprogram with the Yb flag produces the following C output.

void demo()

{

static int ival[10],jval[10],i;

 for(i=1; i<=10; i++) {

 ival[i-1] = 10;

 jval[i-1] = 10;

 }

 if(i == 10) WRITE(OUTPUT,LISTIO,STRG,"I equals 10",11,0);

 if(i == 11) WRITE(OUTPUT,LISTIO,STRG,"I equals 11",11,0);

 return;

}

Now the block IF in FORTRAN has also been collapsed to a compound if in C. The Yb flag looks for every opportunity to

remove unneeded braces. The DO loop is not collapsed since it contains two statements. There is another switch, however,

Ya which allows multiple assignments to be collapsed into a single statement. This switch is discussed fully in another

section of this manual.

The C output using both Ya and Yb produces the following.

void demo()

{

static int ival[10],jval[10],i;

 for(i=1; i<=10; i++) ival[i-1] = jval[i-1] = 10;

 if(i == 10) WRITE(OUTPUT,LISTIO,STRG,"I equals 10",11,0);

 if(i == 11) WRITE(OUTPUT,LISTIO,STRG,"I equals 11",11,0);

 return;

}

Now the for loop is also reduced to a compound statement, since it now contains a single multiple assignment.

2.39 Constant Reduction Optimization — Xc, Yc
The FORTRAN input processor often generates sequences of constant integer calculations which can be reduced prior to

their output in the C. The Yc switch allows this simplification to be performed and is the default for all biases. The Xc

switch excludes this optimization.

As an example of this constant reduction operation, consider the following subprogram which contains various constant

subscripts.

SUBROUTINE DEMO(A,B,C)

PromulaFortran Translator User's Manual

96

DIMENSION A(10),B(6,7),C(3,4,5)

A(5) = 5.0

B(2,3) = 6.0

C(1,2,3) = 7.0

RETURN

END

The default intermediate C form for this fragment is as follows.

void demo(a,b,c)

float a[],b[7][6],c[5][4][3];

{

 a[4] = 5.0;

 b[2][1] = 6.0;

 c[2][1][0] = 7.0;

 return;

}

Notice that in this output the values of the subscripts have been reduced by one over their FORTRAN original values. This

is because in FORTRAN subscripts have a default starting value of one; while in C they always start at zero. That this

reduction is in fact being performed can be seen via the Xc switch which blocks constant reduction. The C output with the

Xc flag active looks as follows.

void demo(a,b,c)

float a[],b[7][6],c[5][4][3];

{

 a[5-1] = 5.0;

 b[3-1][2-1] = 6.0;

 c[3-1][2-1][1-1] = 7.0;

 return;

}

The subtraction by one is now explicit in the C output. This reduction process is even more obvious when pointer notation

is used for array references. The Ys flag discussed in another section of this chapter generates pointer style subscript

expressions. Using this flag alone produces the following.

void demo(a,b,c)

float *a,*b,*c;

{

 *(a+4) = 5.0;

 *(b+13) = 6.0;

 *(c+27) = 7.0;

 return;

}

The values of "4", "13", and "27" are now computed from fairly complex expressions which can be seen in the following —

produced using Xc and Ys.

void demo(a,b,c)

float *a,*b,*c;

{

 *(a+5-1) = 5.0;

 *(b+2-1+(3-1)*6) = 6.0;

 *(c+1-1+(2-1+(3-1)*4)*3) = 7.0;

 return;

}

It is suggested that the Yc flag always be left active; however, if you want to see where some values such as those shown

above are coming from, then Xc is the appropriate flag to use.

PromulaFortran Translator User's Manual

97

2.40 Character Optimization Switches — Xch, Ych
The FORTRAN CHAR and ICHAR functions convert between character representations and their integer values. In most

cases, no actual function reference is needed — simple assignments are sufficient. The default Ych switch removes these

unneeded calls to these functions. Consider the following FORTRAN code

SUBROUTINE DEMO(IV)

CHARACTER*1 C

I = ICHAR('8')

C = CHAR(56)

END

with references to both functions.

Using the default Ych switch, the following is produced.

void demo(iv)

long *iv;

{

static char c[1];

static long i;

 i = '8';

 *c = 56;

}

Alternatively, the Xch switch produces the following translation.

void demo(iv)

long *iv;

{

static char c[1];

static long i;

 i = fifichar("8");

 *c = *fifchar(56);

}

This version would only be needed if some special character conversion logic were needed.

2.41 Treatment of FORTRAN "D" debugging statements
In the default FORTRAN dialect supported, any FORTRAN statement with a non-whitespace, non-numeric character in

column 1 is treated as a comment. The Yd command line switch modifies this rule slightly. When Yd is active, statements

with a "D" in column 1 are treated as though the "D" were a blank — i.e., they are not comments. This facility is used for

inserting debugging statements into a FORTRAN program. The default "Xd" flag treats "D" statements as simple

comments.

Consider the following simple FORTRAN subprogram, which contains a "D" type comment.

 SUBROUTINE DEMO(A,B,C)

 DIMENSION A(10),B(6,7),C(3,4,5)

D WRITE(*,*) 'Demo successfully entered'

 A(5) = 5.0

 B(2,3) = 6.0

 C(1,2,3) = 7.0

 RETURN

 END

The default intermediate C output for this subprogram looks as follows.

void demo(a,b,c)

PromulaFortran Translator User's Manual

98

float a[],b[7][6],c[5][4][3];

{

/*

 WRITE(*,*) 'Demo successfully entered'

*/

 a[4] = 5.0;

 b[2][1] = 6.0;

 c[2][1][0] = 7.0;

 return;

}

The "D" statement is literally transformed into a comment in the C. Using the Yd flag, however, produces the following

intermediate C output.

void demo(a,b,c)

float a[],b[7][6],c[5][4][3];

{

 WRITE(OUTPUT,LISTIO,STRG,"Demo successfully entered",25,0);

 a[4] = 5.0;

 b[2][1] = 6.0;

 c[2][1][0] = 7.0;

 return;

}

In this treatment the statement is compiled as though it had been a normal statement.

2.41.1 Treatment of Other Debugging Statements — Ydstring
The D debugging feature, though it is very common among FORTRAN dialects, is not part of the standard; therefore, it is

fair game for alternative implementations. The YSstring statement allows alternative ways of identifying debugging

statements. Consider the following FORTRAN code.

 SUBROUTINE DEMO(A,B,C)

 DIMENSION A(10),B(6,7),C(3,4,5)

? WRITE(,*) 'Demo successfully entered'

 A(5) = 5.0

 B(2,3) = 6.0

 C(1,2,3) = 7.0

 RETURN

 END

Note that the *? is used to shift the statement left as well commenting it out. The default translation for this code is as

follows.

void demo(a,b,c)

float a[],b[7][6],c[5][4][3];

{

/*

? WRITE(*,*) 'Demo successfully entered'

*/

 a[4] = 5.0;

 b[2][1] = 6.0;

 c[2][1][0] = 7.0;

 return;

}

Using the YD*? switch produces the following translation.

void demo(a,b,c)

float a[],b[7][6],c[5][4][3];

PromulaFortran Translator User's Manual

99

{

 WRITE(OUTPUT,LISTIO,STRG,"Demo successfully entered",25,0);

 a[4] = 5.0;

 b[2][1] = 6.0;

 c[2][1][0] = 7.0;

 return;

}

2.42 Use of Printf-Style Formatting — Xf, Yf
C and FORTRAN have very different ways of specifying coded write conversions. For the FORTRAN bias, all of the

original FORTRAN machinery is maintained. The actual WRITE statement is translated into a C WRITE statement which

consists of a series of keywords followed by the parameters associated with those keywords. In the C bias, FORTRAN

WRITE statements are translated into the C printf or fprintf functions whenever possible. When not possible, the C bias

uses the same translation as the FORTRAN bias. The Xf switch turns the printf conversion off, while the Yf switch turns it

on.

The following short code contains a formatted write statement and a list-directed write statement.

 SUBROUTINE DEMO

 1 FORMAT(1X,2I5,3F10.2)

 WRITE(*,1) I,J,A,B,C

 WRITE(*,*) I,J,A,B,C

 END

The default intermediate C output for this code is as follows.

void demo()

{

static int i,j;

static float a,b,c;

static char* F1[] = {

 "(1x,2i5,3f10.2)"

};

 WRITE(OUTPUT,FMT,F1,1,INT4,i,INT4,j,REAL4,a,REAL4,b,REAL4,c,0);

 WRITE(OUTPUT,LISTIO,INT4,i,INT4,j,REAL4,a,REAL4,b,REAL4,c,0);

}

In this translation the gmFortran runtime library is used to perform the writes. The precise layout of the records produced

conform exactly to the FORTRAN standard specification. The C output using the Yf flag looks as follows.

void demo()

{

static int i,j;

static float a,b,c;

 printf(" %5ld%5ld%10.2f%10.2f%10.2f\n",i,j,a,b,c);

 printf("%12ld%12ld%16.6E%16.6E%16.6E\n",i,j,a,b,c);

}

In this translation the FORMAT string has been converted into an equivalent printf style string. In the list-directed form

printf elements have been selected to correspond to each element in the list. Note that these elements are in the

FORTRAN dialect definition file and may be changed by you.

The C printf conventions are reasonable for simple formatting operations; however, they lack the power of the

FORTRAN FORMAT string. The output produced by the Yf flag is an approximation only of that produced by the runtime

library. In particular, it does not conform to the FORTRAN standard specification. Use the Yf flag only if you are moving

away from FORTRAN completely and if your application does not require particular formatting conventions.

PromulaFortran Translator User's Manual

100

2.43 Initialization Check for Auto Variables — Xi, Yi
Traditional FORTRAN programs assume that local variables maintain their values through calls to a given subprogram. As

a result of this fact the default treatment of all variables by GREAT MIGRATIONS is to make them static. See the section

on the storage allocation switches for more information on variable allocation. For users who wish to declare variables auto,

the Yi flag can be used to check for variables that are used before they are initialized. It is this class of variables that must

be static.

In essence, the Yi flag tells GREAT MIGRATIONS to override an auto storage allocation for a variable whose value

appears to be used before it is changed. The actual algorithm used is simplistic and does not pretend to catch all problem

variables.

As a simple example of the use of this variable, consider the following code in which the variable I is being used without

being explicitly set.

 SUBROUTINE DEMO

 J = 5

 K = I + J

 WRITE(*,*) I,J,K

 RETURN

 END

The translation of this code using SS and SA0 is as follows.

void demo()

{

auto long j,k,i;

 j = 5;

 k = i+j;

 WRITE(OUTPUT,LISTIO,INT4,i,INT4,j,INT4,k,0);

 return;

}

The variable i is auto. In all likelihood codes having structures such as this would not produce the correct result with the

above translation. Using the Yi flag produces the following output, in which i has been forced to static.
void demo()

{

auto long j,k;

static long i;

 j = 5;

 k = i+j;

 WRITE(OUTPUT,LISTIO,INT4,i,INT4,j,INT4,k,0);

 return;

}

The Yi flag is not a complete solution to the problem of uninitialized variables and variables that are to retain their values;

however, it can help to avoid problems.

2.44 DO Loop Counter Reduction Optimization — Xl, Yl
As is also discussed in the section on array subscript expressions and in the section on the DO statement, when the only

purpose of a DO loop counter is to subscript arrays within the loop, that counter can be reduced to simplify the array

subscript expressions. The Yl switch turns this optimization on and is the default for all biases. The Xl switch turns this

optimization off.

As an example of this optimization, consider the following simple FORTRAN code which performs a matrix

multiplication.

 SUBROUTINE MATMUL(A,B,C)

PromulaFortran Translator User's Manual

101

 DIMENSION A(10,15),B(15,20),C(10,20)

 DO 15 I = 1,10

 DO 15 J = 1,20

 C(I,J) = 0.0

 DO 10 K = 1,15

 C(I,J) = C(I,J) + A(I,K)*B(K,J)

 10 CONTINUE

 15 CONTINUE

 RETURN

 END

Notice that in FORTRAN subscripts normally start at 1; therefore, the loop variables in the above example also all start at

1. Now the default C output for this example, with Yl active, is shown below.

void matmul(a,b,c)

float a[15][10],b[20][15],c[20][10];

{

static int i,j,k;

 for(i=0; i<10; i++) {

 for(j=0; j<20; j++) {

 c[j][i] = 0.0;

 for(k=0; k<15; k++) {

 c[j][i] = c[j][i]+a[k][i]*b[j][k];

 }

 }

 }

 return;

}

In C subscripts always start at 0; therefore, the DO loop counters themselves have been changed to start at zero. The listing

below shows the C output with Xl active.

void matmul(a,b,c)

float a[15][10],b[20][15],c[20][10];

{

static int i,j,k;

 for(i=1; i<=10; i++) {

 for(j=1; j<=20; j++) {

 c[j-1][i-1] = 0.0;

 for(k=1; k<=15; k++) {

 c[j-1][i-1] = c[j-1][i-1]+a[k-1][i-1]*b[j-1][k-1];

 }

 }

 }

 return;

}

In this form, the loop variables have their original ranges; however, each reference to those variables must be decremented

by one to compensate for the difference in C and FORTRAN subscripting conventions.

2.45 Subprogram Argument Type Checking — Xp, Yp
Though the practice is never desirable, most FORTRAN compilers allow the user to pass variables of different types to the

same subprogram parameter. GREAT MIGRATIONS follows the normal practice and does not perform checks to make

certain that all parameters are consistent. The YP switch turns this checking on. If you have a program that is carefully

written, or if you want to check that all parameters are passed consistently, then the Yp flag performs this service.

Consider the following simple subprogram, in which the third parameter to function demo is REAL*4 in one instance and

INTEGER*4 in another.

PromulaFortran Translator User's Manual

102

 SUBROUTINE TEST

 CALL DEMO(I,J,A)

 CALL DEMO(I,J,K)

 END

The default C output for this subprogram, with Xp active, is simply as follows.

void test()

{

extern void demo();

static long i,j,k;

static float a;

 demo(&i,&j,&a);

 demo(&i,&j,&k);

}

In one place demo is called with a pointer to a long and in the other with a pointer to a float. Alternatively, with Yp active,

the following is produced.

3: test.for: E247: The argument K of type integer*4 has been entered where a call-by-

reference argument of type real*4 is required.

Alternatively, if the error checking level is set to 1 or above with the EL switch, the following warning is produced without

use of the Yp switch.

3: test.for: W814: The argument K of type integer*4 has been entered where an

argument of type real*4 has been used.

2.46 Single Precision Real Arithmetic — Xr, Yr
Though the designers of C made a few strange decisions, their only real mistake was to omit single precision real

arithmetic. Even now the major barrier to the acceptance of GREAT MIGRATIONS as a "pure" compiler is that its

benchmarks on single precision arithmetic programs are often slow. Fortunately, the newer ANSI C compilers do support

single precision real arithmetic. Unfortunately, they require that single precision real constants have an "F" appended to

distinguish them from double precision constants. Most older C compilers consider this "F" to be a syntax error; therefore,

you must tell GREAT MIGRATIONS that your C compiler is capable of performing single precision real arithmetic. The

default Xr switch assumes that all single precision real arithmetic will be performed as double precision, and that all single

precision reals will be promoted to double when passed by value.

The Yr flag, on the other hand, treats single precision real arithmetic completely separately from double. No automatic

promotion is assumed. In addition, single precision real constants have an "F" appended.

2.47 Subscript Pointer Notation — Xs, Ys, Ysv, Ysf
There is a difficult translation issue associated with array subscript expressions. In FORTRAN an array is a set of elements

identified by a single name. The dimension of the array merely specifies how many elements there are and how they are

organized. The elements in an array are always stored contiguously in memory in row major order. That is, the leftmost

subscript varies the fastest as elements are accessed in storage order. When a FORTRAN array is defined, its minimum and

maximum subscript bounds may be any value, positive or negative, just so long as the minimum bound is less than the

maximum bound. If no minimum bound is specified, a minimum of one is assumed.

In C there is a strong relationship between pointers and arrays. Though the array notation and pointer notation may be

mixed fairly freely, the pointer version will, in general, be more efficient. Multidimensional arrays are stored contiguously

in memory in column major order. That is, the rightmost subscript varies the fastest as elements are accessed in storage

order. When defining an array, the user may only specify its size, the minimum bound is always assumed to be zero.

As can be seen from the above, there are considerable differences in the manner in which arrays are treated in the two

languages. For the C and optimized biases, because C programmers are familiar with pointer notation and because many

PromulaFortran Translator User's Manual

103

optimizations can be achieved when using pointer notation, all FORTRAN arrays are defined in C as simple one

dimensional vectors and all array references are done using the pointer notation. Alternatively, for the FORTRAN bias C

brackets notation is used whenever possible; however, the order of the subscripts must be reversed in the C output. In

addition the "s" — for subscript — optimization switch is provided. Using this switch, the user may specify his own

preference on top of his overall bias specification.

The following shows a sample set of fixed array definitions along with some basic subscript expressions as translated via

the Xs and Ys switches.

 SUBROUTINE DEMO

 DIMENSION A(10),B(6,7),C(3,4,5)

 + ,D(2,3,4,5)

 A(3) = 0

 B(2,4) = 1

 C(3,4,5) = 2

 D(1,1,1,1) = 3

 A(I) = 4

 B(2,J) = 5

 C(I,2,K) = 6

 D(I,2,K,L) = 7

 END

Intermediate C output using the Ys switch is as follows.

void demo()

{

static int i,j,k,l;

static float a[10],b[42],c[60],d[120];

 *(a+2) = 0;

 *(b+19) = 1;

 *(c+59) = 2;

 *d = 3;

 *(a+i-1) = 4;

 *(b+1+(j-1)*6) = 5;

 *(c+i-1+(1+(k-1)*4)*3) = 6;

 *(d+i-1+(1+(k-1+(l-1)*4)*3)*2) = 7;

}

Intermediate C output using the default Xs switch is as follows.

void demo()

{

static float a[10],b[7][6],c[5][4][3],d[5][4][3][2];

static long i,j,k,l;

 a[2] = 0;

 b[3][1] = 1;

 c[4][3][2] = 2;

 d[0][0][0][0] = 3;

 a[i-1] = 4;

 b[j-1][1] = 5;

 c[k-1][1][i-1] = 6;

 d[l-1][k-1][1][i-1] = 7;

}

Notice first in this example that, though both the FORTRAN source and the Xs switch translation show multidimensional

arrays, the order of the array sizes is reversed in the translation. This is necessary to maintain the same relative positioning

of the elements within the arrays. In the Ys translation, arrays are all shown with a single dimension equal to the total size

of each array. Thus, D shows 120 values which is

 2 * 3 * 4 * 5.

PromulaFortran Translator User's Manual

104

In both the translations the actual subscript values are reduced by one to reflect the fact that C subscripts begin at zero,

while FORTRAN begins at one. In the Ys case, the subscript array references are translated using pointer notation, with the

calculation reduced to its simplest form. Thus, C(3,4,5) becomes *(c+59). Also, subscript calculations are performed

using the FORTRAN convention. This ensures that any games played in the programs with equivalencing or with varying

COMMON layouts will work exactly as they worked in FORTRAN. Using a C compiler which does constant reduction one

would expect to have the same code produced by both of the above translations.

To demonstrate the subscript simplification process, the listing below shows the same Ys bias translation, but with the

"constant reductions optimizations" turned off.

void demo()

{

static int i,j,k,l;

static float a[10],b[42],c[60],d[120];

 *(a+3-1) = 0;

 *(b+2-1+(4-1)*6) = 1;

 *(c+3-1+(4-1+(5-1)*4)*3) = 2;

 *(d+1-1+(1-1+(1-1+(1-1)*4)*3)*2) = 3;

 *(a+i-1) = 4;

 *(b+2-1+(j-1)*6) = 5;

 *(c+i-1+(2-1+(k-1)*4)*3) = 6;

 *(d+i-1+(2-1+(k-1+(l-1)*4)*3)*2) = 7;

}

Two additional subscripting options are provided for those who want to write their own approach to subscripting — the

Ysv and Ysf flags. The listing below shows the C intermediate output with the Ysv switch active.

void demo()

{

static int i,j,k,l;

static float a[10],b[42],c[60],d[120];

 *_aref(a,2) = 0;

 *_aref(b,1,6,3) = 1;

 *_aref(c,2,3,3,4,4) = 2;

 *_aref(d,0,2,0,3,0,4,0) = 3;

 *_aref(a,i-1) = 4;

 *_aref(b,1,6,j-1) = 5;

 *_aref(c,i-1,3,1,4,k-1) = 6;

 *_aref(d,i-1,2,1,3,k-1,4,l-1) = 7;

}

In this output a generalized symbol _aref is provided followed by a pointer to the start of the array followed by a

sequence of ordered pairs containing the subscript value and the size of the dimension associated with that value. The user

can then either write a macro in fortran.h or a function to perform the actual subscript calculations.

The Ysf flag uses the same approach as Ysf except that the subscript values are not offset to make them conform to the C

convention. The following shows the output for Ysf.

void demo()

{

static int i,j,k,l;

static float a[10],b[42],c[60],d[120];

 *_aref(a,3) = 0;

 *_aref(b,2,6,4) = 1;

 *_aref(c,3,3,4,4,5) = 2;

 *_aref(d,1,2,1,3,1,4,1) = 3;

 *_aref(a,i) = 4;

 *_aref(b,2,6,j) = 5;

 *_aref(c,i,3,2,4,k) = 6;

PromulaFortran Translator User's Manual

105

 *_aref(d,i,2,2,3,k,4,l) = 7;

}

Notice that the subscript values are now exactly as entered in the original FORTRAN code. Again as with Ysv it is up to

the user to provide an appropriate implementation of the _aref function or macro.

2.48 Unformatted Write Optimization — Xu, Yu
It is a rather strange fact about FORTRAN that the only file type that requires special internal formatting, above that used

by the normal I/O system, is the unformatted file. The problem is that unformatted files receive variable length records. It is

up to the runtime library to ensure that records are not overflowed and to ensure that each new read begins at the start of a

record. To make this possible the runtime library, when it writes unformatted records, must put a length value at the front

and back of each record. This convention creates a file structure which is efficient to read, backspace, and in general use.

To write the file, however, requires repositioning the file twice for each record written. To avoid this repositioning

overhead, a flag is available that tells GREAT MIGRATIONS to compute the lengths of records before they are written.

The following is a simple FORTRAN code which performs a series of unformatted writes to unit 1.

 SUBROUTINE DEMO(A,B,C,NR,NC)

 DIMENSION A(NR),B(NC),C(NR,NC)

 WRITE(1) A

 WRITE(1) (A(I),I=1,6)

 WRITE(1) B,C

 RETURN

 END

The default translation, under Xu, is as follows.

void demo(a,b,c,nr,nc)

int *nr,*nc;

float a[],b[],*c;

{

static int i;

 WRITE(1,REAL4,a,*nr,0);

 WRITE(1,MORE);

 for(i=0; i<6; i++) {

 WRITE(REAL4,&a[i],1,MORE);

 }

 WRITE(0);

 WRITE(1,REAL4,b,*nc,REAL4,c,*nr**nc,0);

 return;

}

The listing is easy to read and corresponds to the original FORTRAN quite closely. When executed, it will be reasonably

efficient, but each write will require that the file be repositioned twice.

Using the Yu flag the following C output is obtained.

void demo(a,b,c,nr,nc)

int *nr,*nc;

float a[],b[],*c;

{

static int T1,i,T2,T3;

 T1 = *nr*4;

 fiouwl(&T1);

 WRITE(1,REAL4,a,*nr,0);

 T2 = 24;

 fiouwl(&T2);

 WRITE(1,MORE);

 for(i=0; i<6; i++) {

 WRITE(REAL4,&a[i],1,MORE);

PromulaFortran Translator User's Manual

106

 }

 WRITE(0);

 T3 = *nc*4+*nr**nc*4;

 fiouwl(&T3);

 WRITE(1,REAL4,b,*nc,REAL4,c,*nr**nc,0);

 return;

}

In this output, temporary variables are computed which contain the lengths of the records to be written. These values are

then passed to a runtime function fiouwl which sets up the length value at the front of the record before it is written. As a

result, repositioning of the file is not required. The actual C output is, of course, more difficult to read; therefore, it is

suggested that this flag only be used if unformatted output speed is critical.

2.49 Subprogram Call-by-Value Arguments — Xv, Yv
In FORTRAN all parameters are passed by address. This convention generates inefficient code for simple values and makes

passing constants and expressions messy, insofar as the translation is concerned. Nevertheless, to ensure that gmFortran

always produces correct results, the default convention used is to pass all arguments by address. The Yv switch can be used

to allow for call-by-value.

Note that explicit function prototypes can always be provided via the configuration file. These prototypes may specify call-

by-value parameters on an individual function level which override the default setting of this switch.

2.50 Dollar Signs as Initial Symbols in Identifiers — X$, Y$
By default GREAT MIGRATIONS accepts $ (dollar sign) as a valid character within identifiers. They may occur anywhere

that an alphabetic character may appear. Unfortunately, some dialects of FORTRAN use the $ to mark multiple return

statement labels. For these dialects the $ may not be allowed to occur in the initial position. The X$ switch disallows $ in

the initial position of identifiers. The default Y$ switch allows them to occur anywhere.

2.51 Location of FORTRAN Files to be Included — Zname
It is often desirable to have include files that are referenced from within FORTRAN programs stored in some other

directories. The Zname flag can be used to specify directories to be searched for include files. The syntax of name varies

from operating system to operating system, but should be the same as the syntax used to construct the PATH variable used

to locate the executable for gmFortran itself.

If the first character of name is a #, then the remainder of name is assumed to be the name of an environment variable

which contains the include file search paths.

2.52 Project Processing — #project
In addition to processing independent single source files, it is often desirable to process groups of related multiple files as a

single project. This is done via a project file which has the following syntax:

PROJECT: project_name

SOURCE: file1.for,

 file2.for,

 .

 .

 .

 fileN.for

where:

project_name is the name of the project

fileI.for are the names of the files that make up the project

PromulaFortran Translator User's Manual

107

To process a project, the following command line is used:

pfc #project options

where:

project is the name of the project file. If no extension is provided .prj is assumed.

options contains any other command line switches to be used.

The special character # differentiates a project file from a single source file. To avoid conflicts with other uses of this

character in some operating environments (e.g., the Korn shell in UNIX), the alternative character @ may be used to mark

the project file name.

The processing of the project file will produce the following three kinds of files:

1. The translated FORTRAN files named fileI.c

2. A global prototypes file, project_name.h

3. A global variables file, project_name.c

To avoid conflicts, make sure that the name of the project is different than the names of all the project member files.

PromulaFortran Translator User's Manual

108

3. CONFIGURATION FILE

GREAT MIGRATIONS translates various dialects of FORTRAN source code to a variety of possible C source code

outputs. It has a powerful dialect processing component for controlling both the syntax of the FORTRAN dialect it accepts

as input and the form of the C source code it produces as output. This is accomplished via an external configuration file

which contains detailed statements for customizing the translation process. These statements include the following:

SWITCHES — specifies command line switches

COMMENTS — controls format of comments

PATHNAMES — controls location and naming of include filenames

RESTRUCTURE — restructures variables in the source code

KEYWORDS — changes output keywords and pattern strings

PRAGMA — configures special comments into C pragmas

$ — controls treatment of the dollar sign

Function prototypes — control the translation of functions and their arguments

The configuration file is used with the R option on the pfc command line, as follows:

pfc file_name[.for] Rconf[.cnf]

The rules for writing directives in configuration files are described in the context of the following sections.

Suffice to say here that the Rname switch will read configuration information from the files named. The Rname switch may

occur multiple times to allow the reading of multiple files. If there is no extension supplied with the first file, an extension

of .cnf will be assumed. If there is no extension supplied for additional files, an extension of .pro is assumed. The reason

for this is that typically, when multiple files are read, the first contains the configuration information; while the additional

files contain function prototype information.

It should be noted that configuration files may contain command line switch information; thus, a common use of a

configuration file is to supply commonly used switches independently of the command line.

3.1 The Configuration SWITCHES Statement
The GREAT MIGRATIONS translation process is controlled via many command line switches. These switches give the

user easy access to the translation process; however, there are often many needed. To simplify the organization of complex

groups of switches, the configuration file contains a SWITCHES statement.

Syntax:

SWITCHES s1 ... sn

Where:

s1 ... sn are any valid sequence of command line switches entered exactly as they would be entered on the

command line

There may be as many SWITCHES statements as desired in a given configuration file; however, the set of SWITCHES

statements must always be the first set of statements in the configuration file. If multiple configuration files are being

processed, a SWITCHES statement may only appear in the first such file. Note that the Rname switch may appear within a

SWITCHES statement.

The following is an example of a SWITCHES statement.

PromulaFortran Translator User's Manual

109

SWITCHES Y3 P+4096 P+8192 CF11 Il Mvax CHv Ga Yd*? QH1000

Note that the SWITCHES statement often interacts with other statements following it in the configuration file. Many

examples of this interaction appear in the following discussion of the other statements in the configuration file.

3.2 The Configuration COMMENTS Statement
Many FORTRAN programs have relatively complicated conventions for marking comments of various types. These

conventions often do not work well when transformed directly to C. As has been mentioned elsewhere in this manual, the

hardest single aspect of FORTRAN codes to deal with in translation is the commenting conventions.

In general, the statements of a FORTRAN program can be divided into two groups:

(1) those that define the symbols to be used — referred to as data definition language or DDL;

(2) those that specify the actual operations to be performed — referred to as data management language or DML.

Insofar as comments are concerned, the translation of the DML is straightforward since the ordering of the DML in the

target language is typically the same as that in the source language. For the DDL, however, the ordering of symbol

definitions is often quite different in the target language; therefore, the comments must also often be rearranged. The

algorithms for associating comments with symbols are complex and by no means perfect.

The COMMENTS statement itself does not deal with the ordering of comments but rather deals with the source and target

form of the individual comment lines themselves.

Syntax:

COMMENTS

DDL-specification

DML-specification

END

Where:

DDL-specification says how comment lines within the DDL are to be interpreted and translated

DML-specification says how comment lines within the DML are to be interpreted and translated

Each specification consists of three sections. Within each section, the fields are as follows:

Section Content Description

1 0 Do not precede comment blocks with a standard header

 1 "str" Precede comment blocks with the indicated header

2 "s1"

"s2"...

 A series of individual comment introducers and their

replacements in C.

3 0 Do not follow comment blocks with a standard trailer

 1 "str" Follow comment blocks with the indicated trailer.

As an example, consider the following FORTRAN code.

 FUNCTION MODI (ARG_SWAB_FLAG, ARG_XLIT_FLAG)

!!

!! PURPOSE: General purpose initialization for MODI_* routines.

!!

!! PARAMETERS: LOGICAL ARG_SWAB_FLAG (R)

PromulaFortran Translator User's Manual

110

!! LOGICAL ARG_XLIT_FLAG (R)

!!

!! RETURN VALUE: None.

!!

!! SIDE EFFECTS: None.

!!

!!

! Incorporates features to support portable-LIO file handling (8-Apr-1986).

 IMPLICIT INTEGER (A-Z)

!===

! Initialization entry

! Initialization-- calculate some useful things.

 NONINPBASE = HD_QPIS + HD_QPSUPIS

 FIRSTNONINP = NONINPBASE + 1 ! First non-input node

! Determine practical maximum for

! no. of strings we can hash (using "PUTSTR" entry)--

! (Knuth's vol.3 says that the avg. no. collisions =

! 1/2 * (1 + 1/R), where "R" is HASH table density);

! it might be nice to stop at 98% full (R = 0.98),

! since this translates to an average of 25.5 collisions

! per string entered.

 HASHMAX = HD_HASHVAL - (2 * HD_HASHVAL) / 100

! Save local values of SWAB and XLIT flags, and convert blank-string to

! match the language (EBCDC or ASCII) of the model-file-CREATOR.

 SWAB_FLAG = ARG_SWAB_FLAG

 XLIT_FLAG = ARG_XLIT_FLAG

 IF (XLIT_FLAG .AND. .NOT. BLANKS_XLIT_YET) THEN

 CALL TRLITO (BLANK_BYTES, 4)

 BLANKS_XLIT_YET = .TRUE.

 ENDIF

 RETURN

 END

Within this code the ! is being used to mark the comments and multiple occurrences of this symbol are used for emphasis.

The default translation looks as follows.

long modi(arg_swab_flag,arg_xlit_flag)

/*

!

! PURPOSE: General purpose initialization for MODI_* routines.

!

! PARAMETERS: LOGICAL ARG_SWAB_FLAG (R)

! LOGICAL ARG_XLIT_FLAG (R)

!

! RETURN VALUE: None.

!

! SIDE EFFECTS: None.

!

!

 Incorporates features to support portable-LIO file handling (8-Apr-1986).

*/

long *arg_swab_flag,*arg_xlit_flag;

{

extern void trlito();

PromulaFortran Translator User's Manual

111

static long K1 = 4;

static long modi,noninpbase,hd_qpis,hd_qpsupis,firstnoninp,hashmax,hd_hashval,

 swab_flag,xlit_flag,blanks_xlit_yet,blank_bytes;

/*

===

 Initialization entry

 Initialization-- calculate some useful things.

*/

 noninpbase = hd_qpis+hd_qpsupis;

 firstnoninp = noninpbase+1L; /* First non-input node*/

/*

 Determine practical maximum for

 no. of strings we can hash (using "PUTSTR" entry)--

 (Knuth's vol.3 says that the avg. no. collisions =

 1/2 * (1 + 1/R), where "R" is HASH table density);

 it might be nice to stop at 98% full (R = 0.98),

 since this translates to an average of 25.5 collisions

 per string entered.

*/

 hashmax = hd_hashval-2L*hd_hashval/100L;

/*

 Save local values of SWAB and XLIT flags, and convert blank-string to

 match the language (EBCDC or ASCII) of the model-file-CREATOR.

*/

 swab_flag = *arg_swab_flag;

 xlit_flag = *arg_xlit_flag;

 if((xlit_flag & fifi4log(!blanks_xlit_yet))) {

 trlito(&blank_bytes,&K1);

 blanks_xlit_yet = fifi4log((long)TRUE);

 }

 return modi;

}

Under this default the actual comment symbol is removed and the remainder of the comment is left alone. Each block of

comments is preceded by the C comment delimiter /* and is followed by the delimiter */. The resulting appearance of the

comments is very different from that of the source.

The COMMENTS statement shown below

COMMENTS

0 "!!" " **" "!" " *" 0

0 "!!" " **" "!" " *" 0

END

tells GREAT MIGRATIONS to treat DML and DDL comments in the same manner. The first section of each specification

says not to have a separate header for the comment blocks. The second section establishes the following correspondence

between source and target comment introducers.

Source Target

!! **

! *

The third section says not to have a separate trailer for each comment block.

Using this COMMENTS statement in a configuration file produces the following result.

long modi(arg_swab_flag,arg_xlit_flag)

/**

 ** PURPOSE: General purpose initialization for MODI_* routines.

 **

PromulaFortran Translator User's Manual

112

 ** PARAMETERS: LOGICAL ARG_SWAB_FLAG (R)

 ** LOGICAL ARG_XLIT_FLAG (R)

 **

 ** RETURN VALUE: None.

 **

 ** SIDE EFFECTS: None.

 **

 **

 * Incorporates features to support portable-LIO file handling (8-Apr-1986).*/

long *arg_swab_flag,*arg_xlit_flag;

{

extern void trlito();

static long K1 = 4;

static long modi,noninpbase,hd_qpis,hd_qpsupis,firstnoninp,hashmax,hd_hashval,

 swab_flag,xlit_flag,blanks_xlit_yet,blank_bytes;

/*===

 * Initialization entry

 * Initialization-- calculate some useful things.*/

 noninpbase = hd_qpis+hd_qpsupis;

 firstnoninp = noninpbase+1L; /* First non-input node*/

/* Determine practical maximum for

 * no. of strings we can hash (using "PUTSTR" entry)--

 * (Knuth's vol.3 says that the avg. no. collisions =

 * 1/2 * (1 + 1/R), where "R" is HASH table density);

 * it might be nice to stop at 98% full (R = 0.98),

 * since this translates to an average of 25.5 collisions

 * per string entered.*/

 hashmax = hd_hashval-2L*hd_hashval/100L;

/* Save local values of SWAB and XLIT flags, and convert blank-string to

 * match the language (EBCDC or ASCII) of the model-file-CREATOR.*/

 swab_flag = *arg_swab_flag;

 xlit_flag = *arg_xlit_flag;

 if((xlit_flag & fifi4log(!blanks_xlit_yet))) {

 trlito(&blank_bytes,&K1);

 blanks_xlit_yet = fifi4log((long)TRUE);

 }

 return modi;

}

This form has the same effect as the FORTRAN original; however, for both the DDL and DML comments, the lack of a

trailer makes the code hard to read, and for the DML comments a header seems appropriate as well.

COMMENTS

0 "!!" " **" "!" " *" 1 " */"

1 "/*" "!!" " **" "!" " *" 1 " */"

END

Using this specification produces a much nicer looking translation which still seems to capture the flavor of the original.

long modi(arg_swab_flag,arg_xlit_flag)

/**

 ** PURPOSE: General purpose initialization for MODI_* routines.

 **

 ** PARAMETERS: LOGICAL ARG_SWAB_FLAG (R)

 ** LOGICAL ARG_XLIT_FLAG (R)

 **

 ** RETURN VALUE: None.

 **

 ** SIDE EFFECTS: None.

 **

 **

 * Incorporates features to support portable-LIO file handling (8-Apr-1986).

PromulaFortran Translator User's Manual

113

 */

long *arg_swab_flag,*arg_xlit_flag;

{

extern void trlito();

static long K1 = 4;

static long modi,noninpbase,hd_qpis,hd_qpsupis,firstnoninp,hashmax,hd_hashval,

 swab_flag,xlit_flag,blanks_xlit_yet,blank_bytes;

/*

 *===

 * Initialization entry

 * Initialization-- calculate some useful things.

 */

 noninpbase = hd_qpis+hd_qpsupis;

 firstnoninp = noninpbase+1L; /* First non-input node*/

/*

 * Determine practical maximum for

 * no. of strings we can hash (using "PUTSTR" entry)--

 * (Knuth's vol.3 says that the avg. no. collisions =

 * 1/2 * (1 + 1/R), where "R" is HASH table density);

 * it might be nice to stop at 98% full (R = 0.98),

 * since this translates to an average of 25.5 collisions

 * per string entered.

 */

 hashmax = hd_hashval-2L*hd_hashval/100L;

/*

 * Save local values of SWAB and XLIT flags, and convert blank-string to

 * match the language (EBCDC or ASCII) of the model-file-CREATOR.

 */

 swab_flag = *arg_swab_flag;

 xlit_flag = *arg_xlit_flag;

 if((xlit_flag & fifi4log(!blanks_xlit_yet))) {

 trlito(&blank_bytes,&K1);

 blanks_xlit_yet = fifi4log((long)TRUE);

 }

 return modi;

}

This sample is an actual fragment. We did not create it to make this feature look good. If the source has a consistent

commenting style, then an equivalent one for the target language can be created using this statement. It is, of course, the

user's responsibility to ensure that proper comments are being written.

3.3 The Configuration PATHNAMES Statement
A major problem faced in the migration of source codes from one environment to a new environment has to do with the

accessing of include files. There are three problem areas:

(1) Source pathnames often include dollar signs and possibly other characters such as slashes which cannot be easily

used under target systems.

(2) The directory separation characters are not the same on different systems.

(3) The organization and search rules used on the source system might not be the ones needed for the new

environment.

These problems are dealt with explicitly in GREAT MIGRATIONS via the PATHNAMES statement in the configuration

file. Though it may not be feasible for all users to use the same PATHNAMES specifications, no user need physically make

any source changes to the INCLUDE or INSERT statements in his source codes. This section describes how a particular

pathname translation scheme can be established for a given set of conventions.

PromulaFortran Translator User's Manual

114

The PATHNAME statement is entered into the configuration file. It describes the path and filename conventions to be used

on the target platform and how these conventions are to be obtained from the source specifications. The approach taken is

to describe how source pathnames are to be "translated" into target pathnames.

Syntax:

PATHNAMES dirchar [REPLACE "s1t1s2t2..."]

 [LOWER | UPPER]

 [PREFIX "tname"]

 [EXCLUDE]

 [TERMINATION tc]

sname(1) tname(1)

.

.

.

sname(n) tname(n)

END

Where:

dirchar is the directory separation character in the source pathname

s1t1s2t2... are a sequence of character pairs

tname is a target language pathname or pathname prefix

sname is a source language pathname or pathname prefix

tc is a pathname termination character used in the source pathname

The required dirchar specification specifies the character used to separate the pathname components in the original

source codes. This character is replaced by the equivalent character in the target pathnames. For example moving from

PRIME FORTRAN to UNIX, a < character would be replaced by a / character. Moving from MS-DOS to UNIX would

replace a \ character with a / character.

The optional REPLACE parameter specifies additional characters to be replaced in the source names. As many pairs of

characters as are needed may be included. The standard PRIME language description, for example, contains the following

specification for this option:

REPLACE "$_"

This causes all dollar signs in the source pathnames to be replaced by underscores.

The TERMINATION character is provided for source systems such as VMS which allow disposition information to be

appended to the filename preceded by a slash. All of this information must be ignored in most target systems.

The mutually exclusive and optional UPPER, LOWER parameters specify that all alphabetic characters in pathnames

should be converted to upper- or lower-case respectively. Since some systems' pathnames are case sensitive, while others

are not, it is important to specify one of these options. For example, though most PRIME pathnames are shown in

uppercase, most transfer programs create lowercase names when transferring files to UNIX; therefore, the standard PRIME

language description contains a specification of LOWER for this option.

For initial testing and use of GREAT MIGRATIONS for particular small projects, the simplest approach is simply to move

all source files — including the INCLUDE files — into the user's local directory. To do this GREAT MIGRATIONS must

be told to ignore all directory information in the source pathnames. Under this alternative all characters up to and including

the last occurrence of the directory component separations character are stripped from the source pathname. This is

achieved via the EXCLUDE option.

PromulaFortran Translator User's Manual

115

A possible alternative structure for the INCLUDE files for a UNIX implementation might be to copy all of these files into

some subdirectory where they would retain the same relative structure as they had on the source system. The PREFIX

pname option allows a directory specification to be added to the front of all source pathnames.

Another alternative might be to copy all include files into a single subdirectory with no additional structure. This effect can

be achieved by using PREFIX in conjunction with the EXCLUDE option. All source structure would be excluded and then

would be replaced by the desired target subdirectory name.

In some cases, no generic translation scheme will work. Certain names might have to be changed on an individual basis.

The final list of sname, tname pairs achieves this end. Each pathname is first translated using the generic specifications on

the PATHNAME statement itself. The resultant pathnames are compared with the snames in the list. If the first n

characters of a pathname match the n characters of an sname, then those n characters are stripped and the associated tname

is added to the front of the name.

As can be seen from the above, it will be necessary to organize the INCLUDE files in the new environment. Once that

organization has been completed, the PATHNAMES component of the configuration file can be used to describe that

structure. No changes need be made in the FORTRAN source code INCLUDE and INSERT statements.

3.4 The Configuration RESTRUCTURE Statement
The RESTRUCTURE statement in the configuration file is used in contexts where the symbol table must be changed in

order to make a program work. Typically, it is used when a program is being moved between platforms with different word

sizes.

Syntax:

RESTRUCTURE

ident type

.

.

END

Where:

ident is the identifier of a variable in the program being processed.

type is the FORTRAN type to be assigned to that variable.

To understand the use of the RESTRUCTURE statement, consider the following simple FORTRAN program written for a

platform with 36 bit words and 6 bit characters.

 PROGRAM TEST3

 DIMENSION IALPHA(2)

 DATA IALPHA/6HHello ,6HWorld./

 1 FORMAT(1X,2A6)

 PRINT 1,IALPHA

 STOP

 END

In this program the INTEGER array IALPHA is being used to contain character data. This is a standard convention in many

FORTRAN dialects still in use today. The default translation for this code is a mess.

void main(argc,argv)

int argc;

char* argv[];

{

static long ialpha[2];

static int ftnsiz[] = {1,1,2};

PromulaFortran Translator User's Manual

116

static namelist DATAVAR[] = {

"ialpha",ialpha,5,ftnsiz

};

static char *DATAVAL[] = {

"$DATAVAR",

"ialpha='Hell','o',",

"$END"

};

static char* F1[] = {

 "(1x,2a6)"

};

 ftnini(argc,argv,NULL);

 fiointu((char*)DATAVAL,0,2);

 fiornl(DATAVAR,1,NULL);

 WRITE(OUTPUT,FMT,F1,1,DO,2,INT4,ialpha,0);

 STOP(NULL);

}

Since the variable is declared as an INTEGER, runtime initialization is needed. In addition, since GREAT MIGRATIONS

assumes no more that 4 characters per word the phrase World is thrown away. Using the QW3606 switch improves the

situation slightly; however, the result will not run on a 32 bit platform

void main(argc,argv)

int argc;

char* argv[];

{

static long ialpha[2];

static int ftnsiz[] = {1,1,2};

static namelist DATAVAR[] = {

"ialpha",ialpha,5,ftnsiz

};

static char *DATAVAL[] = {

"$DATAVAR",

"ialpha='Hello','World.',",

"$END"

};

static char* F1[] = {

 "(1x,2a6)"

};

 ftnini(argc,argv,NULL);

 fiointu((char*)DATAVAL,0,2);

 fiornl(DATAVAR,1,NULL);

 WRITE(OUTPUT,FMT,F1,1,DO,2,INT4,ialpha,0);

 STOP(NULL);

}

because the long variable ialpha is now expected to contain 6 characters. We need to tell the translator that this variable is

really a CHARACTER*6. The following configuration file does this.

SWITCHES QW3606

RESTRUCTURE

IALPHA CHARACTER*6

END

Using this configuration file, the following "correct" translation is produced.

void main(argc,argv)

int argc;

char* argv[];

{

static char ialpha[12] = {

PromulaFortran Translator User's Manual

117

 'H','e','l','l','o',' ','W','o','r','l','d','.'

};

static char* F1[] = {

 "(1x,2a6)"

};

 ftnini(argc,argv,NULL);

 WRITE(OUTPUT,FMT,F1,1,DO,2,STRG,ialpha,6,0);

 STOP(NULL);

}

3.5 The Configuration KEYWORDS Statement
Most of the actual text output of GREAT MIGRATIONS is formed by combining sequences of keywords or keyword

strings. These strings can be changed by the user, although if they are changed the user must make certain that the result is

still compilable. Most KEYWORD changes require an equivalent change in the fortran.h header file. Each KEYWORD can

be referenced either by its current form or by its identification number.

The keywords themselves are of two types:

(1) simple strings

(2) pattern strings

The table below shows the simple strings within the keyword table. These appear in the output of GREAT MIGRATIONS

exactly as shown in the appropriate places.

Idn Keyword Description of use in C

1 void equivalent of SUBROUTINE

2 short equivalent of INTEGER*2

3 double equivalent of REAL*8

4 unsigned short equivalent of LOGICAL*2

5 char equivalent of INTEGER*1

6 long equivalent of INTEGER*4

7 float equivalent of REAL*4

8 unsigned long equivalent of LOGICAL*4

9 unsigned char equivalent of LOGICAL*1

10 double equivalent of REAL*16

11 dcomplex equivalent of DOUBLE COMPLEX

12 complex equivalent of COMPLEX

13 char equivalent of CHARACTER

14 static static keyword

15 auto auto keyword

16 extern extern keyword

17 typedef typedef keyword

18 struct struct keyword

19 ftnadr array that contains assigned FORMAT pointers

20 ftnalloc allocates memory for dynamic variables

21 ftndim array for dimension values for namelist

22 ftnlen number of lines in assigned FORMATs

23 ftnfree frees memory for dynamic variables

24 ftnsiz array for dimension values for runtime data

25 namelist structure name for namelist

26 declaration which precedes includes

 27 ftnini(argc,argv,NULL); runtime initialization function call

 28 vmsopn(argc,argv); runtime initialization call for virtual memory

 29 void main(argc,argv) main program declaration

 30 int argc; declaration for main argc argument

 31 char* argv[]; declaration for main argv argument

 32 #define #define keyword

 33 #undef #undef keyword

PromulaFortran Translator User's Manual

118

Idn Keyword Description of use in C

 34 if if keyword

 35 switch switch keyword

 36 case case keyword

 37 default default keyword

 38 break break keyword

 39 goto goto keyword

 40 for for keyword

 41 return return keyword

 42 DATAVAR namelist structure for runtime data

 43 DATAVAL data for runtime data

 44 END marks end of runtime data

 45 FIRST variable which record first entry into function

 46 IENTRY entry point number variable

 47 RETNUMB alternate return variable

 48 ELP end-local-processing statement label

 49 0 zero of type of INTEGER*2

 50 0.0 zero of type of REAL*8

 51 0 zero of type LOGICAL*2

 52 '\0' zero of type INTEGER*1

 53 0L zero of type INTEGER*4

 54 0.0 zero of type REAL*4

 55 0L zero of type LOGICAL*4

 56 0 zero of type LOGICAL*1

 57 0.0 zero of type REAL*16

 58 dpxzero zero of type DOUBLE COMPLEX

 59 cpxzero zero of type COMPLEX

 60 int int keyword

 61 NULL NULL keyword

 62 fiointu((char*) initializes runtime data processing

 63 fiornl performs runtime data processing

 65 union union keyword

 66 sizeof sizeof keyword

119 INT2 i/o list designator for INTEGER*2

120 REAL8 i/o list designator for REAL*8

121 LOG2 i/o list designator for LOGICAL*2

122 BYTE i/o list designator for INTEGER*1

123 INT4 i/o list designator for INTEGER*4

124 REAL4 i/o list designator for REAL*4

125 LOG4 i/o list designator for LOGICAL*4

126 LOG1 i/o list designator for LOGICAL*1

127 DCMPLX i/o list designator for DOUBLE COMPLEX

128 STRG i/o list designator for CHARACTER

129 DO /o list designator for implied DO

130 CSTR i/o list designator for constant string

131 \7%7d printf for free-form INTEGER*2

132 \25%25.15E printf for free-form REAL*8

133 \2%2c printf for free-form LOGICAL*2

134 \3%3d printf for free-form INTEGER*1

135 \12%12ld printf for free-form INTEGER*4

136 \16%16.6E printf for free-form REAL*4

137 \2%2c printf for free-form LOGICAL*4

138 \3%3d printf for free-form LOGICAL*1

139 \25%25.15LE printf for free-form REAL*16

140 \53(%25.15E,%25.15E) printf for free-form DOUBLE COMPLEX

141 \35(%16.6E,%16.6E) printf for free-form COMPLEX

142 \0%s printf for free-form CHARACTER

150 CMPLX i/o list designator for COMPLEX

151 _Inline inline function designator

152 #include "fortran.h" include request for fortran.h

154 ftnblkd name of BLOCK DATA subprogram

163 REAL8 i/o list designator for REAL*8

PromulaFortran Translator User's Manual

119

Idn Keyword Description of use in C

164 BD_ COMMON data module prefix

165 VOID type of initialized structures array

166 #define LPROTOTYPE platform type designator

169 volatile volatile keyword

170 " = { NULL, 0 }" initialization string for descriptors

171 "Z " replacement characters for $ and -

211 ftnstruc structure initializations of set array

212 ftnfdata structure initializations data

213 ftnrecrd initialized structures array

214 fiostrdi(ftnstruc, structure data initialization function call ftnfdata,ftnrecrd);

259 "string" type label for string descriptors

260 "n" element name of descriptor string length

261 "a" element name of descriptor string address

270 "TRUE" symbol for logical TRUE constant value

271 "FALSE" symbol for logical FALSE constant value

272 "Ktrue" symbol for logical TRUE constant variable

273 "Kfalse" symbol for logical FALSE constant variable

The pattern strings transform simple strings generated into alternate forms. The simple string is represented by a percent

(%) sign within the pattern string. The table below lists the available pattern strings.

Idn Keyword Description of use in C

64 #include "%" pattern string for writing includes

153 #pragma pfc("%") pattern string for writing pragmas

155 void ftnblkd() { name of COMMON initializations function

156 %1(); pattern string for COMMON initialization calls

157 } end of COMMON initialization function

172 "%" pattern string for external functions

174 "P%" pattern string for argument surrogates

262 "T%" pattern string for local COMMON variable

263 "C%" pattern string for COMMON structure

264 "X%" pattern string for COMMON external

265 "%.h" pattern string for translated include names

267 "#endif /*ICF_% */" pattern string for include #endif

268 "#ifndef ICF_%" pattern string for include #ifndef

269 "#define ICF_%" pattern string for include #define

The KEYWORD statement in the configuration file begins with the command KEYWORD as a single line. It is followed

by a series of lines each containing a keyword string in quotes or a simple keyword identifier followed by the substitute

string to be used in quotes. The end of the replacement pairs is indicated by the word END on a single line.

The following subsections give several examples in which the look of the translation of the following code is altered using

a KEYWORDS statement.

 SUBROUTINE TEST4

 INTEGER*4 hd_hedsiz ! /* Length of header */

 INTEGER*4 hd_numtab ! /* No. of tables in file */

 INTEGER*4 hd_filrev ! /* Model file revision date */

 INTEGER*4 hd_sysprim ! /* No. of system primitive types */

 COMMON/MODELHEAD/hd_hedsiz,hd_numtab,hd_filrev,hd_sysprim

 CALL TEST5(hd_numtab,hd_filrev)

 hd_hedsiz = hd_numtab - hd_filrev

 WRITE(1) hd_hedsiz,hd_numtab,hd_filrev,hd_sysprim

 RETURN

 END

 SUBROUTINE TEST5(num,rev)

PromulaFortran Translator User's Manual

120

 INTEGER*4 num,rev

 num = num * rev + 2

 RETURN

 END

The default translation of this code is as follows:

void test4(heading,P1)

char *heading;

int P1;

{

extern void test5();

extern char Xmodelhead[];

typedef struct {

 long hd_hedsiz; /* Length of header*/

 long hd_numtab; /* No. of tables in file*/

 long hd_filrev; /* Model file revision date*/

 long hd_sysprim; /* No. of system primitive types*/

} Cmodelhead;

auto Cmodelhead *Tmodelhead = (Cmodelhead*) Xmodelhead;

 test5(&Tmodelhead->hd_numtab,&Tmodelhead->hd_filrev);

 Tmodelhead->hd_hedsiz = Tmodelhead->hd_numtab-Tmodelhead->hd_filrev;

 WRITE(1,LISTIO,STRG,heading,10,0);

 WRITE(1,LISTIO,INT4,Tmodelhead->hd_hedsiz,INT4,Tmodelhead->hd_numtab,0);

 WRITE(1,LISTIO,INT4,Tmodelhead->hd_filrev,INT4,Tmodelhead->hd_sysprim,0);

 return;

}

void test5(num,rev)

long *num,*rev;

{

 *num = *num**rev+2L;

 return;

}

char Xmodelhead[16];

3.5.1 Simple Keyword Replacement
To begin the detailed discussion of keyword replacement, let us assume that the user prefers FORTRAN looking variable

type names. He has made the following additions to the fortran.h file

#define INTEGER4 long

#define CHARACTER char

and wishes to have the corresponding changes made in his GREAT MIGRATIONS output. The following demo.cnf file

will do this.

KEYWORDS

6 "INTEGER4"

13 "CHARACTER"

END

When test4 is translated using the Rdemo command line switch, the following translation will be produced.

void test4(heading,P1)

CHARACTER *heading;

int P1;

{

extern void test5();

extern char Xmodelhead[];

typedef struct {

 INTEGER4 hd_hedsiz; /* Length of header*/

 INTEGER4 hd_numtab; /* No. of tables in file*/

 INTEGER4 hd_filrev; /* Model file revision date*/

PromulaFortran Translator User's Manual

121

 INTEGER4 hd_sysprim; /* No. of system primitive types*/

} Cmodelhead;

auto Cmodelhead *Tmodelhead = (Cmodelhead*) Xmodelhead;

 test5(&Tmodelhead->hd_numtab,&Tmodelhead->hd_filrev);

 Tmodelhead->hd_hedsiz = Tmodelhead->hd_numtab-Tmodelhead->hd_filrev;

 WRITE(1,LISTIO,STRG,heading,10,0);

 WRITE(1,LISTIO,INT4,Tmodelhead->hd_hedsiz,INT4,Tmodelhead->hd_numtab,0);

 WRITE(1,LISTIO,INT4,Tmodelhead->hd_filrev,INT4,Tmodelhead->hd_sysprim,0);

 return;

}

void test5(num,rev)

INTEGER4 *num,*rev;

{

 *num = *num**rev+2L;

 return;

}

char Xmodelhead[16];

Notice that there are several different char occurrences within the output. Some pertain directly to the CHARACTER type

while others are used for various memory allocation specifications. Keyword 13 is the one for the CHARACTER type.

Alternatively, there is only one use of long in the keyword list; therefore, the following alternative demo.cnf file would

produce the same result.

KEYWORDS

"long" "INTEGER4"

13 "CHARACTER"

END

3.5.2 Pattern Strings for COMMON blocks
In the default translation COMMON blocks generate three different symbols — distinguished by the initial first letter. The

X indicates the global storage area, the C indicates the structure definition, and the T indicates local pointer. The pattern

strings used to produce this convention are "X%", "C%", and "T%". Suppose instead that you wish to label the global

storage area with the suffix _area, to label the structure definition with the prefix struct_, and to have the local pointer

simply use the COMMON name. The following KEYWORDS statement would make this change.

KEYWORDS

"X%" "%_area"

"C%" "struct_%"

"T%" "%"

END

The following translation is produced.

void test4(heading,P1)

char *heading;

int P1;

{

extern void test5();

extern char modelhead_area[];

typedef struct {

 long hd_hedsiz; /* Length of header*/

 long hd_numtab; /* No. of tables in file*/

 long hd_filrev; /* Model file revision date*/

 long hd_sysprim; /* No. of system primitive types*/

} struct_modelhead;

auto struct_modelhead *modelhead = (struct_modelhead*) modelhead_area;

 test5(&modelhead->hd_numtab,&modelhead->hd_filrev);

 modelhead->hd_hedsiz = modelhead->hd_numtab-modelhead->hd_filrev;

 WRITE(1,LISTIO,STRG,heading,10,0);

PromulaFortran Translator User's Manual

122

 WRITE(1,LISTIO,INT4,modelhead->hd_hedsiz,INT4,modelhead->hd_numtab,0);

 WRITE(1,LISTIO,INT4,modelhead->hd_filrev,INT4,modelhead->hd_sysprim,0);

 return;

}

void test5(num,rev)

long *num,*rev;

{

 *num = *num**rev+2L;

 return;

}

char modelhead_area[16];

Of course the KEYWORDS of this section can be combined with those of the last to produce the following demo.cnf file.

KEYWORDS

"long" "INTEGER4"

13 "CHARACTER"

"X%" "%_area"

"C%" "struct_%"

"T%" "%"

END

This configuration then produces the following translation.

void test4(heading,P1)

CHARACTER *heading;

int P1;

{

extern void test5();

extern char modelhead_area[];

typedef struct {

 INTEGER4 hd_hedsiz; /* Length of header*/

 INTEGER4 hd_numtab; /* No. of tables in file*/

 INTEGER4 hd_filrev; /* Model file revision date*/

 INTEGER4 hd_sysprim; /* No. of system primitive types*/

} struct_modelhead;

auto struct_modelhead *modelhead = (struct_modelhead*) modelhead_area;

 test5(&modelhead->hd_numtab,&modelhead->hd_filrev);

 modelhead->hd_hedsiz = modelhead->hd_numtab-modelhead->hd_filrev;

 WRITE(1,LISTIO,STRG,heading,10,0);

 WRITE(1,LISTIO,INT4,modelhead->hd_hedsiz,INT4,modelhead->hd_numtab,0);

 WRITE(1,LISTIO,INT4,modelhead->hd_filrev,INT4,modelhead->hd_sysprim,0);

 return;

}

void test5(num,rev)

INTEGER4 *num,*rev;

{

 *num = *num**rev+2L;

 return;

}

char modelhead_area[16];

3.5.3 Pattern String for External Functions
Many UNIX FORTRAN compilers — AIX and SUN OS for example — append an underscore to external symbols. This

effect can be achieved via GREAT MIGRATIONS by changing pattern string 172. The following configuration file

KEYWORDS

172 "%_"

END

PromulaFortran Translator User's Manual

123

produces the following translation. Notice the underscores appended to the function symbols.
void test4_(heading,P1)

char *heading;

int P1;

{

extern void test5_();

extern char Xmodelhead[];

typedef struct {

 long hd_hedsiz; /* Length of header*/

 long hd_numtab; /* No. of tables in file*/

 long hd_filrev; /* Model file revision date*/

 long hd_sysprim; /* No. of system primitive types*/

} Cmodelhead;

auto Cmodelhead *Tmodelhead = (Cmodelhead*) Xmodelhead;

 test5_(&Tmodelhead->hd_numtab,&Tmodelhead->hd_filrev);

 Tmodelhead->hd_hedsiz = Tmodelhead->hd_numtab-Tmodelhead->hd_filrev;

 WRITE(1,LISTIO,STRG,heading,10,0);

 WRITE(1,LISTIO,INT4,Tmodelhead->hd_hedsiz,INT4,Tmodelhead->hd_numtab,0);

 WRITE(1,LISTIO,INT4,Tmodelhead->hd_filrev,INT4,Tmodelhead->hd_sysprim,0);

 return;

}

void test5_(num,rev)

long *num,*rev;

{

 *num = *num**rev+2L;

 return;

}

char Xmodelhead[16];

3.5.4 Pattern String for Subprogram Surrogates
As is discussed under the Y4 command line switch a typical FORTRAN optimization involves making local surrogates for

subprogram parameters. Using Y4 with the example used above produces the following translation (only last subprogram

shown).

void test5(Pnum,Prev)

long *Pnum,*Prev;

{

auto long num = *Pnum;

auto long rev = *Prev;

 num = num*rev+2L;

 goto ELP;

ELP:

 *Pnum = num;

}

The manner in which the local surrogates are formed can easily be changed. Consider the following configuration file

KEYWORDS

"P%" "Local_%_copy"

END

which will change the look of the translation considerably.

void test5(Local_num_copy,Local_rev_copy)

long *Local_num_copy,*Local_rev_copy;

{

auto long num = *Local_num_copy;

auto long rev = *Local_rev_copy;

 num = num*rev+2L;

 goto ELP;

ELP:

PromulaFortran Translator User's Manual

124

 *Local_num_copy = num;

}

3.5.5 Pattern Strings for VAX Descriptors
Users of VAX FORTRAN often want to treat characters as descriptors. The CHv flag gives this basic treatment. Consider

the following simple code.

 SUBROUTINE DEMO(I,J)

 CHARACTER*12 NAME

 CHARACTER*4 INITIAL

 I = INDEX(NAME,INITIAL)

 J = JINDEX(NAME,INITIAL)

 RETURN

 END

The output of the code above using the CHv command line switch — though we will put the switch into a configuration file

as discussed earlier in this chapter — is below.

void demo(i,j)

long *i,*j;

{

extern long jindex();

static char name[12],initial[4];

static string T1 = { NULL, 0 };

static string T2 = { NULL, 0 };

 *i = fifindex(name,12,initial,4);

 T1.a = name; T1.n = 12;

 T2.a = initial; T2.n = 4;

 *j = jindex(&T1,&T2);

 return;

}

All the machinery needed for "real" VAX descriptors is here; however, the following configuration file is needed.

SWITCHES CHv

KEYWORDS

"string" "DESCRIPTOR"

"n" "Dleng"

"a" "Dptr"

"ftnsallo" "ftndallo"

" = { NULL, 0 }" " = { 0, 0, 0, NULL }"

END

This produces the following translation.

void demo(i,j)

long *i,*j;

{

extern long jindex();

static char name[12],initial[4];

static DESCRIPTOR T1 = { 0, 0, 0, NULL };

static DESCRIPTOR T2 = { 0, 0, 0, NULL };

 *i = fifindex(name,12,initial,4);

 T1.Dptr = name; T1.Dleng = 12;

 T2.Dptr = initial; T2.Dleng = 4;

 *j = jindex(&T1,&T2);

 return;

}

3.6 The Configuration PRAGMA Statement

PromulaFortran Translator User's Manual

125

Sotfware developers have long faced the problem of nonportability with FORTRAN. As a result, many have written

FORTRAN preprocessors that aid in making FORTRAN programs more portable. A major feature of C that makes it

portable is its ability to deal with conditional compilation. It is very common for FORTRAN preprocessors to have such a

capability as well. Consider the following simple FORTRAN code which uses a conditional compilation notation.

 SUBROUTINE TEST6

 CALL RENAME_F ('modxx.lio','model.lio')

*#IF UNIX

*? CALL RENAME_F ('modxx.lio','model.lio')

*#ENDIF

 CALL RENAME_F ('modxx.lio','model.lio')

 STOP

 END

This particular notation uses three particular comment strings:

*#IF introduces a conditional expression

*? introduces a statement within a conditional block

*#ENDIF closes a conditional block

Though the notation varies from site to site, the above is typical. Since these conventions are based on C, we need to have

some mechanism for describing them to PROMULA.

To see the problem, the following is the default translation of the above.

void test6()

{

extern void rename_f();

 rename_f("modxx.lio","model.lio",9,9);

/*

#IF UNIX

? CALL RENAME_F ('modxx.lio','model.lio')

#ENDIF

*/

 rename_f("modxx.lio","model.lio",9,9);

 STOP(NULL);

}

The translator completely ignores the true meaning of the condition block. The whole thing is treated as a comment. The

fact that the *? should be ignored when going to C is easily established using the YD*? command line switch. This switch

is described in the previous chapter. It gives the following translation.

void test6()

{

extern void rename_f();

 rename_f("modxx.lio","model.lio",9,9);

/*

#IF UNIX

*/

 rename_f("modxx.lio","model.lio",9,9);

/*

#ENDIF

*/

 rename_f("modxx.lio","model.lio",9,9);

 STOP(NULL);

}

Now we have gone too far the other way. The conditional statement will always be executed. We must tell GREAT

MIGRATIONS to translate the #IF and #ENDIF into #if and #endif. The following configuration file does this.

PromulaFortran Translator User's Manual

126

SWITCHES Yd*?

PRAGMA "#" "IF" "#ifdef%" "ENDIF" "#endif"

Syntax:

PRAGMA "c" "s1" "t1" ... "sn" "tn"

Where:

c is the comment character introducing a special comment

si is a keyword in the source language

ti is the corresponding pattern string in the target language where the % represents anything on the comment

following the keyword.

In the PRAGMA statement above then, conditional statements begin with a #. The IF conditional is translated into #ifdef

conditional and "ENDIF whatever" is translated into #endif.

The resultant translation of the code above is as follows.

void test6()

{

extern void rename_f();

 rename_f("modxx.lio","model.lio",9,9);

#ifdef UNIX

 rename_f("modxx.lio","model.lio",9,9);

#endif

 rename_f("modxx.lio","model.lio",9,9);

 STOP(NULL);

}

3.7 The Configuration $ Statement
The configuration $ statement simply specifies the replacement character for the dollar sign.

Syntax:

$c

Where:

c is the replacement character.

By default all $ symbols in the source code are replaced by Z. The default translation of the following code

 FUNCTION HELLO$(I$,J$)

 DIMENSION WORLD$(10,20)

 HELLO$ = WORD(I$,J$)

 RETURN

 END

is as follows.

float helloZ(iZ,jZ)

long *iZ,*jZ;

{

extern float word();

static float helloZ;

 helloZ = word(iZ,jZ);

 return helloZ;

PromulaFortran Translator User's Manual

127

}

Using a configuration statement of $S would give the following.

float helloS(iS,jS)

long *iS,*jS;

{

extern float word();

static float helloS;

 helloS = word(iS,jS);

 return helloS;

}

Alternatively, if $is to be left alone, use $$.

float hello$(i$,j$)

long *i$,*j$;

{

extern float word();

static float hello$;

 hello$ = word(i$,j$);

 return hello$;

}

PromulaFortran Translator User's Manual

128

4. THE CONFIGURATION FUNCTION PROTOTYPES

As has been discussed in several other places, FORTRAN passes all function arguments by name — i.e., it passes the

address of a parameter to a subprogram as opposed to its value. C, on the other hand, allows argument values to be passed

directly as well as allowing the passing of argument addresses. In instances where the value of the argument is scalar and

where its value is not being changed by the subprogram, passing the value of that argument is far more efficient than

passing its address. Whenever possible, the translation from FORTRAN to C should use call-by-value. The problem is that

it is not always possible tell whether call-by-value is possible simply from the source code. Some other device is needed to

tell the translator which arguments can be passed by value.

Another problem with FORTRAN is that it is weak typing. By this is meant that it is sometimes valid to pass data of

differing binary types via the same subprogram argument. The translator needs to know when this is valid; and if it is not

valid, it needs to know which binary type is the expected one. Many perfectly valid FORTRAN programs fail either at

compilation time or execution time because of differing typing conventions and differing internal representations. There is

no general solution to the translation of "weak-typing" FORTRAN programs. The translator must be told what to do. Some

device is needed to describe subprogram arguments to the translator.

A similar problem has faced C programmers as well. Consequently, the new ANSI C has introduced the notion of a

"function prototype" which describes the arguments of functions in terms of their binary type and in terms of their pointer

status. The conventions developed there are exactly those needed by the translator, although they need to be extended

slightly to deal with virtual variables, multiple forms, and "external name clash".

The C prototype system and its extensions to GREAT MIGRATIONS are discussed in this section. It is strongly

recommended that you take the time to develop a set of prototypes for the subprograms within a FORTRAN program prior

to translation, if that program is suspected of playing any games with internal representations.

It should be pointed out that the storage of prototype information read from a configuration file has been carefully

optimized, which means that there are minimal performance penalties for using large prototype files.

4.1 Function Prototype Syntax
In C, a "function prototype" declaration defines the name, return type, and storage class of a function. In addition, it can

define the types of some or all of the arguments for that function. The prototype declaration has the same format as the

function declaration, except that it is terminated by a semicolon, and the argument identifiers are optional. If used,

argument identifiers have scope only within the prototype declaration and serve only as place holders — i.e., int a,b,c; is the

same as int,int,int.

The syntax used for prototypes by GREAT MIGRATIONS is similar to that used by C; however, it is unfortunately not the

same. The reason is that additional information must be supplied to the translator since additional problems are introduced

by the weak-typing conventions of FORTRAN.

The syntax of the GREAT MIGRATIONS prototype definition is as follows:

[fname] type name(type[c],type[c][,...])

 [,type name(type[c],type[c][,...])[,...]

Where:

fname is the name of the subprogram used in the FORTRAN code.

type is one of the following C binary type specifiers:

void

PromulaFortran Translator User's Manual

129

short

double

unsigned short

char

long

float

unsigned long

dcomplex

complex

string

name is any valid identifier to be used in the C output

c is one of the following special characters:

* indicates a memory pointer to the indicated type

+ indicates a virtual pointer to the indicated type

! indicates that a value conversion should be made to the indicated type

Only a single prototype definition may occur on each record and the notation below in PROMULA

type name()

means that the function has no arguments. It does not mean that the function has some unspecified number of unspecified

arguments.

The type specifiers have their traditional C interpretation. The complex and dcomplex types refer to single-precision

complex and double-precision complex respectively. The string type refers to the FORTRAN style character string which

was discussed extensively in the section on the CHARACTER type. Remember that a string argument actually consists of a

pointer and a length specification. Depending upon the character translation scheme being used, these two may not even

appear together in the actual C function declaration.

4.2 Value Parameters
If no c specifier follows the type specification, a value parameter is being defined. When a reference to this argument is

processed, the value of the argument is passed and not its address. If the actual argument does not have the proper type,

then an error occurs. The only exception to this occurs when processing numeric constants. A constant with a decimal point

or exponent specified may be used as either a float or double value parameter, and a numeric constant without a decimal

indication with a value in the range -32767 to + 32767 may be used in either a long or short environment. In a long context

an "L" is appended. The following simple example shows this.

void alpha(float,double,short,long)

 SUBROUTINE DEMO

 CALL ALPHA(1.234,10E5,32,32)

 RETURN

 END

 SUBROUTINE ALPHA(FLT,DBL,ISHT,LNG)

 REAL*8 DBL

 INTEGER*2 ISHT

 WRITE(*,*) FLT,DBL,ISHT,LNG

 RETURN

 END

The prototype above used in conjunction with the FORTRAN code above produces the following output.

void demo()

{

extern void alpha();

PromulaFortran Translator User's Manual

130

 alpha(1.24,1000000.0,32,32L);

 return;

}

void alpha(flt,dbl,isht,lng)

int isht;

double dbl;

long lng;

float flt;

{

 WRITE(OUTPUT,LISTIO,REAL4,flt,REAL8,dbl,INT2,isht,INT4,lng,0);

 return;

}

In this output, the 32 being passed via the long parameter is shown as a long constant. The following is the same translation

as the above, but without the prototype supplied.

void demo()

{

extern void alpha();

static float K1 = 1.234;

static long K3 = 32;

static double T2;

 T2 = 1000000.0;

 alpha(&K1,&T2,&K3,&K3);

 return;

}

void alpha(flt,dbl,isht,lng)

int *isht;

double *dbl;

long *lng;

float *flt;

{

 WRITE(OUTPUT,LISTIO,REAL4,*flt,REAL8,*dbl,INT2,*isht,INT4,*lng,0);

 return;

}

Notice that PROTOTYPE definitions effect both the translation of references to subprograms and the definitions of

subprograms. In this sense, GREAT MIGRATIONS is very different than C itself. Clearly the version driven by the

prototype is the better version — both from the standpoint of readability and from the standpoint of efficiency.

4.3 External Name Clash
A problem that pervades C, in particular, is the external name clash problem. One tends to use many different libraries with

C. It is not at all unusual to have the same names used by different libraries. As an example, we recently worked with a

FORTRAN program which had two generalized I/O routines named fread and fwrite, which stood for FORTRAN READ

and FORTRAN WRITE. Since these are the names of the standard C I/O functions they needed to be changed. The

prototype system in GREAT MIGRATIONS allows this to be handled very easily. Consider the following example

translated using the prototype definition shown.

fread void ftread(short,long*,short)

fwrite void ftwrite(short,long*,short)

 SUBROUTINE DEMO

 INTEGER A,B(10),C(20)

 CALL FREAD(1,A,1)

 CALL FWRITE(2,A,1)

 CALL FREAD(1,B,10)

 CALL FWRITE(2,B,10)

 CALL FREAD(1,C,20)

 CALL FWRITE(2,C,20)

 RETURN

 END

PromulaFortran Translator User's Manual

131

In the prototype, the name as it appears in the FORTRAN comes first, followed by the standard prototype information. The

decision to change these names is made entirely in the prototype file, no changes are needed in the actual FORTRAN. The

C output looks as follows.

void demo()

{

extern void ftread();

extern void ftwrite();

static long a,b[10],c[20];

 ftread(1,&a,1);

 ftwrite(2,&a,1);

 ftread(1,b,10);

 ftwrite(2,b,10);

 ftread(1,c,20);

 ftwrite(2,c,20);

}

The old names have been completely replaced as a result of the prototype specification.

4.4 Multiple Forms
Another problem that comes up has to do with multiple forms. Here a single function in FORTRAN has been translated in

different ways either because of some weak typing convention or because the function is to be used in both virtual and non-

virtual mode. As an example, consider that you have a statistical analysis function which computes the mean and variance

of a vector of values. You have translated it twice, once using virtual conventions and once using memory conventions. Let

us first see how these two versions of the following utility can be produced.

 SUBROUTINE ANADAT(VAL,N,XBAR,VAR)

 DIMENSION VAL(N)

 XBAR=0.0

 VAR=0.0

 DO 10 J = 1,N

 XBAR = XBAR + VAL(J)

 10 CONTINUE

 XBAR = XBAR/N

 DO 15 J = 1,N

 S = VAL(J) - XBAR

 VAR = VAR + S*S

 15 CONTINUE

 VAR = VAR/(N-1)

 RETURN

 END

Translating it with the following prototype produces the memory version shown below.

anadat void manadat(float*,short,double*,double*)

void manadat(val,n,xbar,var)

int n;

double *xbar,*var;

float val[];

{

static long j;

static float s;

 *xbar = 0.0;

 *var = 0.0;

 for(j=0L; j<n; j++) {

 *xbar = *xbar+val[j];

 }

 *xbar = *xbar/(double)n;

PromulaFortran Translator User's Manual

132

 for(j=0L; j<n; j++) {

 s = val[j]-*xbar;

 *var = *var+s*s;

 }

 *var = *var/(double)(n-1);

 return;

}

Notice that the name of the function has been changed to agree with the prototype name. Now translating the identical

FORTRAN code with the following prototype produces the virtual code shown.

anadat void vanadat(float+,short,double*,double*)

void manadat(val,n,xbar,var)

int n;

double *xbar,*var;

long val;

{

static long j;

static float s;

 *xbar = 0.0;

 *var = 0.0;

 for(j=0L; j<n; j++) {

 *xbar = *xbar+*(float*)vmsuse(val+j*4);

 }

 *xbar = *xbar/(double)n;

 for(j=0L; j<n; j++) {

 s = *(float*)vmsuse(val+j*4)-*xbar;

 *var = *var+s*s;

 }

 *var = *var/(double)(n-1);

 return;

}

This code treats val as a long virtual address and not as an array. All references to val are made through the vmsuse

function. Again the name of the function has been changed via the prototype.

Now the following prototype and FORTRAN code can be translated. In the translation we will tell GREAT MIGRATIONS

that C is to be virtual, via an Sv100 command line switch.

anadat void vanadat(float+,short,double*,double*),

 void manadat(float*,short,double*,double*)

 SUBROUTINE TEST

 DIMENSION A(10),B(20),C(100)

 REAL*8 ABAR,AVAR,BBAR,BVAR,CBAR,CVAR

 CALL ANADAT(A,10,ABAR,AVAR)

 CALL ANADAT(B,20,BBAR,BVAR)

 CALL ANADAT(C,100,CBAR,CVAR)

 RETURN

 END

In this function ANADAT will be translated to use manadat when the vector is in memory and vanadat when the vector

is virtual. The translation is as follows:

void test()

{

extern void vanadat();

extern void manadat();

static double abar,avar,bbar,bvar,cbar,cvar;

static float a[10],b[20];

static long c=32;

PromulaFortran Translator User's Manual

133

 manadat(a,10,&abar,&avar);

 manadat(b,20,&bbar,&bvar);

 vanadat(c,100,&cbar,&cvar);

 return;

}

This translation is exactly as desired.

4.5 Global Symbols and Prototypes
To interface with external subroutines, functions, and common data areas GREAT MIGRATIONS must know the naming

conventions and parameter types for each. This information is supplied via function prototypes, using either standard ANSI

C notation or an extended notation which allows changing the name of the external in the target language. These prototypes

are entered within separate prototype files which are read at runtime via the Rfilename command line switch. The notation

and use of these files is described in detail in the earlier sections of this chapter.

An additional problem that comes up is that some of the runtime libraries have been implemented via FORTRAN and

others via C. Some FORTRANs and/or some Cs append additional characters to each external symbol — be it a function or

a subroutine. This requires that groups of global symbols, but not all, use a modified naming convention. These

modifications are achieved via GLOBAL strings, which may be entered into prototype files.

The GLOBALS string consists of two characters only — the function or subroutine prefix and suffix characters. As an

example, consider the following piece of a prototype file for a FORTRAN based system in which the FORTRAN compiler

appends an underscore character.

GLOBALS " _"

void actday(long*,long*,long*,long*);

void valdt(long*,long*,long*,short*);

void fixdt(long*,long*,long*,long*,long*,long*,long*,short*);

void weeknd(long*,long*,long*,long*,long*,long*,long*,short*);

The actual public names are actdat_, valdt_, fixdt_, and weeknd_. The GLOBALS string preceding these tells

GREAT MIGRATIONS to make this change in the target C.

4.6 Renaming Identifiers Only
A final capability of the configuration file is to allow the user to enter simple identifier renaming requests. The following

notation

oldname * newname

in a prototype input file will rename all occurrences of oldname with newname.

PromulaFortran Translator User's Manual

134

5. OVERVIEW OF RUNTIME LIBRARY

The GREAT MIGRATIONS FORTRAN runtime library is a set of approximately 250 functions designed for use with the

C output of GREAT MIGRATIONS FORTRAN. It may also be used by those FORTRAN programmers who wish to

program in C, but who do not wish to give up the input/output conventions, formatting controls, and intrinsic functions

which they have grown used to.

This chapter is provided primarily for those user's of GREAT MIGRATIONS FORTRAN who intend to maintain the C

output independently of their FORTRAN originals. Initially, C codes using this library can be produced by producing C

source code using GREAT MIGRATIONS FORTRAN. Once in C, the programs may then be maintained by using these

functions and their documentation.

The source code for all functions in this library is available. If there is one certainty, it is that no two FORTRANs behave in

the same way, especially with regard to their runtime libraries. Thus, if your conventions differ from the ones used here, or

if you require some specialized behavior, you may alter the library code. Alternatively, your version of FORTRAN may

contain statements which require runtime support not included in this library. In this case, you can add the additional

functions needed. For more discussion of this topic see the chapter in this manual on the implementation of nonstandard

FORTRAN dialects.

Another use of the material in this and the next chapter is to optimize the runtime behavior of the C output for special

platforms or special needs. Much of this customization can be done via the fortran.h file which is included with each C

output from GREAT MIGRATIONS FORTRAN. This file is discussed in this chapter as well.

5.1 Naming and Organization of Functions
The GREAT MIGRATIONS FORTRAN runtime library functions are divided into six general groups. Associated with

each group is a three letter prefix which is part of each function name. The groups are as follows:

Prefix General Description

cpx Performs single precision complex arithmetic

dpx Performs double precision complex arithmetic

fif Noncomplex intrinsic function

fio Performs an input/output operation

ftn Performs a general FORTRAN operation

p77 PRIME FORTRAN functions

pdp PDP FORTRAN functions

vms virtual memory management functions

The descriptions of the individual functions are given in alphabetic order in the following chapter. The remainder of this

chapter gives a summary discussion of the six functions, a listing of the runtime error produced, a description of the

pfclib.h header file which is included with every runtime function, and finally a description of the fortran.h header

file which is included by pfclib.h and which is also included by each C output file produced by GREAT MIGRATIONS

FORTRAN.

The final file needed by every runtime function is the platform.h file. This file is used to achieve transportability of the C

source code over a wide variety of platforms. This header file is also included by the shrouded source code of GREAT

PromulaFortran Translator User's Manual

135

MIGRATIONS FORTRAN itself. It is discussed in the chapter containing the installation instructions for GREAT

MIGRATIONS FORTRAN and its runtime library.

5.2 General FORTRAN Operations
This group of functions is named with the prefix ftn. They include those operations needed to support the actual

FORTRAN language conventions; character manipulation, 3-way branching, generalized DO loops, etc. Also included in

this group are the interface functions used by the C and FORTRAN bias to simplify the translation of FORTRAN I/O

statements.

5.3 Input/Output Operations
This group of functions is named with the prefix fio. As has been discussed in other parts of this manual, the FORTRAN

input/output statements have not been translated into standard C type input/output operations. Rather, they have been

translated into function calls much like the calls that would be generated by an actual FORTRAN compiler.

Each FORTRAN statement is broken into a series of function calls. If the FORTRAN operation specifies any error

operations, then an initial call is made to a function fiostatus, which establishes the error processing conventions to be

used, and a final call is made to fioerror which generates any error branches requested. If no error processing is specified

by the FORTRAN statement, then an error causes the program to exit.

5.3.1 Runtime Error Messages
The actual I/O errors generated along with the name of the function generating them are listed below. The identifier of each

error is a mneumonic which specifies the function which generated it and its cause. The codes specified are those returned

if the I/O statement requests an error status value.

Error Code Function Description

ELUN_EOF -1 fiolun End of file encountered

EOPN_EOF -1 fioopen End of file encountered

ERBV_EOF -1 fiorbiv End of file encountered

ERTX_EOF -1 fiortxt End of file

EWTX_EOF -1 fiowtxt Write beyond end of file

ELUN_RDO 106 fiolun Write to read only file

EINT_NAF 107 fiointu No active file structure

ELUN_NAF 108 fiolun No active file structure

EINT_TMF 109 fiointu Too many files open

ELUN_TMF 110 fiolun Too many files open

ENAM_TMF 111 fioname Too many files open

ESIO_TMF 112 fiostio Too many files open

ECLO_PCF 113 fioclose Physical close failure

EOPN_POF 114 fioopen Physical open failed

ECLO_POF 115 fioclose Physical open failure

EBCK_FRT 116 fioback At front of file

EBCK_DIR 117 fioback Direct access file

ELUN_PWF 118 fiolun Physical write failed

ERWV_PWF 119 fiorwbv Physical write failure

EWBV_PWF 120 fiowbiv Physical write failure

EWEF_PWF 121 fiowef Physical write failure

ERDB_IFS 122 fiordb Invalid format specification

ERDD_IFS 123 fiordd Invalid format specification

ERDF_IFS 124 fiordf Invalid format specification

ERDI_IFS 125 fiordi Invalid format specification

ERDL_IFS 126 fiordl Invalid format specification

ERDS_IFS 127 fiords Invalid format specification

ERDT_IFS 128 fiordt Invalid format specification

EWRB_IFS 129 fiowrb Bad format specification

EWRS_IFS 130 fiowrs Bad format specification

PromulaFortran Translator User's Manual

136

EWRT_IFS 131 fiowrt Bad format specification

EWVL_IFS 132 fiowval Bad format specification

ENXF_EFS 133 fionxtf End of format string

ENXF_BTF 134 fionxtf Bad T format

ENXF_BUS 135 fionxtf Bad B business format string

ENXF_BBF 136 fionxtf Bad BN,Z format

ENXF_WID 137 fionxtf Missing width specification

ENXF_DEL 138 fionxtf Missing terminating delimiter

ENXF_HOL 139 fionxtf Bad Hollerith string

ERCK_BUF 140 fiorchk Internal buffer exceeded

ERDX_MLP 141 fiordx Missing left parenthesis

ERDX_COM 142 fiordx Missing comma

ERDX_MRP 143 fiordx Missing right parenthesis

Error Code Function Description

ERDZ_MLP 144 fiordx Missing left parenthesis

ERDZ_COM 145 fiordx Missing comma

ERDZ_MRP 146 fiordx Missing right parenthesis

ERNL_MNI 147 fiornl Missing namelist identifier

ERNL_MVI 148 fiornl Missing variable identifier

ERNL_UVI 149 fiornl Undefined variable identifier

ERNL_SSV 150 fiornl Subscripted scalar variable

ERNL_NNS 151 fiornl Nonnumeric subscripts

ERNL_TMS 152 fiornl Too many subscripts

ERNL_EQL 153 fiornl Missing equals sign

ERNL_BSI 154 fiornl Bad string input

ERNL_MLP 155 fiornl Complex missing left pren

ERNL_COM 156 fiornl Complex missing comma

ERNL_MRP 157 fiornl Complex missing right pren

ESTD_NNC 158 fiostod Nonnumeric character in field

5.4 Noncomplex Intrinsic Functions
This group of functions is named with the prefix fif. Many of the noncomplex intrinsic functions are part of the C

"standard" C libraries. Insofar as the implementation of the noncomplex intrinsic functions is concerned, the following

functions are assumed to be part of the library supplied with your C compiler.

Name Prototype Description of computation

acos double acos(double) arccosine

asin double asin(double) arcsin

atan double atan(double) arctangent

atan2 double atan2(double,double) arctangent of y/x

cos double cos(double) cosine

cosh double cosh(double) hyperbolic cosine

exp double exp(double) exponential

fabs double fabs(double) absolute value

floor double floor(double) largest integer less than

log double log(double) natural logarithm

log10 double log10(double) base 10 logarithm

sin double sin(double) sine

sinh double sinh(double) hyperbolic sine

sqrt double sqrt(double) square root

tan double tan(double) tangent

tanh double tan(double) hyperbolic tangent

PromulaFortran Translator User's Manual

137

The functions above are referenced directly by GREAT MIGRATIONS FORTRAN in its translations of the intrinsic

functions. In addition, the following functions are used internally in the implementation of the remaining functions.

Name Prototype Description of computation

modf double modf(double,double*) Gets components of a value

pow double pow(double,double) Raises value to a power

5.5 Virtual Memory System
This group of functions is named with the prefix vms. The virtual memory system serves two very different, yet

complementary purposes. The first is to allow programs with very large data needs to be implemented on systems with

limited memory. The second is to make the information within programs available to the GREAT MIGRATIONS

Application Development System and to other programs and tools constructed using the GReat Migrations system. This

topic is discussed extensively in the chapter on the GREAT MIGRATIONS interface in the GREAT MIGRATIONS

FORTRAN Compiler Manual. To achieve these two goals the virtual file manager uses the same data structure as the

GREAT MIGRATIONS Application Development System.

The hardest problem which must be faced by a virtual memory system is determining whether or not a current block is in

memory or is on the file. The approach taken by this implementation uses a block status byte. The total virtual memory

space is divided into n evenly sized blocks, say N of them. A vector N bytes long is then reserved in memory. For any

given block, if the block status is zero, then the block is not in memory. If the status byte is nonzero, then it specifies which

memory block contains it. The advantage of this approach is that it is very fast. The disadvantages are as follows:

1. The overall size of the virtual memory space needed must be known in advance. This is no problem for this

implementation because either a fixed GREAT MIGRATIONS file is used (with known size when it is opened) or the

translator has calculated this value during the translation phase.

2. The maximum memory space that can be used is 254 times the memory block size, which is 1024 bytes in this

implementation. The current maximum is then 254K which is clearly ample given a 640K overall memory limit on the

typical MS-DOS PC.

3. The maximum file size that can be accommodated is limited by the maximum length of the block status vector. Each K

of memory space allows for a megabyte of virtual space, given the 1024 blocksize being used here. So, this is no

problem. A minor problem faced by this algorithm is that the criteria for writing a block to the disk is based on its use

pattern; consequently, a block high in the file might be written before some blocks below it, thus creating potential

'holes' in the file. Though such holes are acceptable to many operating systems, we have decided to avoid them here.

The virtual algorithm must, therefore, remember whether a given block has been placed on the disk because it has valid

information or simply to fill a hole.

5.5.1 The Virtual Memory Management Algorithm
The virtual memory management system is controlled via three basic storage elements:

2 The block status vector

3 The memory block address vector

4 The virtual memory block

The block status vector is the key to this algorithm. There must be one entry for each block of memory. To keep this vector

as memory efficient as possible its entries can be stored as unsigned bytes. The particular values in this vector are as

follows.

PromulaFortran Translator User's Manual

138

Code Meaning

0 This block is not in memory and has no valid data on disk. See discussion

above on holes.

1 This block is not now in memory, but has data on disk 2-255. This block is in

memory and is stored in block i - 2

 Given the block status vector, the current status of any memory block can be determined via a single memory access — no

searching for the block is required. Note that the block status vector is dynamically allocated when the virtual memory

system is initialized.

Assuming first that the desired block is specified as being in memory by the block status vector, then the memory block

address vector contains a pointer to the actual virtual memory block. Since there is an absolute maximum of 254 memory

blocks, the maximum number of entries in the memory block address vector is 254; therefore, this vector is statically

allocated.

The virtual memory blocks are dynamically allocated until there are either 254 of them or until available dynamic memory

is exhausted. Each block is defined via the vmsbtyp structure defined as follows:

#define VMSBSIZ 1024

typedef struct {

 int vbdel;

 int vblru;

 int vbmru;

 long vbadr;

 unsigned char vbdat[VBLKSIZ];

} vmsbtyp;

The members of the structure are defined as follows:

Name Description of use

vbdel A flag indicating whether or not the data in this block has been changed.

vblru The number of that block which immediately precedes this block in the

least-recently used chain. A zero in this member means that this block is

the least-recently used block.

vbmru number of that record which is immediately more-recently used than the

current block or zero if this block is the most-recently used block.

vbdat the actual data contained within this block.

As can be seen from the above structure, the virtual memory system keeps track of the order of reference of the blocks.

When a block must be moved into memory and there are no empty memory blocks, the least recently used memory block is

flushed.

5.5.2 Virtual Memory Global Variables
Internally, the virtual memory system functions are controlled via a set of statically allocated global variables. These are as

follows.

PromulaFortran Translator User's Manual

139

Variable Description of use

vmsbadr The addresses in memory of virtual blocks. Note that there are a

maximum of 254 virtual memory blocks; therefore, this array is statically

allocated.

vmsblock A pointer to the block status vector as described above.

vmsfd The file descriptor for the virtual file.

vmslru Number of the least-recently used block

vmsnblk The number of blocks on the virtual file.

vmsnwr The number of bytes currently written to the virtual file. This value is

needed for the whole avoidance logic.

5.6 Single Precision Complex Arithmetic
This group of functions is named with the prefix cpx. Single precision complex arithmetic is handled entirely via function

references since C contains no complex arithmetic of its own. The functions are straightforward as can be seen in the

following function descriptions. The basic structure used to implement the complex data type is as follows:

typedef struct {

 float cr; /* The real part of the value */

 float ci; /* The imaginary part of the number */

} complex

5.7 Double Precision Complex Arithmetic
Double precision complex arithmetic is handled entirely via function references since C contains no complex arithmetic of

its own. The functions all begin with the prefix dpx and are straightforward as can be seen in the following function

descriptions. The basic structure used to implement the double complex data type is as follows:

typedef struct {

 double cr; /* The real part of the value */

 double ci; /* The imaginary part of the number */

} dcomplex

PromulaFortran Translator User's Manual

140

6. RUNTIME LIBRARY FUNCTION DESCRIPTIONS

The following sections contain the descriptions for the functions in the GREAT MIGRATIONS FORTRAN Runtime

Library.

6.1 CPXABS: Compute the Short Complex Absolute Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

float cpxabs(a)

complex a Contains the value to be transformed

Description:

Computes the value of the short complex absolute value. The result is single precision.

Return value:

The single precision result.

See also: None

6.2 CPXADD: Short Complex Addition

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

float cpxadd(a,b)

complex a The left-hand value

complex b The right-hand value

Description:

Adds two short complex numbers to form a third.

Return value:

The complex result of the addition.

PromulaFortran Translator User's Manual

141

See also: None

6.3 CPXCJG: Compute the Short Complex Conjugate

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxcjg(a)

complex a Contains the value to be transformed

Description:

Computes the complex conjugate of a short complex value. By definition:

c = conj(a) = a.cr - i * a.ci

Return value:

The complex result.

See also: None

6.4 CPXCMP: Short Complex Comparison

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value
float ci The imaginary part of the number

} complex

int cpxcmp(a,b)
complex a The left-hand value
complex b The right-hand value

Description:

Compares two short complex numbers.

Return value:

A zero if the numbers are the same, else a one.

See also: None

PromulaFortran Translator User's Manual

142

6.5 CPXCOS: Compute the Short Complex Cosine

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value
float ci The imaginary part of the number

} complex

complex cpxcos(a)
complex a Contains the value to be transformed

Description:

Computes the value of the short complex cosine of a short complex number. By definition:

cos(a) =
e(i * a) + e(-i * a)

2

Return value:

The short complex result.

See also:

float fifsncs; Compute single precision sin/cosine

6.6 CPXCPX: Convert Two Floats to Short Complex

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxcpx(d1,d2)

double d1 Contains the real value

double d2 Contains the imaginary value

Description:

Forms a short complex number whose real and imaginary parts are specified values.

Return value:

The short complex result.

PromulaFortran Translator User's Manual

143

See also: None

6.7 CPXDBL: Convert Double Precision to Short Complex

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxdbl(dbl)

double dbl Contains the value to be transformed

Description:

Forms a short complex number whose real part is a specified value and whose imaginary part is zero.

Return value:

The short complex result.

See also: None

6.8 CPXDIV: Short Complex Division

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxdiv(a,b)

complex a The numerator

complex b The denominator

Description:

Divides two short complex numbers to form a third.

Return value:

The short complex result of the division.

See also: None

6.9 CPXDPX: Convert Double Complex to Short Complex

Synopsis:

PromulaFortran Translator User's Manual

144

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double dr The real part of the value

double di The imaginary part of the number
} dcomplex

float cpxdpx(dbl)

dcomplex dbl Contains the value to be transformed

Description:

Forms a short complex number whose real and imaginary parts correspond to a double complex number.

Return value:

The short complex result.

See also: None

6.10 CPXEXP: Short Complex Exponential

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxexp(a)

complex a The value to be transformed

Description:

Computes the short complex exponential of a short complex value.

Return value:

The short complex exponential.

See also: None

6.11 CPXIMA: Compute the Imaginary Part of a Short Complex

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number

PromulaFortran Translator User's Manual

145

} complex

float cpxima(a)

complex a Contains the value to be transformed

Description:

Computes the imaginary part of a short complex value. The result is single precision.

Return value:

The single precision result.

See also: None

6.12 CPXLOG: Short Complex Natural Logarithm

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxlog(a)

complex a The value to be transformed

Description:

Computes the short complex natural logarithm of a short complex value.

Return value:

The complex natural logarithm.

See also: None

6.13 CPXLOG10: Short Complex Base 10 Logarithm

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxlog10(a)

complex a The value to be transformed

Description:

PromulaFortran Translator User's Manual

146

Computes the short complex base 10 logarithm of a short complex value.

Return value:

The complex base 10 logarithm.

See also:

cpxlog() Computes complex natural logarithm

6.14 CPXLONG: Convert Short Complex to Long

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

long cpxlong(a)

complex a Contains the value to be transformed

Description:

Computes the real part of a short complex value and converts it to long.

Return value:

The long result.

See also: None

6.15 CPXMUL: Short Complex Multiplication

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxmul(a,b)

complex a The left-hand value

complex b The right-hand value

Description:

Multiplies two short complex numbers to form a third.

PromulaFortran Translator User's Manual

147

Return value:

The short complex result of the multiplication.

See also: None

6.16 CPXNEG: Compute the Short Complex Negative

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxneg(a)

complex a Contains the value to be transformed

Description:

Computes the complex negative of a short complex value.

Return value:

The complex result.

See also: None

6.17 CPXPOL: Short Complex Conversion to Polar

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxpol(a)

complex a The value to be converted

Description:

Converts a complex number into its polar form. By definition (r,i) in Cartesian form is

r * exp(i*)

Return value:

The short complex result of the conversion.

See also: None

PromulaFortran Translator User's Manual

148

6.18 CPXPOW: Raise Short Complex to a Power

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxpow(a,b)

complex a The value to be raised to a power

complex b The value of the power

Description:

Computes the value of a short complex raised to a short complex power.

Return value:

The complex result of the calculation.

See also:

cpxexp() Computes a short complex exponential complex

cpxlog() Computes a short complex logarithm complex

cpxmul() Multiplies two short complex values

6.19 CPXREAL: Compute Real Part of Short Complex

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

float cpxreal(a)

complex a Contains the value to be transformed

Description:

Computes the real part of a short complex value. The result is double precision.

Return value:

The double precision result.

See also: None

PromulaFortran Translator User's Manual

149

6.20 CPXSIN: Compute the Short Complex Sine

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxsin(a)

complex a Contains the value to be transformed

Description:

Computes the value of the short complex sine of a short complex number. By definition:

sin(a) =
e(i * a) - e(-i * a)

 2i

Return value:

The short complex result.

See also: None

6.21 CPXSROOT: Compute Short Complex Square Root

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxsroot(a)

complex a Contains the value to be transformed

Description:

Computes the square root of a short complex value.

Return value:

The short complex result.

See also: None

6.22 CPXSUB: Short Complex Subtraction

PromulaFortran Translator User's Manual

150

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

complex cpxsub(a,b)

complex a The left-hand value

complex b The right-hand value

Description:

Subtracts two short complex numbers to form a third.

Return value:

The short complex result of the subtraction.

See also: None

6.23 DPXABS: Compute the Double Complex Absolute Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

double dpxabs(a)

dcomplex a Contains the value to be transformed

Description:

Computes the value of the double complex absolute value. The result is double precision.

Return value:

The double precision result.

See also: None

6.24 DPXADD: Double Complex Addition

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

PromulaFortran Translator User's Manual

151

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxadd(a,b)

dcomplex a The left-hand value

dcomplex b The right-hand value

Description:

Adds two double complex numbers to form a third.

Return value:

The double complex result of the addition.

See also: None

6.25 DPXCJG: Compute the Double Complex Conjugate

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxcjg(a)

dcomplex a Contains the value to be transformed

Description:

Computes the complex conjugate of a double complex value. By definition:

c = conj(a) = a.cr - i * a.ci

Return value:

The complex result.

See also: None

6.26 DPXCMP: Double Complex Comparison

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

PromulaFortran Translator User's Manual

152

int dpxcmp(a,b)

dcomplex a The left-hand value

dcomplex b The right-hand value

Description:

Compares two double complex numbers.

Return value:

A zero if the numbers are the same, else a one.

See also: None

6.27 DPXCOS: Compute the Double Complex Cosine

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxcos(a)

dcomplex a Contains the value to be transformed

Description:

Computes the value of the double complex cosine of a double complex number. By definition:

cos(a) =
e(i * a) + e(-i * a)

2

Return value:

The double complex result.

See also: None

6.28 DPXCPX: Convert Short Complex to Double Complex

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

typedef struct {

PromulaFortran Translator User's Manual

153

double dr The real part of the value

double di The imaginary part of the number
} dcomplex

dcomplex dpxcpx(sng)

complex sng Contains the value to be transformed

Description:

Forms a double complex number whose real and imaginary parts correspond to a single complex number.

Return value:

The double complex result.

See also: None

6.29 DPXDBL: Convert Double Precision to Double Complex

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxdbl(dbl)

double dbl Contains the value to be transformed

Description:

Forms a double complex number whose real part is a specified value and whose imaginary part is zero.

Return value:

The double complex result.

See also: None

6.30 DPXDIV: Double Complex Division

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxdiv(a,b)

dcomplex a The numerator

PromulaFortran Translator User's Manual

154

dcomplex b The denominator

Description:

Divides two double complex numbers to form a third.

Return value:

The double complex result of the division.

See also: None

6.31 DPXDPX: Convert Two Doubles to Double Complex

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxdpx(d1,d2)

double d1 Contains the real value

double d2 Contains the imaginary value

Description:

Forms a double complex number whose real and imaginary parts are specified values.

Return value:

The double complex result.

See also: None

6.32 DPXEXP: Double Complex Exponential

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxexp(a)

dcomplex a The value to be transformed

Description:

Computes the double complex exponential of a double complex value.

PromulaFortran Translator User's Manual

155

Return value:

The double complex exponential.

See also: None

6.33 DPXIMA: Compute Imaginary of Double Complex

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

double dpxima(a)

dcomplex a Contains the value to be transformed

Description:

Computes the imaginary part of a short complex value. The result is double precision.

Return value:

The double precision result.

See also: None

6.34 DPXLOG: Double Complex Natural Logarithm

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxlog(a)

dcomplex a The value to be transformed

Description:

Computes the double complex natural logarithm of a double complex value.

Return value:

The double complex natural logarithm.

See also: None

PromulaFortran Translator User's Manual

156

6.35 DPXLOG10: Double Complex Base 10 Logarithm

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxlog10(a)

dcomplex a The value to be transformed

Description:

Computes the double complex base 10 logarithm of a double complex value.

Return value:

The complex base 10 logarithm.

See also:

dpxlog() Computes complex natural logarithm

6.36 DPXLONG: Convert Double Complex to Long

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

long dpxlong(a)

dcomplex a Contains the value to be transformed

Description:

Computes the real part of a double complex value and converts it to long.

Return value:

The long result.

See also: None

6.37 DPXMUL: Double Complex Multiplication

PromulaFortran Translator User's Manual

157

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxmul(a,b)

dcomplex a The left-hand value

dcomplex b The right-hand value

Description:

Multiplies two double complex numbers to form a third.

Return value:

The double complex result of the multiplication.

See also: None

6.38 DPXNEG: Compute the Double Complex Negative

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxneg(a)

dcomplex a Contains the value to be transformed

Description:

Computes the negative of a double complex value.

Return value:

The double complex result.

See also: None

6.39 DPXPOL: Double Complex Conversion to Polar

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

PromulaFortran Translator User's Manual

158

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxpol(a)

dcomplex a The value to be converted

Description:

Converts a complex number into its polar form. By definition (r,i) in Cartesian form is

r * exp(i*))

Return value:

The double complex result of the conversion.

See also: None

6.40 DPXPOW: Raise Double Complex to a Power

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxpow(a,b)

dcomplex a The value to be raised to a power

dcomplex b The value of the power

Description:

Computes the value of a short complex raised to a short complex power.

Return value:

The complex result of the calculation.

See also:

dpxexp() Computes a double complex exponential

dpxlog() Computes a double complex logarithm

dpxmul() Multiplies two double complex values

6.41 DPXREAL: Compute Real Part of Double Complex

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

PromulaFortran Translator User's Manual

159

double ci The imaginary part of the number
} dcomplex

double dpxreal(a)

dcomplex a Contains the value to be transformed

Description:

Computes the real part of a short complex value. The result is double precision.

Return value:

The double precision result.

See also: None

6.42 DPXSIN: Compute the Double Complex Sine

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxsin(a)

dcomplex a Contains the value to be transformed

Description:

Computes the value of the double complex sine of a double complex number. By definition:

sin(a) =
e(i * a) - e(-i * a)

 2 i

Return value:

The double complex result.

See also: None

6.43 DPXSROOT: Compute Double Complex Square Root

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

PromulaFortran Translator User's Manual

160

dcomplex dpxsroot(a)

dcomplex a Contains the value to be transformed

Description:

Computes the square root of a double complex value.

Return value:

The double complex result.

See also: None

6.44 DPXSUB: Double Complex Subtraction

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

dcomplex dpxsub(a,b)

dcomplex a The left-hand value

dcomplex b The right-hand value

Description:

Subtracts two double complex numbers to form a third.

Return value:

The double complex result of the subtraction.

See also: None

6.45 FIFAMAX0: FORTRAN Intrinsic Function AMAX0

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

float fifamax0(a1,a2)

long a1 First value to be compared

long a2 Second value to be compared

Description:

Determines which of two long integer values is the largest.

Return value:

PromulaFortran Translator User's Manual

161

The largest long integer value converted to single precision.

See also: None

6.46 FIFAMIN0: FORTRAN Intrinsic Function AMIN0

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

float fifamin0(a1,a2)

long a1 First value to be compared

long a2 Second value to be compared

Description:

Determines which of two long integer values is the smallest.

Return value:

The smallest long integer value converted to single precision.

See also: None

6.47 FIFASC50: FORTRAN External Function ASC50

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fifasc50(icnt,input,output)

int icnt; Number of characters to be converted

void* input; Input Radix-50 characters to be converted

void* output; ASCII characters return area

Description:

The fifasc50 function converts a specified number of Radix-50 characters to ASCII. If the input word contains an illegal

Radix-50 character, a "?" is entered into the ASCII string.

Radix-50 is a special character representation in which up to 3 characters can be encoded and packed into 16 bits. The

Radix-50 characters and their corresponding code values are:

Character Radix-50 Value
space 0

A - Z 1 - 26

a - z 1 - 26

$ 27

. 28

0 - 9 30 - 39

The radix-values are stored three characters per word according to the formula:

c1 * 40 * 40 + C2 * 40 + c3

PromulaFortran Translator User's Manual

162

where the characters are numbered from left to right. If the number of characters is not a multiple of three, it is treated as

though it were padded to the right with blanks — i.e., 0.

Note they are called "radix-50" because "40" is "50" when written in octal.

Return value:

None the function is void.

See also: None

6.48 FIFCHAR: FORTRAN Intrinsic Function CHAR

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

char* fifchar(iv)

int iv Value to be converted

Description:

Converts a numeric display code, or "lexical value" or "collating weight" into its character code. The point of this function

is that character values on the host processor are not necessarily the same as those on the machine for which a given

FORTRAN program was written. All numeric display code references in a source FORTRAN program are passed through

this function either by the translator directly or by the other runtime functions included in this library. Note that if you wish

this function to return some value other than the host processor values, you must modify it. Typically this modification

would take the form of a lookup table reference.

Return value:

A pointer to a 1-character string containing the character corresponding to the display code.

See also: None

6.49 FIFCOS: FORTRAN Intrinsic Function COS

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

float fifcos(x)

float x; Argument containing the value

Description:

Computes the cosine of a floating point argument using single precision.

Return value:

The single precision value as computed above.

See also:

fifsncs() Compute sine or cosine

PromulaFortran Translator User's Manual

163

6.50 FIFDATE: External Function DATA

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fifdate(cl,ncl)

char* cl; Returns the date in string form

int ncl; Length of the date return string

Description:

Obtains the current date from the operating system.

Return value:

The current date in mm/dd/yy form.

See also:

fioconv General dialect convention flags

6.51 FIFDDIM: FORTRAN Intrinsic Function DDIM

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

double fifddim(a1,a2)

double a1 First value in difference

double a2 Second value in difference

Description:

Computes a positive difference.

Return value:

If a1 is greater than a2 then the value of a1 - a2 is returned, else zero is returned.

See also: None

6.52 FIFDINT: FORTRAN Intrinsic Function DINT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

double fifdint(a)

double a Argument containing the value

Description:

Truncates its double precision argument to its integer value. In particular:

fifdint(a) = 0 if |a| < 1

PromulaFortran Translator User's Manual

164

 = the largest integer with the same sign that does not exceed a if |a| >= 1

Return value:

The double precision value as computed above.

See also: None

6.53 FIFDMAX1: FORTRAN Intrinsic Function DMAX1

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

double fifdmax1(a1,a2)

double a1 First value to be compared

double a2 Second value to be compared

Description:

Determines which of two double precision values is the largest.

Return value:

The largest double precision value.

See also: None

6.54 FIFDMIN1: FORTRAN Intrinsic Function DMIN1

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

double fifdmin1(a1,a2)

double a1 First value to be compared

double a2 Second value to be compared

Description:

Determines which of two double precision values is the smallest.

Return value:

The smallest double precision value.

See also: None

6.55 FIFDMOD: FORTRAN Intrinsic Function

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

double fifdmod(num,dem)

double num The numerator for the calculation

double dem The denominator for the calculation

PromulaFortran Translator User's Manual

165

Description:

Computes the value of the remainder of num divided by dem. If dem is zero, the result is zero. For nonzero values the result

is calculated as follows:

num - (floor (
num

dem
) * dem)

where floor is the standard C floor function.

Return value:

The value as computed above.

See also: None

6.56 FIFDNINT: FORTRAN Intrinsic Function DNINT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

double fifdnint(a)

double a; Argument containing the value

Description:

Computes the nearest integer to its double precision argument. In particular:

fifdnint(a) = fifdint(a+0.5) if a >= 0.0

 = fifdint(a-0.5) if a <= 0.0

where fifdint is the FORTRAN intrinsic function DINT.

Return value:

The value as computed above.

See also:

fifdint() FORTRAN intrinsic function DINT

6.57 FIFDSIGN: FORTRAN Intrinsic Function DSIGN

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

double fifdsign(mag,sgn)

double mag The magnitude for the result

double sgn The sign for the result

Description:

Returns a value after the transfer of a sign. The result is |mag| if sgn is at least zero, else it is -|mag|.

PromulaFortran Translator User's Manual

166

Return value:

The value as computed above.

See also: None

6.58 FIFEQF: FORTRAN Intrinsic Function EQF

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fifeqf(a,b)

float a; First value to be compared

float b; Second value to be compared

Description:

Compares two floating point numbers to determine if they would be equal in single precision floating point form.

Return value:

The short integer result of the comparison.

See also: None

6.59 FIFEXIT: FORTRAN Exit Subroutine

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fifexit(numb)

long* numb; Message to be displayed at console, i.e: stderr

Description:

Exits to the operating system.

Return value:

None, the function exits to the operating system and never returns.

See also: None

6.60 FIFGETAR: FORTRAN Get Command Line Arguments

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fifgetarg(k, cl,ncl)

long k;

PromulaFortran Translator User's Manual

167

char* cl;

int ncl;

Description:

Copies the kth command line argument into a string variable arg. The 0th argument is the command name.

Return value:

None, the function is void.

See also: None

6.61 FIFGETCL: FORTRAN Get Command Line Subroutine

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fifgetcl(cl,ncl)

char* cl;

int ncl;

Description:

Copies the command line parameters as entered by the user into a string variable. The individual parameters are separated

by spaces.

Return value:

None, the function is void.

See also: None

6.62 FIFGETENV: FORTRAN Get Value of Environment Variables

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fifgetenv(ename,lenin,evalue,lenout)

char* ename Name of environment variable

int lenin Length of name

char* evalue Returns value of environment variable

int lenout Length available for variable value

Description:

Searches the environment list for a string of the form ename=value and returns value in evalue if such string is present,

otherwise fills evalue with blanks.

Return value:

None, the function is void.

PromulaFortran Translator User's Manual

168

See also: None

6.63 FIFHBIT: FORTRAN High Bit Management

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fifhbit(chrs,nbyte)

unsigned char* chrs; Vector of characters

int nbyte; Number of bytes in vector

Description:

In several dialects of FORTRAN, especially Prime FORTRAN 77, the normal internal character representation is a seven

bit code with the 8th bit always set on, while the extended characters have the 8th bit off. The normal external character

representations use the opposite conventions. This function converts from one representation to the other by toggling the

high order bit in each character of the input vector.

Return value:

None, the function is void.

See also: None

6.64 FIFI2ABS: FORTRAN Intrinsic Function I2ABS

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

short fifi2abs(a)

short a Value whose absolute value is needed

Description:

Computes the absolute value of a short integer argument.

Return value:

The short integer result.

See also: None

6.65 FIFI2DAT: FORTRAN External Function I2DATE

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fifi2date(mm,dd,yy)

short* mm; Returns month value

short* dd; Returns day value

short* yy; Returns year value

PromulaFortran Translator User's Manual

169

Description:

Obtains the current date from the operating system and stores the month, day, and year in the parameters.

Return value:

None the function is void.

See also: None

6.66 FIFI2DIM: FORTRAN Intrinsic Function I2DIM

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

short fifi2dim(a1,a2)

short a1 First value in difference

short a2 Second value in difference

Description:

Computes a positive difference.

Return value:

If a1 is greater than a2 then the value of a1 - a2 is returned, else zero is returned.

See also: None

6.67 FIFI2DINT: FORTRAN Intrinsic Function I2DINT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

short fifi2dint(a)

double a Argument containing the value

Description:

Truncates its double precision argument to a short integer value. In particular:

fifi2dint(a) = 0 if |a| < 1

 = the largest integer with the same sign as a that does not exceed a if |a| >= 1

Return value:

The value as computed above.

See also: None

6.68 FIFI2MAX0: FORTRAN Intrinsic Function I2MAX0

Synopsis:

PromulaFortran Translator User's Manual

170

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

short fifi2max0(a1,a2)

short a1 First value to be compared

short a2 Second value to be compared

Description:

Determines which of two short integer values is the largest.

Return value:

The largest short integer value.

See also: None

6.69 FIFI2MIN0: FORTRAN Intrinsic Function I2MIN0

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

short fifi2min0(a1,a2)

short a1 First value to be compared

short a2 Second value to be compared

Description:

Determines which of two short integer values is the smallest.

Return value:

The smallest short integer value.

See also: None

6.70 FIFI2MOD: FORTRAN Intrinsic Function I2MOD

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

short fifi2mod(num,dem)

short num The numerator for the calculation

short dem The denominator for the calculation

Description:

Computes the value of the remainder of num divided by dem. If dem is zero, then the result is zero.

Return value:

The value as computed above.

PromulaFortran Translator User's Manual

171

See also: None

6.71 FIFI2NINT: FORTRAN Intrinsic Function I2NINT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

short fifi2nint(a)

double a Argument containing the value

Description:

Computes the nearest short integer to its double precision argument. In particular:

fifnint(a) = fifidint(a+0.5) if a >= 0.0

 = fifidint(a-0.5) if a <= 0.0

where fifidint is the FORTRAN intrinsic function IDINT.

Return value:

The value as computed above.

See also:

fifidint() FORTRAN intrinsic function IDINT

6.72 FIFI2POW: FORTRAN Intrinsic Function I2POW

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifi2pow(a,b)

short a; Value to be raised to a power

short b; Power to be used

Description:

Raises a short integer value to a short integer power.

Return value:

The short integer result.

See also: None

6.73 FIFI2SHF: FORTRAN Intrinsic Function I2SHFT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

short fifi2shf(a,n)

PromulaFortran Translator User's Manual

172

short a Value to be shifted

int n Number of positions to be shifted

Description:

Shifts the short argument left or right the specified number of bit positions depending upon whether the position count is

positive or negative.

Return value:

The short integer result.

See also: None

6.74 FIFI2SIGN: FORTRAN Intrinsic Function I2SIGN

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

short fifi2sign(mag,sgn)

short mag The magnitude for the result

short sgn The sign for the result

Description:

Returns a value after the transfer of a sign. The result is |mag| if sgn is at least zero, else it is -|mag|.

Return value:

The value as computed above.

See also: None

6.75 FIFIABS: FORTRAN Intrinsic Function IABS

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifiabs(a)

long a Value whose absolute value is needed

Description:

Computes the absolute value of a long integer argument.

Return value:

The long integer result.

See also: None

6.76 FIFIARGC: FORTRAN Get Command Line Argument Count

PromulaFortran Translator User's Manual

173

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifiargc()

Description:

Returns the index number of command line arguments — i.e., the number of arguments minus one, where the program

name counts as one argument.

Return value:

The number of command line arguments minus one.

See also: None

6.77 FIFIBIT: FORTRAN Intrinsic Function IBIT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fifibit(bits,ibit,ival)

unsigned char* bits; Bit vector to receive new bit value

int ibit; Number of bit to receive value

int ival; Bit value to be inserted

Description:

Set a specified bit in an arbitrary bit string equal to a specified value. The left-most bit position is numbered 1, with higher

bits receiving higher values.

Return value:

None, the function is void.

See also: None

6.78 FIFICHAR: FORTRAN Intrinsic Function ICHAR

Synopsis:

#include "fortran.h" Standard C header file

int fifichar(c1)

char* c1 Character to be converted

Description:

Converts a character code into its numeric display code, or "lexical value" or "collating weight". The point of this function

is that character values on the host processor are not necessarily the same as those on the machine for which a given

FORTRAN program was written. All character "value" references in a source FORTRAN program are passed through this

function either by the translator directly or by the other runtime functions included in this library. Note that if you wish this

function to return some value other than the host processor values, then you must modify it. Typically this modification

would take the form of a lookup table reference.

PromulaFortran Translator User's Manual

174

Return value:

The character value directly.

See also: None

6.79 FIFIDIM: FORTRAN Intrinsic Function IDIM

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifidim(a1,a2)

long a1 First value in difference

long a2 Second value in difference

Description:

Computes a positive difference.

Return value:

If a1 is greater than a2 then the value of a1 - a2 is returned, else zero is returned.

See also: None

6.80 FIFIDINT: FORTRAN Intrinsic Function IDINT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifidint(a)

double a Argument containing the value

Description:

Truncates its double precision argument to a long integer value. In particular:

fifidint(a) = 0 if |a| < 1

= the largest integer with the same sign that does not exceed a if |a| >= 1

Return value:

The value as computed above.

See also: None

6.81 FIFINDEX: FORTRAN Intrinsic Function INDEX

Synopsis:

PromulaFortran Translator User's Manual

175

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fifindex(s,ns,c,nc)

char* s Main string

int ns Length of main string

char* c Substring

int nc Length of substring

Description:

Returns the location of a substring within a string. Note that the arguments are two FORTRAN style strings, which means

that the length of each string must also be sent.

Return value:

If the substring occurs within the main string, the result is an integer indicating the starting position (relative to 1) of the

first occurrence of the substring within the main string. If the substring does not occur within the main string, a zero is

returned.

See also: None

6.82 FIFIPOW: FORTRAN Intrinsic Function IPOW

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifipow(a,b)

long a; Value to be raised to a power

long b; Power to be used

Description:

Raises a long integer value to a long integer power.

Return value:

The long integer result.

See also: None

6.83 FIFISHF: FORTRAN Intrinsic Function ISHFT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifishf(a,n)

long a Value to be shifted

int n Number of positions to be shifted

Description:

Shifts the long argument left or right the specified number of bit positions depending upon whether the position count is

positive or negative.

PromulaFortran Translator User's Manual

176

Return value:

The long integer result.

See also: None

6.84 FIFISIGN: FORTRAN Intrinsic Function ISIGN

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifisign(mag,sgn)

long mag The magnitude for the result

long sgn The sign for the result

Description:

Returns a value after the transfer of a sign. The result is |mag| if sgn is at least zero, else it is -|mag|.

Return value:

The value as computed above.

See also: None

6.85 FIFMAX0: FORTRAN Intrinsic Function MAX0

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifmax0(a1,a2)

long a1 First value to be compared

long a2 Second value to be compared

Description:

Determines which of two long values is the largest.

Return value:

The largest long value.

See also: None

6.86 FIFMAX1: FORTRAN Intrinsic Function MAX1

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifmax1(a1,a2)

float a1 First value to be compared

PromulaFortran Translator User's Manual

177

float a2 Second value to be compared

Description:

Determines which of two double precision values is the largest.

Return value:

The largest value converted to a long integer.

See also: None

6.87 FIFMIN0: FORTRAN Intrinsic Function MIN0

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifmin0(a1,a2)

long a1 First value to be compared

long a2 Second value to be compared

Description:

Determines which of two long values is the smallest.

Return value:

The smallest long value.

See also: None

6.88 FIFMIN1: FORTRAN Intrinsic Function MIN1

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifmin1(a1,a2)

float a1 First value to be compared

float a2 Second value to be compared

Description:

Determines which of two double precision values is the smallest.

Return value:

The smallest value converted to a long integer.

See also: None

6.89 FIFMOD: FORTRAN Intrinsic Function MOD

Synopsis:

PromulaFortran Translator User's Manual

178

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifmod(num,dem)

long num The numerator for the calculation

long dem The denominator for the calculation

Description:

Computes the value of the remainder of num divided by dem. If dem is zero, then the result is zero.

Return value:

The value as computed above.

See also: None

6.90 FIFNEF: FORTRAN Intrinsic Function NEF

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fifnef(a,b)

float a; First value to be compared

float b; Second value to be compared

Description:

Compares two floating point numbers to determine if they would be unequal in single precision floating point form.

Return value:

The short integer result of the comparison.

See also: None

6.91 FIFNINT: FORTRAN Intrinsic Function NINT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fifnint(a)

double a Argument containing the value

Description:

Computes the nearest integer to its double precision argument. In particular:

fifnint(a) = fifidint (a + 0.5) if a ≥ 0.0

 = fifidint (a - 0.5) if a ≤ 0.0

where fifidint is the FORTRAN intrinsic function IDINT.

PromulaFortran Translator User's Manual

179

Return value:

The value as computed above.

See also:

fifidint() FORTRAN intrinsic function IDINT

6.92 FIFRAD50: FORTRAN External Function IRAD50

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fifrad50(icnt,input,output)

int icnt; Number of characters to be converted

void* input; Input characters to be converted

void* output; Radix-50 characters return area

Description:

The fifrad50 function converts a specified number of ASCII characters to Radix-50. Conversion stops on the first non-

Radix-50 character encountered in the input, or when the specified number of characters have been converted.

Radix-50 is a special character representation in which up to three characters can be encoded and packed into 16 bits. The

Radix-50 characters and their corresponding code values are:

Character Radix-50 Value

space 0

A - Z 1 - 26

a - z 1 - 26

$ 27

. 28

0 - 9 30 - 39

The radix-values are stored three characters per word according to the formula:

 c1 * 40 * 40 + C2 * 40 + c3

where the characters are numbered from left to right. If the number of characters is not a multiple of three, then it is treated

as though it were padded to the right with blanks — i.e., 0.

Note they are called "radix-50" because "40" is "50" when written in octal.

Return value:

The number of characters actually converted.

See also: None

6.93 FIFRBIT: FORTRAN Intrinsic Function RBIT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

PromulaFortran Translator User's Manual

180

void fifrbit(bits,nbyte)

unsigned char* bits; Bit vector to be reversed

int nbyte; Number of bytes in bit vector

Description:

Reverses the order of the bytes in a bit string.

Return value:

None, the function is void,

See also: None

6.94 FIFSIN: FORTRAN Intrinsic Function SIN

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

float fifsin(x)

float x; Argument containing the value

Description:

Computes the sine of a floating point argument using single precision.

Return value:

The value as computed above.

See also:

fifsncs() Compute sine or cosine

6.95 FIFSNCS: FORTRAN Single Precision Sine/Cosine

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

float fifsncs(x,cosflag)

float x; Argument containing the value

int cosflag; Perform cosine flag

Description:

Computes the sine or cosine of a single precision value which has been promoted to double via the C promotion rules.

Return value:

The double precision value as computed above.

See also: None

PromulaFortran Translator User's Manual

181

6.96 FIFSTRGV: FORTRAN String Value Conversion

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

char* fifstrgv(str,nc)

char* str; String to be converted

int nc; Number of characters in string

Description:

Copies a character string into a local buffer and then pads that buffer to 8 characters with blanks, so that the string can be

compared to a character string which has been hidden in a noncharacter variable. Note that such hiding always pads the

numeric with blanks out to its natural size. This function is needed for situations like

F(K .EQ. 'Y')

where K is a noncharacter variable. The translation of this would be

if (k == *(typeof(k)*) fifstrv ("Y",1))

Return value:

A pointer to a buffer containing the string value.

See also: None

6.97 FIFSYSTM: FORTRAN External Function SYSTEM

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fifsystm(cl,ncl)

char* cl String containing command to be executed

int ncl Length of the execution string

Description:

Executes the command contained in the character string and then resumes execution of the current program. The problem

addressed by this function is that "system" requires a nul-terminated string; while the string received is blank-padded with

no terminator.

Return value:

A system-dependent integer status from the command. In UNIX systems, the status return is the value returned by exit.

See also: None

6.98 FIFTAN: FORTRAN Intrinsic Function TAN

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

PromulaFortran Translator User's Manual

182

float fiftan(x)

float x; Argument containing the value

Description:

Computes the tangent of a floating point argument.

Return value:

The value as computed above.

See also: None

6.99 FIFTIME: FORTRAN External Function TIME

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiftime(cl,ncl)

char* cl; Returns the time in string form

int ncl; Length of the time return string

Description:

Obtains the current time from the operating system.

Return value:

The current time in hr:mi:sec form.

See also: None

6.100 FIFXBIT: FORTRAN Intrinsic Function XBIT

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fifxbit(bits,ibit)

unsigned char* bits; Bit vector to receive new bit value

int ibit; Number of bit to receive value

Description:

Extract a specified bit value from an arbitrary bit string. The left-most bit position is numbered 1, with higher bits receiving

higher values.

Return value:

The function returns a one or a zero depending upon whether the bit specified is on or off.

See also: None

6.101 FIFXCREP: FORTRAN Extended Character Representation

Synopsis:

PromulaFortran Translator User's Manual

183

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

char* fifxcrep(chrs)

char* chrs; Vector of characters

Description:

In several dialects of FORTRAN, especially Prime FORTRAN 77, the normal internal character representation is a seven

bit code with the 8th bit always set on, while the extended characters have the 8th bit off. The normal external character

representations use the opposite conventions. This function converts string constants to the extended representation to make

them compatible with other "internal" characters.

Return value:

A pointer to the result string.

See also: None

6.102 FIOBACK: Backspace a FORTRAN File

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fioback()

Description:

This function backspaces the file associated with the "current" FORTRAN file as specified in the global variable fiocurf.

For files with fixed record lengths, this operation involves moving backwards in the file by the length of one record. For

text files, this means moving backwards in the file to the position immediately following the second carriage-return line-

feed character pair which immediately precedes the current record. For other types of files, no backspace is possible. Note

that if the file is currently positioned at its beginning, no operation is performed.

Return value:

A zero if the backspace was successful, else an error code. See the general discussion of FORTRAN I/O capabilities for a

listing of the possible error codes.

See also:

fioerror() Performs standard error processing

6.103 FIOBFOUT: Business Format Output

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiobfout(value,bfmt)

double value; Value to be converted

char* bfmt; Business formatting descriptor string

PromulaFortran Translator User's Manual

184

Description:

This utility function controls the conversion of a double precision value to string form under the control of a business

formatting descriptor string. The length of the string determines the field width of the final display. If this width is too small

for the number, then the output will be a string of asterisks filling the field. Valid characters for the string are:

+ * Z $ # , . CR

The use of these valid characters is explained below:

Plus (+):

If only the first character is +, then the sign of the number (+ or -) is entered in the leftmost portion of the field (fixed sign).

If the string begins with more than one + sign, they will be replaced by blanks and the sign of the number (+ or -) will be

printed in the field position immediately to the left of the first printing character of the number (floating sign). If the

rightmost character of the string is +, then the sign of the number (+ or -) will be printed in that field position following the

number (trailing sign).

Minus (-):

The minus sign behaves the same as a plus sign except that a space (blank) is entered instead of a + if the number is

positive (plus sign suppression).

Dollar sign ($):

A dollar sign may at most be preceded in the string by an optional fixed sign. A single dollar sign will cause a $ to be

printed in the corresponding position in the output field (fixed dollar). Multiple dollar signs will be replaced by printing

characters in the number, and a single $ will be printed in the position immediately to the left of the leftmost printing

character of the number (floating dollar).

Asterisk (*):

Asterisks may be preceded only by an optional fixed sign and/or a fixed dollar. Asterisks in positions used by digits of the

number will be replaced by those digits. The remainder will be printed as asterisks (field filling).

Zed (Z):

If the digit corresponding to a Z in the output number is a leading zero, a space (blank) will be printed in that position;

otherwise, the digit in the number will be printed (leading-zero suppression).

Number sign (#):

The number sign indicates a digit position not subject to leading-zero suppression: the digit in the number will be printed

in its corresponding portion whether zero or not (zero non-suppression).

Decimal point (.):

A decimal point indicates the position of the decimal point in the output number. Only the # sign and either trailing signs or

credit (CR) may follow the decimal point.

Comma (,):

Commas may be placed after any leading character, but before the decimal points. If a significant character of the number

(not a sign or dollar) precedes the comma, a comma will be printed in that position. If not preceded by a significant

character, a space will be printed in this position unless the comma is in an asterisk field. In that case an * will be printed in

that position.

PromulaFortran Translator User's Manual

185

Credit (CR):

The characters CR may only be used as the last two (rightmost) characters of the string. If the number is positive, two

spaces will be printed following it. If negative, the letters CR will be printed.

Return value:

None, the function is void. The global variable fiocrec is updated to contain the new field, and the variable fionchar is

updated to reflect the new character count in the coded communications record.

See also: None

6.104 FIOCLOSE: Close Current FORTRAN File

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fioclose()

Description:

This function closes the file associated with the "current" FORTRAN file as specified in the global variable fiocurf.

Return value:

A zero if the close was successful, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Performs standard error processing

6.105 FIOCPATH: Convert Pathname

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiocpath(pathname,cinfo)

char* pathname Pathname to be converted

unsigned char* cinfo Conversion information table

Description:

Converts a pathname as it appears in an OPEN or open-related statement into a form compatible with the target platform.

The actual conversion information is stored in a conversion information table which has the following structure:

Byte Description of content

0 Directory separation character

1 Exclude directories from pathname flag

2 Case conversion code (0 = none, 1 = toupper, 2 = tolower)

3+ Other conversions string

PromulaFortran Translator User's Manual

186

4+ Prefix to be added to name (length,characters)

5+ Conversions list (two Pascal-style strings)

6 Nul termination byte

The conversion information table itself is constructed via function "fiorpath".

Return value:

None, the function is void; however, the content of the pathname parameter is altered to reflect the conversion.

See also:

fiorpath() Reads the path conversion information used here

fioshl() Shift string left

fioshr() Shift string right

6.106 FIODTOS: Convert Double Value to String

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiodtos(val,ndig,pdecpt,psign,dspdig)

double val Value to be converted

int ndig Number of digits to produce

int* pdecpt Returns position of decimal point

int* psign Returns the sign of the value

char* dspdig Returns the string produced

Description:

ANSI C expects that all conversions of floating point values to string be performed via the sprintf function. Though this

can be done, most generalized applications prefer to perform their own editing operations, and require only a raw

conversion be performed. This function performs that conversion using whatever facilities are available with a particular

platform.

This function converts the floating point number val to a character string. It stores precisely ndig digits in dspdig

followed by a null-byte. If the number of digits in val exceeds ndig, the last digit is rounded; if the number of digits is less

than ndig, then dspdig is padded with zeros. The parameter pdecpt points to an integer value giving the position of the

decimal point with respect to the beginning of the string; and psign returns zero if val is positive; else one.

Return value:

None, the function is void.

See also: None

6.107 FIOERROR: Perform FORTRAN I/O Error Processing

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fioerror(clear)

PromulaFortran Translator User's Manual

187

int clear Should error control be cleared?

Description:

If the FORTRAN I/O runtime system encounters an error, it sets an error code and calls this function. This function either

sets an error return value or exits to the operating system with an error message. In the case where an error code is returned

to the calling function, the parameter clear specifies whether or not the error processing control variables should be

cleared prior to the return.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiocurf Pointer to current FORTRAN file

fioitos() Converts an integer to a string

fioerch Specifies presence of error checking

fioier Code for actual error encountered

fiostat Returns an error code or zero

6.108 FIOFDATA: FORTRAN File Data

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiofdata(option,str,ns)

int option Specifies which data is being specified

char* str String information

int ns String length or integer information

Description:

This function is used to specify the various file data options associated with the current FORTRAN file structure. The

particular data being specified is defined by the option parameter as follows:

Option Description of data

1 Specifies the file name to be assigned to the file. This name may have no more than 39 characters. If the name

is NULL or if it is all blank, then no name is assigned. If the file is opened with no name assigned, then the

open function will request a name from stdinp via stdout.

2 Specifies the status of the file. Only the first character of the string parameter is used as follows:

Char Meaning

O,o Old — the file already exists, do not create it.

N,n New — the file does not exist, create it even if this means destroying an existing file with the

same name.

S,s Scratch — the same as new, except that the file is removed when it is closed.

U,u Unknown — if the file exists it is opened, if it does not exist then it is created.

3 Specifies the access type of the file. Only the first character of the string parameter is used as follows:

Char Meaning

S,s Sequential — the file is opened for sequential access.

PromulaFortran Translator User's Manual

188

D,d Direct — the file is opened for direct access.

4 Specifies the form of the file. Only the first character of the string parameter is used as follows:

Char Meaning

F,f the records are formatted

U,u the records are unformatted

5 Specifies the record size for the file as contained in the parameter ns. The parameter string is ignored.

6 Specifies the convention for treating blanks in numeric input fields. Only the first character of the string

parameter is used as follows:

Char Meaning

N NULL — blank characters in numeric formatted input fields are ignored, except that a field of

all blanks is zero.

Z ZERO — Blanks are treated as zeros.

7 Specifies that the file is readonly.

8 Specifies that the file is to be open for shared access.

9 Specifies the record type.

10 Specifies the carriage control conventions.

11 Specifies a pointer to the associated variable.

12 Specifies the maximum number of records on the file.

13 Specifies a pointer to receive the number of the unit assigned to the file.

14 Specifies the associated buffer address along with its size.

15 Specifies a buffer block size.

Return value:

None, this function is void.

See also: None

6.109 FIOFEND: End Format Processing

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiofend()

Description:

Clears the format control variables to end processing with the current format.

Return value:

None, the function is void.

See also: None

PromulaFortran Translator User's Manual

189

6.110 FIOFFLD: Get Next Free-Form Field

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fioffld()

Description:

This function locates the start of the next unit of information when free-form reads are being performed. It skips over

blanks and commas. If an end-of-record is encountered, then it reads the next physical record from the current file. The

major complexity in this routine has to do with repeat counts and null-values. Note that when a "/" character is encountered,

all remaining values are set to null.

Return value:

The function returns a 1 if there is a non-null value to be read. In this case, fioicol points to the first significant character

of this value. A zero is returned if a null value is to be read. From the standpoint of the calling function, this means that the

corresponding input value is to remain unchanged.

See also:

fiospace() Skip over white space

6.111 FIOFINI: Initialize A FORTRAN Format

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiofspec = 0 Current format specification

char* fiosadr = NULL Format string location

char* fiocfmt = NULL Current format position

char** fiofrmt = NULL Current format address list

int fiofstat = 0 Current processing state

int fioifmt = 0 Number of current format entry

int fioiresc = 0 Number of current rescan entry

int fiomaxc = 0 Maximum characters in output line

int fionfmt = 0 Number of entries in format list

int fionpren = 0 Parenthetical nesting

char* fiorscan = NULL Current rescan position

int fiorscnt = 0 Rescan count value

char fiobfmt[40] Business formatting string

char* fiovfmt = NULL Start of variable format

int fiovflen = 0 Length of variable format

int fiofini(fmt,nfmt)

char** fmt Pointer to the format or format pointers

int nfmt Number of format pointers or type

Description:

PromulaFortran Translator User's Manual

190

This function initializes the FORMAT environment needed by the FORTRAN style input/output statements. There is a

minor problem associated with the processing of FORTRAN style FORMATS in C, having to do with "maximum string

length". In theory, since a C string consists of a sequence of nonzero characters terminated by a zero byte, it can be of any

length desired. Unfortunately, all C compilers place a limit on the maximum length that a string constant may have,

typically 256. It is not at all unusual for FORMAT specification strings to be very long, and they are typically defined as

constants at compile time. Fortunately, though length of an individual string constant is limited, C has a very neat notation

for defining a constant set of pointers to constant strings. Thus, a long format string can be written very conveniently as a

sequence of individual lines as follows:

static char fmt01[] = {

"(T2,20A4,//,T2,'MASS (M) UNITS = ',2A4,/,"

"T2,'LENGTH (L) UNITS = ',2A4,/,"

"T2,'TIME (T) UNITS = ',2A4,//)"

};

Using this notation, indefinitely long FORMAT specification strings can be written as a sequence of blocked lines. Note

that the FORMAT routines ignore the breaks between the lines, so they may be broken in any way. Simple FORMAT

specification strings may, of course, still be written as standard string constants such as the following:

static char fmt02[] = "(F10.0)";

The FORMAT specification string itself has the same content as a FORMAT would have in a standard FORTRAN

environment. It must begin with a left-parenthesis and end with a right-parenthesis. See the general discussion of

FORTRAN I/O capabilities for a detailed description of the format specifications. There are two parameters to be supplied

for this function as follows:

Name Description of use

fmt Points to the format control string. As discussed above, it may either be a pointer to a series of strings or

it may be a simple string pointer. It may also be a NULL, meaning either that free-format is to be used or

that a "binary" operation is to be performed.

nfmt Provides additional information about the above. If fmt is NULL and nfmt is zero, then an unformatted

binary type operation is being performed. If fmt is NULL and nfmt is nonzero, then a free-form

"formatted" operation is being performed. If fmt is not NULL and nfmt is zero, then a single string

format is being processed; else the specification consists of a sequence of nfmt lines.

Once this function is called, the format specification string remains in effect until either this function is called again, or

function fiofend is called.

Return value:

A zero if the format appears well-formed, else an error code. See the general discussion of FORTRAN I/O capabilities for a

listing of the possible error codes.

See also:

fioerror() Performs standard error processing

fiofwsp() Skips over white space in the format

6.112 FIOFINP: Formatted Input

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

PromulaFortran Translator User's Manual

191

void fiofinp(context)

int context Context of call 0 = value, 1 = end

Description:

Performs nonvariable related formatted input functions until an end-of-format or a variable related specification is

encountered. The actual operations performed by this function are as follows:

Specification Code Description

nH 1 Display Hollerith string

"c1..cn" 1 Display delimited string

nX 2 Skip right n places

TRn 2 Skip right n places

Tn 3 Move to position n

TLn 4 Skip left n places

SS 5 Set the plus sign to a space

SP 6 Set the plus sign to a +

BN 7 Set blanks to null

BZ 8 Set blanks to zero

/ 9 Physically write the current line

nP 10 Set the floating scale factor to n

Return value:

Note the function is void; however, the global variable fioier may be set to an error code if a problem is encountered.

See also:

fionxtf() Get next format specification

fiorchk() Check fixed input field

fiortxt() Read next text record

6.113 FIOFINQU: Inquire About File Data

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiofinqu(option,str,ns)

int option Specifies data being inquired about

char* str Information to be returned

int ns String length or integer information

Description:

This function is used to inquire about the various file data options associated with the current FORTRAN file structure. The

particular data being inquired about is defined by the option parameter as follows:

Option Description of data

 1 Inquire about status of file

 2 Inquire about existence of file

 3 Inquire as to connection status of file

 4 Inquire as to file's external unit number

PromulaFortran Translator User's Manual

192

 5 Inquire whether file has a name

 6 Inquire for name of file

 7 Inquire as to files access method

 8 Inquire if file can be accessed sequentially

 9 Inquire if file can be directly accessed

 10 Inquire if file is formatted

 11 Inquire if file can be opened as a text file

 12 Inquire if file can be opened as binary

 13 Inquire about file record length

 14 Inquire about file current record number

 15 Inquire about file current blank convention

Return value:

None, this function is void.

See also: None

6.114 FIOFMTV: Compute FORMAT Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiofmtv()

Description:

Computes the value of an integer constant in the FORMAT statement, and updates the current format position so that it

points to the first nonblank character beyond the end of the value. Note that if the current character in the format is

nonnumeric when this function is called, then this function does not move the current position and returns a zero value.

Return value:

The value of the integer constant or a zero if there was no integer constant.

See also:

fiofwsp() Skip white space in format

6.115 FIOFOUT: Formatted Output Operations

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiofout(context)

int contex Context of call 0 = value, 1 = end

Description:

Performs nonvariable related formatted output functions until an end-of-format or a rescan or variable related specification

is encountered. The actual operations performed by this function are as follows:

Specification Code Description

PromulaFortran Translator User's Manual

193

nH 1 Write characters from a Hollerith string

"c1..cn" 1 Write characters from a delimited string

nX 2 Skip right n places

TRn 2 Skip right n places

Tn 3 Move to position n

TLn 4 Skip left n places

SS 5 Set the plus sign to a space

SP 6 Set the plus sign to a +

BN 7 Set blanks to null (no operation for output)

BZ 8 Set blanks to zero (no operation for output)

/ 9 Physically write the current record

nP 10 Set the floating scale factor to n

) 11 End-of-Format write current record

Return value:

None, the function is void; however, the global variable fioier may be set to an error code if a problem is encountered.

See also:

fionxtf() Get next format specification

fiowtxt() Write text record

6.116 FIOFVINQ: Inquire About File Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

long fiofvinq(option)

int option Specifies data being inquired about

Description:

This function is used to inquire about the various file data options associated with the current FORTRAN file structure

which return an integer or logical value. The particular value being inquired about is defined by the option parameter as

follows:

Option Description of data

 2 Inquire about existence of file

 3 Inquire as to connection status of file

 4 Inquire as to file's external unit number

 5 Inquire whether file has a name

 13 Inquire about file record length

 14 Inquire about file current record number

Note that this function is needed as distinct from the generic file information function because type conversions are

required on the returned value.

Return value:

The requested logical or integer value.

See also:

PromulaFortran Translator User's Manual

194

fiofinqu() Generic file information function

6.117 FIOFWSP: Skip Format White Space

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiofwsp()

Description:

This function is a utility used by the FORMAT processing functions to skip over white space within the specification string.

White space consists of blanks and boundaries between the independent lines of the specification.

Return value:

None, the function is void. The effect of its processing is reflected in the various global format control variables.

See also: None

6.118 FIOINTU: Establish FORTRAN Internal Unit

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiointu(intu,rsize,action)

char* intu Pointer to internal storage

int rsize Record size

int action Specifies read = 1 or write = 0

Description:

When some action is to be performed on an internal unit, typically a character storage area, this function initializes a file

structure to point to this internal unit, and makes this file structure the current one. Note that if the record size is zero, the

internal unit is a set of pointers to C-style strings and not FORTRAN style strings.

The form of the creation of the INTERNAL depends upon the type of the action to be performed. This action code is as

follows:

Code Action to be performed

0 An internal file is to be opened with the specified storage area as its starting address. The

size parameter specifies the overall size of the area. If there is an open structure currently

using this starting address then it is simply rewound.

1 An internal file with this starting address has been created. If it cannot be found, then an

error has occurred.

2 A coded read is to be performed. If there is no structure defined, then create one which

will be removed at the end of the operation (this is the standard behavior).

PromulaFortran Translator User's Manual

195

3 A binary read is to be performed. If there is no structure defined, then create one which

will be removed at the end of the operation.

4 A coded write is to be performed. If there is no structure defined, then create one which

will be removed at the end of the operation (this is the standard behavior).

5 A binary write is to be performed. If there is no structure defined, then create one which

will be removed at the end of the operation.

6 A miscellaneous operation is to be performed. If there is no structure defined, then an

error has occurred.

7 A simple inquiry is being made. If there is no structure defined, then create one which will

be removed at the end of the operation.

Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN I/O capabilities for a listing of the

possible error codes.

See also:

fioerror() Performs standard error processing

fiortxt() Read text record

6.119 FIOITOS: Convert Integer to String

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

char* fioitos(numb)

int numb Value to be converted

Description:

Converts an integer number to a character string.

Return value:

A pointer to the string result.

See also: None

6.120 FIOLREC: Position a FORTRAN File on a Record

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiolrec(irec)

long irec; Record number desired

Description:

PromulaFortran Translator User's Manual

196

This function positions the file associated with the "current" FORTRAN file as specified in the global variable fiocurf at

the beginning of a specified record.

Return value:

A zero if the positioning was successful, else an error code. See the general discussion of FORTRAN I/O capabilities for a

listing of the possible error codes.

See also: None

6.121 FIOLTOS: Convert Long Integer to String

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fioltos(value)

long value Value to be converted

Description:

Converts a long integer value to display form and stores it at the current position in the coded communications record right-

justified in a fixed length field. In particular, the output field consists of blanks, if necessary, followed by a minus sign if

the internal value is negative, or an optional plus sign otherwise. If the number of significant digits and sign required to

represent the value is less than the specified width, the unused leftmost portion of the field is filled with blanks. If it is

greater than the width, asterisks are entered instead of numeric digits. If a minimum digit count is specified, the output field

consists of at least that many digits, and is zero-filled as necessary. If the minimum digit count is zero, and the value is

zero, then the field is simply blank filled, regardless of any sign control in effect.

The parameter value contains the value to be converted. The conversion control parameters are specified via global

variables.

Return value:

None, the function is void. The global variable fiocrec is updated to contain the new field, and the variable fionchar is

updated to reflect the new character count of the coded communication record.

See also:

fioitos() Convert integer to string

fioshr() Shift display string right

6.122 FIOLUN: Establish FORTRAN Unit Number

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiolun(lun,action)

int lun Logical unit number of file

int action Action code for subsequent use

Description:

PromulaFortran Translator User's Manual

197

Before any action can be performed on a FORTRAN file, the logical unit number must be associated with an existing

FORTRAN file structure. If there is no already existing structure for the unit number, then this function will attempt to

create one. The form of this creation depends upon the type of the action to be performed. This action code is as follows:

Code Action to be performed

0 A file is to be opened with this logical unit number, if there is an open structure currently

associated with this number, close the file.

1 A structure for this logical unit number has been created. If it cannot be found, then an error has

occurred.

2 A coded read is to be performed. If there is no structure defined, then create one and open the file.

3 A binary read is to be performed. If there is no structure defined, then create one and open the file.

4 A coded write is to be performed. If there is no structure defined, then create one and create the file.

5 A binary write is to be performed. If there is no structure defined, then create one and create the file.

6 A miscellaneous operation is to be performed. If there is no structure defined, then create one and

open the file.

7 A simple inquiry is being made.

Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN I/O capabilities for a listing of the

possible error codes.

See also:

fioclose() Closes the current FORTRAN file

fioerror() Performs standard error processing

fioopen() Opens the current FORTRAN file

fiortxt() Read next text record

6.123 FIONAME: Establish FORTRAN Unit by Name

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fioname(strg,ns)

char* strg Name of file

int ns Number of characters in file name

Description:

The FORTRAN INQUIRE statement allows the user to inquire about file status either via its logical unit number or via its

name. If the name reference is being used, then this function is called. If there is no already existing structure for a unit with

this name, then this function will attempt to create one.

Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN I/O capabilities for a listing of the

possible error codes.

See also:

fifindex() Find one substring in another

fioerror() Performs standard error processing

PromulaFortran Translator User's Manual

198

6.124 FIONXTF: Get Next Format Specification

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fionxtf()

Description:

Gets the next format specification from the format list and sets the external variables (fiofspec, fioiwd, and fiondec)

to indicate what it is. The above variables are set as follows:

Specification Type fioiwd fiondec

free form 0 0 0

nH 1 n 0

"c1..cn" 1 n "

'c1..cn' 1 n '

c1..cn 1 n *

nX 2 n --

TRn 2 n --

Tn 3 n --

TLn 4 n --

SS 5 -- --

SP 6 -- --

BN 7 -- --

BZ 8 -- --

/ 9 -- --

nP 10 n --

) 11 --- --

: -1 --- --

$ -2 --- --

Aw 12 w --

Lw 13 w --

Iw 14 w --

Fw.d 15 w d

Dw.d 16 w d

Ew.d 17 w d

Gw.d 18 w d

B'ssss' 19 -- --

Return value:

None, the function is void.

See also:

fioerror() Do requested error processing

fiofmtv() Get constant format value

fiofwsp() Skip over white space

6.125 FIOOPEN: Open Current FORTRAN File

Synopsis:

PromulaFortran Translator User's Manual

199

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fioopen()

Description:

This function opens the file associated with the "current" FORTRAN file as specified in the global variable fiocurf.

Return value:

A zero if the open went well, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing of

the possible error codes.

See also:

fioitos() Converts a short integer to a string

fioerror() Performs standard error processing

6.126 FIORALPH: Read Alphabetic Information

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fioralph(alpha,nalpha,nfield)

char* alpha Character string

int nalpha Length of string

int nfield Width of field

Description:

This function blank fills a character string and then reads characters from the current input record into the string. Read

characters are left-justified in the string. Any characters beyond the end of the string are discarded. If input is free-form and

if the characters read begin with a single quote, then the material within the quoted list is entered into the character string,

with '' reducing to a single quote.

Return value:

None, the function is void. The effect of its processing is reflected in the various global format control variables.

See also:

fiortxt() Read next text record

ftnxcons(.) Process Exact representation constant

fiorchk() Check fixed-form input field

6.127 FIORBIV: FORTRAN Read Binary Values

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiorbiv(value,nvalue)

PromulaFortran Translator User's Manual

200

void* value Points to values being read

int nvalue Number of bytes to be read

Description:

This function reads binary values from a file.

Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN I/O capabilities for a listing of the

possible error codes.

See also: None

6.128 FIORCHK: Check Fixed-Form Input Field

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiorchk(nfield)

int nfield

Description:

This function controls the physical reading of text records. If the logical end-of-record has been reached, the next physical

record is read. If a physical end-of-record has been reached prior to the logical end-of-record, the physical end-of-record is

extended by padding the record with blanks.

Return value:

None, the function is void. The effect of its processing is reflected in the various global format control variables.

See also: None

6.129 FIORDB: Read FORTRAN Boolean Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiordb(bool,nval)

unsigned short* bool The values to be read

int nval The number of values to be read

Description:

Reads a vector of Boolean (short logical) values from the current input file in accordance with the current format

specification. Note that in this function each individual Boolean value is assumed to have its own corresponding format

specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

PromulaFortran Translator User's Manual

201

See also:

fioerror() Do requested error processing

fioffld() Get next free-form field

fiofinp() Process input format specifications

fioralph() Read alphabetic information

fiorchk() Check fixed read field

6.130 FIORDC: Read FORTRAN Character Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiordc(c,nval)

char* c Points to characters to be read

int nval Number of characters to read

Description:

Reads a vector of character values from the current input file in accordance with the current format specification. In this

implementation signed char is derived from the nonstandard FORTRAN types BYTE or INTEGER*1. Therefore, I

formatting conventions are assumed. Note that in this function each individual character is assumed to have its own

corresponding format specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Do specified error processing

fiordi() Read short integer value

6.131 FIORDD: Read FORTRAN Double Precision Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiordd(value,nval)

double* value Points to values to be read

int nval Number of values to be read

Description:

Reads a vector of double precision floating point values from the current input file in accordance with the current format

specification. Each value is assumed to have its own corresponding format specification if a formatted read is being

performed.

Return value:

PromulaFortran Translator User's Manual

202

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing

fiofinp() Get next formatted input specification

fiostod() Convert string to double

fioffld() Get next free-form input field

fioralph() Read alphabetic information

fiorchk() Check current fixed input field

6.132 FIORDF: Read FORTRAN Floating Point Values

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiordf(value,nval)

float* value Points to values to be read

int nval Number of values to be read

Description:

Reads a vector of single precision floating point values from the current input file in accordance with the current format

specification. Each value is assumed to have its own corresponding format specification if a formatted read is being

performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing

fiofinp() Get next formatted input specification

fiostod() Convert string to double

fioffld() Get next free-form input field

fioralph() Read alphabetic information

fiorchk() Check current fixed input field

6.133 FIORDI: Read FORTRAN Short Integer Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiordi(value,nval)

short* value Vector of values

int nval Number of values to be read

Description:

PromulaFortran Translator User's Manual

203

Reads a vector of short fixed point values from the current input file in accordance with the current format specification.

Each value is assumed to have its own corresponding format specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing

fiofinp() Get next formatted input specification

fiostod() Convert string to double

fioffld() Get next free-form input field

fioralph() Read alphabetic information

fiorchk() Check current fixed input field

6.134 FIORDL: Read FORTRAN Long Integer Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiordl(value,nval)

long* value Vector of values

int nval Number of values to be read

Description:

Reads a vector of long fixed point values from the current input file in accordance with the current format specification.

Each value is assumed to have its own corresponding format specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing

fiofinp() Get next formatted input specification

fiostod() Convert string to double

fioffld() Get next free-form input field

fioralph() Read alphabetic information

fiorchk() Check current fixed input field

6.135 FIORDS: Read FORTRAN String

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiords(str,nstring,nval)

char* str Points to start of strings

PromulaFortran Translator User's Manual

204

int nstring Length of each string

int nval Number of strings to be read

Description:

Reads a sequence of fixed length strings, stored one after another, from the current input file in accordance with the current

format specification. Each string is assumed to have its own corresponding format specification if a formatted read is being

performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing

fiofinp() Get next formatted input specification

fioffld() Get next free-form input field

fioralph() Read alphabetic information

6.136 FIORDT: Read FORTRAN Truth Value Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiordt(bool,nval)

unsigned long* bool The values to be read

int nval The number of values to be read

Description:

Reads a vector of truth values (long logical values) from the current input file in accordance with the current format

specification. Note that in this function each individual truth value is assumed to have its own corresponding format

specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing

fiofinp() Get next formatted input specification

fioffld() Get next free-form input field

fioralph() Read alphabetic information

fiorchk() Check current fixed input field

6.137 FIORDU: Read FORTRAN Unsigned Char Vector

Synopsis:

PromulaFortran Translator User's Manual

205

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiordu(c,nval)

unsigned char* c Points to characters to be read

int nval Number of characters to read

Description:

Reads a vector of character values from the current input file in accordance with the current format specification. In this

implementation unsigned char is derived from the nonstandard FORTRAN type LOGICAL*1. Therefore, L formatting

conventions are assumed. Note that in this function each individual character is assumed to have its own corresponding

format specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

int fiordb() Read short Boolean value

int fioerror() Perform FORTRAN I/O error processing

6.138 FIORDX: Read FORTRAN Complex Values

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiordx(value,nval)

complex* value; Points to values to be read

int nval; Number of values to be read

Description:

Reads a vector of single precision complex values from the current input file in accordance with the current format

specification. Each value is assumed to have its own corresponding format specification if a formatted read is being

performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing

fioffld() Get next freeform input field

fiordf() Read floating point values

fiospace() Skip white-space in record

fiostod() Convert string to double

6.139 FIORDZ: Read FORTRAN Double Complex Values

PromulaFortran Translator User's Manual

206

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiordz(value,nval)

dcomplex* value; Points to values to be read

int nval; Number of values to be read

Description:

Reads a vector of double precision complex values from the current input file in accordance with the current format

specification. Each value is assumed to have its own corresponding format specification if a formatted read is being

performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Perform FORTRAN I/O error processing

fioffld() Get next freeform input field

fiordd() Read floating point values

fiospace() Skip white-space in record

fiostod() Convert string to double

6.140 FIOREC: Position a FORTRAN File on a Record

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiorec(irec)

int irec Record number desired

Description:

This function merely records a record number at which the FORTRAN file about to be accessed is to be positioned.

Return value:

None, the function is void.

See also: None

6.141 FIOREW: Rewind a FORTRAN File

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiorew()

PromulaFortran Translator User's Manual

207

Description:

This function rewinds the file associated with the "current" FORTRAN file as specified in the global variable fiocurf.

Return value:

A zero if the rewind was successful, else an error code. See the general discussion of FORTRAN I/O capabilities for a

listing of the possible error codes.

See also: None

6.142 FIORLN: Read FORTRAN End-of-Line

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiorln()

Description:

Completes the current read operation by flushing the current format statement and by setting the current record controls to

the end of the current record.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiofend() End current format processing

fioerror() Perform error processing

fiofinp() Next input format specification

6.143 FIORNDV: Round Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiorndv(dspdig,ndigit,length)

char* dspdig Digit string to be rounded

int ndigit Number of rounded digits

int length Length of digit string

Description:

Truncates and rounds a numeric string of digits. The parameter ndigit specifies the number of digits desired in the

rounded result. The parameter length specifies the total number of digits now in the string. The dspdig string may

contain only numeric characters

Return value:

PromulaFortran Translator User's Manual

208

The function returns the carry value from the round. If the input string consists of a sequence of "999..." such that all

become rounded to zero, then the output string will contain "100..." and the function will return a value of 1; else it will

return a value of 0.

See also: None

6.144 FIORNL: Process FORTRAN READ DATALIST Statement

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

 char* nmname Name of the variable

 void* nmvalu Points to the variable values

 int nmtype Binary type of the variable

 int* nmadr Points to the variable's dimensions
} namelist

int fiornl(name,nname)

namelist* name List of variables in this namelist

int nname Number of variables in namelist

Description:

This function reads a set of variable values from the current input file. The namelist format is identical to that which may be

used in specifying values in a FORTRAN DATA statement.

Return value:

A zero if the read was successful, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiostod() Convert string to double

fioerror() Perform FORTRAN I/O error processing

fiofend() End formatted processing

fioralph() Read alphabetic information

fiospace() Skip white space in record

fiostoi() Convert string to integer

fioffld() Get next free-form field

6.145 FIORPATH: Read Pathname Conversion Information

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiorpath(fname,pak)

char* fname Name of file containing conversion information

unsigned char* pak Conversion information table

Description:

PromulaFortran Translator User's Manual

209

Reads a file containing pathname conversion information which establishes a particular pathname translation scheme. The

actual specification is contained on the file whose name is specified by the fname parameter. This specification describes

the path and file name conventions to be used on the target platform and how these conventions are to be obtained from the

source pathname specifications. The approach taken is to describe how source pathnames are to be "translated" into target

pathnames.

Syntax:

PATHNAMES dirchar [REPLACE "s1t1s2t2..."]

 [LOWER | UPPER]

 [PREFIX "tname"]

 [EXCLUDE]

 [TERMINATION tc]

sname(1) tname(1)

.

.

.

sname(n) tname(n)

END

Where:

dirchar is the directory separation character in the source pathname

s1t1s2t2... are a sequence of character pairs

tname is a target language pathname or pathname prefix

sname is a source language pathname or pathname prefix

tc is a pathname termination character used in the source pathname

The dirchar specification gives the character used to separate the pathname components in the original source codes. By

default, this character is replaced by the appropriate separation character / in the target pathnames.

The required dirchar specification specifies the character used to separate the pathname components in the original

source codes. This character is replaced by an equivalent character in the target pathnames. For example moving from

PRIME FORTRAN to UNIX, a "<" character would be replaced by a "/" character. Moving from MS-DOS to UNIX would

replace a "\" character with a "/" character.

The optional REPLACE parameter specifies additional characters to be replaced in the source names. As many pairs of

characters as are needed may be included. The standard PRIME language description, for example, contains the following

specification for this option:

REPLACE "$_"

This causes all dollar signs in the source pathnames to be replaced by underscores.

The mutually exclusive and optional UPPER, LOWER parameters specify that all alphabetic characters in pathnames

should be converted to upper- or lowercase respectively. Since some system's pathnames are case sensitive, while others are

not, it is important to specify one of these options. For example, though most PRIME pathnames are shown in uppercase,

most transfer programs create lowercase names when transferring files to UNIX; therefore, the standard PRIME language

description contains a specification of LOWER for this option.

For initial testing and use of GREAT MIGRATIONS FORTRAN for particular small projects, the simplest approach is

simply to move all source files — including the INCLUDE files — into the user's local directory. To do this GREAT

MIGRATIONS FORTRAN must be told to ignore all directory information in the source pathnames. Under this alternative

PromulaFortran Translator User's Manual

210

all characters up to and including the last occurrence of the directory component separations character are stripped from the

source pathname. This is achieved via the EXCLUDE option.

A possible alternative structure for the INCLUDE files for a UNIX implementation might be to copy all of these files into

some subdirectory where they would retain the same relative structure as they had on the PRIME. The PREFIX pname

option allows a directory specification to be added to the front of all source pathnames.

Another alternative might be to copy all include files into a single subdirectory with no additional structure. This effect can

be achieved by using PREFIX in conjunction with the EXCLUDE option. All source structure would be excluded and then

would be replaced by the desired target subdirectory name.

In some cases, no generic translation scheme will work. Certain names might have to be changed on an individual basis.

The final list of sname, tname pairs achieves this end. Each pathname is first translated using the generic specifications

on the PATHNAME statement itself. The resultant pathnames are compared with the snames in the list. If the first n

characters of a pathname match the n characters of an sname; then those n characters are stripped and the associated tname

is added to the front of the name.

As can be seen from the above, it will be necessary to organize the INCLUDE files in the new environment. Once that

organization has been completed, the PATHNAMES component of the language specification can be used to describe that

structure. No changes need be made in the FORTRAN source code INCLUDE and INSERT statements.

Return Value:

The pathname conversion information is stored in the parameter pak as follows:

Byte Description of content

0 Directory separation character

1 Exclude directories from pathname flag

2 Case conversion code (0 = none, 1 = toupper, 2 = tolower)

3+ Prefix to be added to name(length,characters)

4+ Conversions list

See also:

fiocpath() Performs the path conversion specified here

6.146 FIORTXT: Read Next Text Record

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiortxt()

Description:

Reads the next physical text record into the coded communications record for detailed processing. Both "internal" and

"external" files are processed.

Return value:

None, the function is void. The effect of its processing is reflected in the various global format control variables.

See also:

PromulaFortran Translator User's Manual

211

fioerror() Perform error processing

6.147 FIORWBV: FORTRAN Rewrite Binary Values

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiorwbv(value,nvalue)

void* value; Points to values being written

int nvalue; Number of bytes to be written

Description:

This function rewrites binary values to a file.

Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN I/O capabilities for a listing of the

possible error codes.

See also: None

6.148 FIOSHL: Shift String Left

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fioshl(s,n)

char* s String to be shifted

int n Number of places to be shifted

Description:

Shifts a character string left a specified number of places. The spaces removed are lost.

Return value:

None, the function is void.

See also: None

6.149 FIOSHR: Shift String Right

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fioshr(s,n,fill)

char* s String to be shifted

int n Number of places to shift

char fill The fill character

Description:

PromulaFortran Translator User's Manual

212

Shifts a character string right a specified number of places. The spaces thus created are set equal to the specified fill

character. This function is typically used during detailed editing of displays during various numeric conversions.

Return value:

None, the function is void.

See also: None

6.150 FIOSPACE: Skip White Space in Record

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiospace()

Description:

This function is a utility used by the list-directed input processing functions to skip over white space within the input

record. White space consists of blanks and newlines.

Return value:

If the function reads a new record during its processing, it returns a 1; else it returns a zero.

See also:

fiortxt() Read next text record

6.151 FIOSTATUS: Set FORTRAN I/O Error Status

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiostatus(iostat,error)

long* iostat Address of error status variable

int error Error testing switch

Description:

If the FORTRAN I/O runtime system encounters an error, it sets an error code and calls function fioerr. The behavior of

that function depends upon how the code using the I/O system is doing error processing. This function establishes the error

code return variable and the error checking level.

Return value:

None, the function is void.

See also: None

6.152 FIOSTIO: Establish FORTRAN Standard I/O

PromulaFortran Translator User's Manual

213

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiostio(action)

int action Action code for subsequent use

Description:

Before any action can be performed on a standard I/O file, it must be associated with an existing FORTRAN file structure. If

there is no already existing structure for the standard unit, then this function will attempt to create one.

The type of standard unit to be used is determined by the action code as follows:

Code Standard unit

1 console (standard error)

2 standard input

3 standard printer

other standard output

Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN I/O capabilities for a listing of the

possible error codes.

See also:

fiortxt() Read next text record

fioerror() Performs standard error processing

6.153 FIOSTOD: Convert String to Double

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

double fiostod(str,nstr)

char *str String to be converted

int nstr Length of field

Description:

Converts an alphanumeric string containing a number in scientific notation to a double precision floating point number. The

string can contain optional leading blanks, an integer part, a fractional part, and an exponent part. The integer part consists

of an optional sign followed by zero or more decimal digits. The fractional part is a decimal point followed by zero or more

decimal digits. The exponent part consists of an 'E', 'e', 'D', or 'd' followed by an optional sign and a sequence of decimal

digits. The parameters to this function are as follows:

Name Description of Use

str Contains the alphanumeric string to be converted.
nstr Contains the number of characters in the string. Note that the string is not necessarily

NULL terminated.

The following global variables are also used by this function:

PromulaFortran Translator User's Manual

214

Name Description of Use

fioerc If the conversion encounters a character which is not part of the notation then this variable returns the

position of that character.
fiondec Returns the number of decimal places in the fractional part of the number plus 1. Thus, a value of zero

means there was no decimal point and one means there was a decimal, but no fractional digits.
fioblkn If blanks are normal tie-breakers, then this variable is zero, else if it is +1 blanks are simply ignored and if

it is -1 blanks are treated as zero.

Return value:

The double precision value of the string as computed.

See also:

fiostoi() Convert string to integer

6.154 FIOSTOI: Convert String to Integer

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiostoi(s)

char** s Pointer to the string pointer

Description:

Converts an alphanumeric string to an integer value. Its parameter points the location of a pointer to the start of the string.

This location is updated to point immediately beyond the last character of the integer value.

Return value:

The converted value.

See also: None

6.155 FIOUWL: Establish FORTRAN Unformatted Write Length

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiouwl(recl)

long* recl Record number desired

Description:

This function merely records the length of the following unformatted record to be written.

Return value:

None, the function is void.

See also: None

6.156 FIOVFINI: Initialize A Variable FORTRAN Format

PromulaFortran Translator User's Manual

215

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiovfini(fmt,nfmt)

char* fmt; Pointer to the format

int nfmt; Length of FORMAT

Description:

This function initializes the variable's format strings for use in the FORMAT environment needed by the FORTRAN style

input/output statements. This function is needed to convert the format string into external display code which is used by the

format system.

Return value:

A zero if the format appears well-formed, else an error code. See the general discussion of FORTRAN I/O capabilities for a

listing of the possible error codes.

See also:

fiofini() Initialize FORTRAN format processing

6.157 FIOWALPH: Write Alphabetic Information

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiowalph(alpha,nalpha,nfield)

char* alpha Character string

int nalpha Length of character string

int nfield Width of field

Description:

Write a character string, left-justified, blank-filled to the right into a fixed width field. If the character string is longer than

the field, then only the left-most characters are written.

Return value:

None, the function is void. The effect of its processing is reflected in the various global format control variables.

See also:

fiowhexo() Write Hexadecimal or octal constant

6.158 FIOWBIV: FORTRAN Write Binary Values

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

PromulaFortran Translator User's Manual

216

int fiowbiv(value,nvalue)

void* value Points to values being written

int nvalue Number of bytes to be written

Description:

This function writes binary values to a file.

Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN I/O capabilities for a listing of the

possible error codes.

See also: None

6.159 FIOWDBL: Write Double Precision Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiowdbl(value,nsigdig)

double value Value to be converted

int nsigdig Number of significant digits

Description:

Converts a double precision value to free-form display form and stores it at the current position in the coded

communications record.

The parameter value contains the value to be converted; while nsigdig specifies the number of significant digits in the

value.

Return value:

None, the function is void. The global variable fiocrec is updated to contain the new field, and the variable fionchar is

updated to reflect the new character count in the coded communication record.

See also:

fioitos() Convert integer to string

fiorndv() Round floating point value display

fioshr() Shift display string right

6.160 FIOWEF: FORTRAN Write End-of-file

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowef()

Description:

PromulaFortran Translator User's Manual

217

This function writes an end-of-file to a file.

Return value:

A zero if all went well, else an error code. See the general discussion of the FORTRAN I/O capabilities for a listing of the

possible error codes.

See also: None

6.161 FIOWHEXO: Write Hexadecimal or Octal Constant

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

char* fiowhexo(base,ival,vlen)

int base; Base of the exact representation constant

char* ival; Value of exact representation constant

int vlen; Length of value in bytes

Description:

Displays a numeric value as a hexadecimal or octal character string.

Return value:

The function returns a pointer to the exact representation string for the value.

See also:

fifibit() Insert a bit

fifrbit() Reverse bits byte order

fifxbit() Extract a bit

6.162 FIOWLN: Write FORTRAN End-of-Line

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowln()

Description:

Completes the current read operation by flushing the current format statement and writing out the current record.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiofout() Process output format specification

fiowtxt() Write text record

fiofend() End current format

PromulaFortran Translator User's Manual

218

fioerror() Do requested error processing

6.163 FIOWNL: Process FORTRAN WRITE DATALIST Statement

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

char* nmname;

char* nmvalu;

int nmtype;

int* nmadr;

} namelist;

int fiownl(name,nname,nlident)

namelist* name; NAMELIST group

int nname; Number of variables in group

char* nlident; Identifier of NAMELIST group

Description:

Writes the information in a namelist data group.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowdbl() Write double precision values

fioerror() Perform FORTRAN I/O error processing

fiowtxt() Write current text record

fiodtos() Convert floating point number

fioitos() Convert integer to string

6.164 FIOWRB: Write FORTRAN Boolean Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowrb(bool,nval)

unsigned short* bool Points to values being written

int nval Number of values to be written

Description:

Writes a vector of Boolean values to the current output file in accordance with the current format specification. In this

context, the term "Boolean value" refers to a short logical value. The output display for a logical value consists of a

sequence of "fw-1" blanks followed by a "T" or an "F", where "fw" is the field width. "T" is used for nonzero values and

"F" is used for zero values.

Note that this function also supports the FORTRAN 66 convention under which alphabetic information may be stored in

the logical values.

PromulaFortran Translator User's Manual

219

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Perform error processing

fiofout() Process output format specification

fiowalph() Write alphabetic information

fiowtxt() Write a text record

6.165 FIOWRC: Write FORTRAN Character Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowrc(c,nval)

char* c Points to characters to be written

int nval Number of characters to be written

Description:

Writes a vector of character values to the current output file in accordance with the current format specification. Note that

in this function each individual character is assumed to have its own corresponding format specification if a formatted write

is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Do requested error processing

fiowrih() Perform short integer output

6.166 FIOWRD: Write FORTRAN Double Precision Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowrd(value,nval)

double* value Points to values being written

int nval Number of values to be written

Description:

Writes a vector of double precision values to the current output file in accordance with the current format specification.

Note that in this function each individual value is assumed to have its own corresponding format specification if a

formatted write is being performed.

PromulaFortran Translator User's Manual

220

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Do requested error processing

fiofout() Process output format specification

fiowalph() Write alphabetic information

fiowval() Write value

6.167 FIOWRF: Write FORTRAN Single Precision Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowrf(value,nval)

float* value Points to values being written

int nval Number of values to be written

Description:

Writes a vector of single precision values to the current output file in accordance with the current format specification. Note

that in this function each individual value is assumed to have its own corresponding format specification if a formatted

write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Do requested error processing

fiofout() Process output format specification

fiowalph() Write alphabetic information

fiowval() Write value

6.168 FIOWRI: Write FORTRAN Short Integer Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowri(value,nval)

short* value Points to values to be written

int nval Number of values to be written

Description:

PromulaFortran Translator User's Manual

221

Writes a vector of short integer values to the current output file in accordance with the current format specification. Note

that in this function each individual value is assumed to have its own corresponding format specification, if a formatted

write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioltos() Convert long to string

fioerror() Do requested error processing

fiofout() Process output format specification

fiowalph() Write alphabetic information

fiowtxt() Write a text record

6.169 FIOWRL: Write FORTRAN Long Integer Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowrl(value,nval)

long* value Points to values to be written

int nval Number of values to be written

Description:

Writes a vector of long integer values to the current output file in accordance with the current format specification. Note

that in this function each individual value is assumed to have its own corresponding format specification, if a formatted

write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioltos() Convert long to string

fioerror() Do requested error processing

fiofout() Process output format specification

fiowalph() Write alphabetic information

fiowtxt() Write a text record

6.170 FIOWRS: Write FORTRAN Vector of Strings

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowrs(str,nstring,nval)

char* str Points to start of strings

PromulaFortran Translator User's Manual

222

int nstring Length of each string

int nval Number of strings to be written

Description:

Writes a sequence of fixed length strings, stored one after another, to the current output file in accordance with the current

format specification. Each string is assumed to have its own corresponding format specification if a formatted write is being

performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Do requested error processing

fiofout() Process output format specification

fiowalph() Write alphabetic information

fiowtxt() Write a text record

6.171 FIOWRT: Write FORTRAN Truth Value Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowrt(bool,nval)

unsigned long* bool Points to values to be written

int nval Number of values to be written

Description:

Writes a vector of truth values to the current output file in accordance with the current format specification. In this context,

the term "truth value" refers to a long logical value. The output display for a logical value consists of a sequence of "fw-1"

blanks followed by a "T" or an "F", where "fw" is the field width. "T" is used for nonzero values and "F" is used for zero

values.

Note that this function also supports the FORTRAN 66 convention under which alphabetic information may be stored in

the logical values.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Do requested error processing

fiofout() Process output format specification

fiowalph() Write alphabetic information

fiowtxt() Write a text record

6.172 FIOWRU: Write FORTRAN Unsigned Char Vector

PromulaFortran Translator User's Manual

223

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowru(c,nval)

unsigned char* c Points to characters to be written

int nval Number of characters to be written

Description:

Writes a vector of unsigned character values to the current output file in accordance with the current format specification.

In this implementation unsigned char is derived from the nonstandard FORTRAN type LOGICAL*1. Therefore, L

formatting conventions are assumed. Note that in this function each individual character is assumed to have its own

corresponding format specification if a formatted write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fioerror() Do requested error processing

fiowrb() Perform short Boolean output

6.173 FIOWRX: Write FORTRAN Complex Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

int fiowrx(value,nval)

complex* value; Points to values being written

int nval; Number of values to be written

Description:

Writes a vector of single precision complex values to the current output file in accordance with the current format

specification. Note that in this function each individual component of the complex value is assumed to have its own

corresponding floating point format specification if a formatted write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowrf() Write vector of floats

PromulaFortran Translator User's Manual

224

6.174 FIOWTXT: Write Text Record

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiowtxt()

Description:

Writes the current text record to the current file followed by a new line. Then it sets the length of the current text record to

zero.

Return value:

None, the function is void.

See also:

fioerror() Perform error processing

6.175 FIOWVAL: Write Floating Point Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void fiowval(value)

double value Value to be converted

Description:

This utility function controls the conversion of floating point values to string form under the control of a FORMAT

specification. The actual form of the output display depends upon the particular specification. For all formats the output

field consists of blanks, if necessary, followed by a minus sign if the value is negative, or an optional plus sign otherwise.

For F format this is followed by a string of digits that contains a decimal point, representing the magnitude of the value.

Leading zeros are not provided, except for an optional zero immediately to the left of the decimal point if the magnitude of

the value is less than one. The leading zero also appears if there would otherwise be no digits in the output field.

For E format this is followed by a zero, a decimal point, the number of significant digits specified and an exponent of a

specified width.

For G format, the display type depends upon whether or not all significant digits can be displayed in F format. If they can, F

format is used; if they cannot, E format is used.

For B format, business formatting conventions are used. See function fiobfout for details.

For all display types, if the number of digits required to represent the value is less than the specified width, the unused

leftmost portion of the field is filled with blanks. If it is greater than the width, asterisks are entered instead of the

representation.

Return value:

PromulaFortran Translator User's Manual

225

None, the function is void. The global variable fiocrec is updated to contain the new field, and the variable fionchar is

updated to reflect the new character count in the coded communications record.

See also:

fiobfout() Perform business format output

fiodtos() Convert floating point number

fiorndv() Round floating point value display

fioshr() Shift string right

fiowtxt() Write text record

6.176 FIOWVB: Write FORTRAN Boolean Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowvb(val)

unsigned short val Boolean value to be written

Description:

Writes a Boolean (short logical) value to the current output file in accordance with the current format specification. This

function corresponds to the FORTRAN 77 convention in which values and not just l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowbiv() Write binary values

fiowrb() Write Boolean value vector

6.177 FIOWVC: Write FORTRAN Character Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowvc(c)

char c Character value to be written

Description:

Writes a single character value to the current output file in accordance with the current format specification. This function

corresponds to the FORTRAN 77 convention in which values and not l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

PromulaFortran Translator User's Manual

226

fiowbiv() Write binary values

fiowrc() Write character vector

6.178 FIOWVD: Write FORTRAN Double Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowvd(val)

double val Double precision value to be written

Description:

Writes a double precision value to the current output file in accordance with the current format specification. This function

corresponds to the FORTRAN 77 convention in which values and not just l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowbiv() Write binary values

fiowrd() Write double precision vector

6.179 FIOWVF: Write FORTRAN Float Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowvf(val)

float val Single precision value to be written

Description:

Writes a single precision value to the current output file in accordance with the current format specification. This function

corresponds to the FORTRAN 77 convention in which values and not just l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowbiv() Write binary values

fiowrf() Write single precision vector

6.180 FIOWVI: Write FORTRAN Short Integer Value

PromulaFortran Translator User's Manual

227

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowvi(val)

short val Short value to be written

Description:

Writes a short integer value to the current output file in accordance with the current format specification. This function

corresponds to the FORTRAN 77 convention in which values and not just l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowbiv() Write binary values

fiowri() Write short integer vector

6.181 FIOWVL: Write FORTRAN Long Integer Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowvl(val)

long val Long value to be written

Description:

Writes a long integer value to the current output file in accordance with the current format specification. This function

corresponds to the FORTRAN 77 convention in which values and not just l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowbiv() Write binary values

fiowrl() Write long integer vector

6.182 FIOWVS: Write FORTRAN String Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowvs(str,nstring)

PromulaFortran Translator User's Manual

228

char* str Character string to be written

int nstring Length of string

Description:

Writes a single character string to the current output file in accordance with the current format specification. This function

corresponds to the FORTRAN 77 convention in which values and not just l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowbiv() Write binary values

fiowrs() Write string vector

6.183 FIOWVT: Write FORTRAN Truth Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowvt(val)

unsigned long val Truth value to be written

Description:

Writes a truth (long logical) value to the current output file in accordance with the current format specification. This

function corresponds to the FORTRAN 77 convention in which values and not just l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowbiv() Write binary values

fiowrt() Write truth value vector

6.184 FIOWVU: Write FORTRAN Character Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int fiowvu(c)

unsigned char c Character value to be written

Description:

PromulaFortran Translator User's Manual

229

Writes a single unsigned character value to the current output file in accordance with the current format specification. This

function corresponds to the FORTRAN 77 convention in which values and not just l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowbiv() Write binary values

fiowru() Write character vector

6.185 FIOWVX: Write FORTRAN Complex Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

float cr The real part of the value

float ci The imaginary part of the number
} complex

int fiowvx(val)

complex val; Single precision value to be written

Description:

Writes a single precision complex value to the current output file in accordance with the current format specification. This

function corresponds to the FORTRAN 77 convention in which values and not just l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowbiv() Write binary values

fiowrf() Write single precision vector

6.186 FIOWVZ: Write FORTRAN Double Complex Value

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

double cr The real part of the value

double ci The imaginary part of the number
} dcomplex

int fiowvz(val)

PromulaFortran Translator User's Manual

230

dcomplex val; Double precision value to be written

Description:

Writes a double precision complex value to the current output file in accordance with the current format specification. This

function corresponds to the FORTRAN 77 convention in which values and not just l-values can be written.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowbiv() Write binary values

fiowrd() Write double precision vector

6.187 FTNADS: FORTRAN Add Strings

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

char* ftnads(s1,n1,s2,n2)

char* s1 Pointer to first string

int n1 Length of first string

char* s2 Pointer to second string

int n2 Length of second string

Description:

Concatenates two FORTRAN style strings into a scratch storage array and returns a pointer to that array. Calls to this

function may be nested. The maximum length of the scratch storage array is set at 256.

Return value:

A pointer to the result of the concatenation.

See also: None

6.188 FTNALLOC: Allocate Dynamic Memory

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void* ftnalloc(nbyte)

long nbyte Number of bytes to be allocated

Description:

Returns a pointer to a storage area on the heap which is at least as long as the requested number of bytes. If the bytes cannot

be obtained, then this function exits to the operating system.

Return value:

A pointer to the start of the storage area.

PromulaFortran Translator User's Manual

231

See also: None

6.189 FTNBACK: FORTRAN Backspace Statement

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int ftnback(lun,...)

int lun Logical unit number

Description:

Executes the FORTRAN BACKSPACE statement when translated via a non-optimized user bias. In addition to the logical

unit number, this function takes a variable number of parameters which specify the actual data to be supplied to the

backspace operation. The parameter type codes passed to this function are as follows:

Code Parameter Description of Use

0 ---- Ends the list of parameters

1 long* Points to an error return variable

Return value:

A zero if the backspace went well, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiointu() Establish an internal file

fiolun() Establish unit number

fioback() Backspace current file

fioerror() FORTRAN error processing function

fiostatus() Set I/O Error Status

6.190 FTNBLKD: FORTRAN BLOCK DATA

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void ftnblkd()

Description:

This function represents a dummy entry point for those FORTRAN programs which have no BLOCK DATA subprograms.

It is called by the FORTRAN runtime initialization function.

Return value:

None, the function is void.

See also: None

PromulaFortran Translator User's Manual

232

6.191 FTNCLOSE: FORTRAN Close Statement

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int ftnclose(int lun,...)

Description:

Executes the FORTRAN CLOSE statement when translated via a non-optimized user bias. In addition to the logical unit

number, this function takes a variable number of parameters which specify the actual data to be supplied to the close

operation. The parameter type codes passed to this function are as follows:

Code Parameter Description of Use

0 ---- Ends the list of parameters

1 long* Points to an error return variable

Return value:

A zero if the close went well, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing of

the possible error codes.

See also:

fiointu() Establish an internal file

fioclose() close current file

fioerror() Perform I/O error processing

fiolun() Establish unit number

fiostatus() Set I/O Error Status

6.192 FTNCMS: FORTRAN Compare Strings

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int ftncms(s1,n1,s2,n2)

char* s1 Pointer to first string

int n1 Length of first string

char* s2 Pointer to second string

int n2 Length of second string

Description:

Compares two FORTRAN style strings to determine their lexical relationship. The comparison proceeds character by

character until either the end of both strings is reached or until a specific character difference is found. If the strings are of

unequal length, the shorter string is treated as though it were padded with blanks to the length of the longer string. Note that

the "lexical" value of the character is obtained from the fifichar function. Thus, this function does not necessarily

assume the display values of the host processor, but rather can assume the display code values of another processor.

Return value:

PromulaFortran Translator User's Manual

233

 0 if no character difference is found

n if a character in the first string is less than the corresponding character in the second string.

n if a character in the first string is greater than the corresponding character in the second string.

See also:

fifichar() Convert character to display code

6.193 FTNFREE: Free Dynamic Memory

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void ftnfree(ptr)

void* ptr Start of memory to be freed.

Description:

Frees dynamic memory allocated by ftnalloc.

Return value:

None, the function is void.

See also: None

6.194 FTNINI: Initialize FORTRAN Processing

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void ftnini()

Description:

This function is called as the first executable statement of any "main" function produced by the translator. It contains the

declarations of the variables needed by the FORTRAN I/O system.

The parameters argc and argv are simply the command line arguments passed to the main function and then passed here.

Via the dialect description file (keyword 27) the user has the option to specify the command switches explicitly. In this

case, those switches are contained in the third parameter (separated by blanks).

This function scans the command line strings looking for arguments of the following form:

Argument Description

Cnumber Establishes the runtime conventions code:

 0 = Standard conventions

 1 = Prime extended character set

Inumber Assigns the unit whose number is indicated to standard input.

Onumber Assigns the unit whose number is indicated to standard output.

Tnumber Assigns the unit whose number is indicated to be a terminal — i.e., reads from

standard input, writes to standard output

PromulaFortran Translator User's Manual

234

This function does call the "BLOCK DATA" function which is supplied with this function library as a dummy routine. This

function references no other functions. Though this function must initialize many global variables, it avoids making any

references to the other runtime function libraries. Thus, if you are doing no FORTRAN style input/output or no virtual

memory accesses, then the code associated with those components is not loaded with your program at run-time.

Return value:

None, the function is void

See also:

ftnblkd() BLOCK DATA subprogram

6.195 FTNLUN: Establish File for Logical Unit Number

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

#define txtfile FILE* The type of a text file

txtfile ftnlun(lun)

int lun Logical unit number of file

Description:

Before a standard C I/O function can access a FORTRAN file, it must have access to the stream pointer associated with the

logical unit number. The logical unit number must be associated with an existing FORTRAN file structure. If there is no

already existing structure for the unit number, then this function will attempt to create one.

Return value:

The stream pointer associated with the logical unit number.

See also:

fiolun() Establish FORTRAN unit number

6.196 FTNOPEN: FORTRAN Open Statement

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int ftnopen(lun,...)

int lun Logical unit number

Description:

Executes the FORTRAN OPEN statement when translated via a non-optimized user bias. In addition to the logical unit

number, this function takes a variable number of parameters which specify the actual data to be supplied to the open

function. The parameter type codes passed to this function are as follows:

Code Parameter Description of Use

PromulaFortran Translator User's Manual

235

0 ---- Ends the list of parameters

1 long* Points to an error return variable

2 string Points to the file name

3 char* Points to the status description

4 char* Points to access type description

5 char* Points to the form description

6 int Defines the record length

7 char* Points to the blanks treatment description

8 ---- Indicates that the file is read only

9 ---- Indicates that the file is to be shared

10 char* Points to the record type description

Return value:

A zero if the open went well, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing of

the possible error codes.

See also:

fiofdata() Establish file data

fioerror() Perform FORTRAN I/O Error Processing

fiolun() Establish unit number

fiointu() Establish an internal file

fioopen() Open current file

fiostatus() Set I/O Error Status

6.197 FTNPAUSE: FORTRAN Pause Statement

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void ftnpause(message,nmes)

char* message Message
int nmes;

Description:

Executes the "pause" operation of the FORTRAN pause statement. This function assumes that some message has already

been written to stdout. In particular, it writes the message

PAUSE message

to console and then waits for any new record from stdin. If stdin and stdout are redirected, then this function may not

produce the desired result.

Return value:

None, this function is void.

See also: None

6.198 FTNREAD: FORTRAN Read Statement

PromulaFortran Translator User's Manual

236

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int ftnread(lun,...)

int lun Logical unit number

Description:

Executes the FORTRAN READ statement when translated via a non-optimized user bias. In addition to the logical unit

number, this function takes a variable number of parameters which specify the actual data to be supplied to the detailed read

functions. The parameter type codes passed to this function are as follows:

Code Parameter Description of Use

1 long* Points to an error return variable

2 --- Indicates that list-directed I/O is being performed

3 char**,int Points to a full FORMAT specification

4 char* Points to a FORMAT string

5 int Specifies a record number

9 --- Specifies that more operations are to be performed

10 int Specifies that a series of operations are desired

11 Introduces a short integer value

12 Introduces a double precision value

13 Introduces a short logical value

14 Introduces a char value

15 Introduces a long value

16 Introduces a float value

17 Introduces a long logical value

18 Introduces an unsigned char value

19 Introduces a complex value

20 Introduces a string value

21 Introduces a C-string value

Return value:

A zero if the open went well, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing of

the possible error codes.

See also:

fioerror() Perform FORTRAN I/O Error Processing

fiofini() Initialize A FORTRAN Format

fiointu() Establish FORTRAN Internal Unit

fiolun() Establish FORTRAN Unit Number

fiorbiv() FORTRAN Read Binary Values

fiordb() Read FORTRAN Boolean Vector

fiordc() Read FORTRAN Char Vector

fiordd() Read FORTRAN Double Precision Vector

fiordf() Read FORTRAN Floating Point Values

fiordi() Read FORTRAN Short Integer Vector

fiordl() Read FORTRAN Long Integer Vector

fiords() Read FORTRAN String

fiordt() Read FORTRAN Truth-Value Vector

fiordu() Read FORTRAN Unsigned Char Vector

fiordx() Read FORTRAN Complex Vector

fiordz() Read FORTRAN Double Complex Vector

fiorec() Position a FORTRAN File on a Record

fiorln() Read FORTRAN End-of-Line

fiostatus() Set FORTRAN I/O Error Status

PromulaFortran Translator User's Manual

237

fiostio() Establish FORTRAN Standard I/O

6.199 FTNREW: FORTRAN Rewind Statement

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int ftnrew(lun,...)

int lun Logical unit number

Description:

Executes the FORTRAN REWIND statement when translated via a non-optimized user bias. In addition to the logical unit

number, this function takes a variable number of parameters which specify the actual data to be supplied to the rewind

function. The parameter type codes passed to this function are as follows:

Code Parameter Description of Use

0 ---- Ends the list of parameters

1 long* Points to an error return variable

Return value:

A zero if the rewind went well, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing of

the possible error codes.

See also:

fioerror() Perform FORTRAN I/O Error Processing

fiointu() Establish an internal file

fiolun() Establish unit number

fiorew() Rewind current file

fiostatus() Set I/O Error Status

6.200 FTNSAC: FORTRAN Store a Character String

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void ftnsac(s1,n1,s2,n2)

char* s1 Pointer to receiving string

int n1 Length of receiving string

char* s2 Pointer to sending string

int n2 Length of sending string

Description:

Stores a FORTRAN style character string into another string and then pads that string with blanks. Note that some care

must be taken with overlaying copies. Since not all platforms support an overlayed copy, this is done via an explicit loop.

Return value:

PromulaFortran Translator User's Manual

238

None, the function is void.

See also: None

6.201 FTNSALLO: FORTRAN String Allocation

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

 char* a Pointer to the character storage

 int n Length of the string
} string;

void ftnsallo(str,...)

string* str String to be allocated

Description:

This function allocates scratch storage space needed to store a string concatenation created on the fly — in a calling

parameter list or I/O statement — and then copies the specified strings into it.

Return value:

None, the function is void; however, the parameter str is updated to contain a pointer to the start of the created string and

its length. Note that if this function is unable to obtain the needed scratch memory, it exits with a message.

See also: None

6.202 FTNSCOMP: FORTRAN String Comparison

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int ftnscomp(s1, ns1,...)
char* s1

int ns1

Description:

This function performs string comparisons in which at least one of the two operands represents a concatenation of smaller

strings. Once any required concatenations have been performed, the comparison proceeds character by character either until

the end of both strings is reached or until a specific character difference is found. If the strings are of unequal length, the

shorter string is treated as though it were padded with blanks to the length of the longer string.

Return value:

 0 if no character difference is found

n if a character in the first string is less than the corresponding character in the second string.

+n if a character in the first string is greater than the corresponding character in the second string.

See also:

PromulaFortran Translator User's Manual

239

ftncms() Compare two FORTRAN style strings

6.203 FTNSCOPY: FORTRAN String Copy

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void ftnscopy(s1, ns1,...)

char* s1

int ns1

Description:

This function copies a variable number of strings into a destination string. If at the end of that copy not all space in the

destination is used, it is filled with blanks.

Return value:

None, the function is void.

See also: None

6.204 FTNSLENG: FORTRAN String Length

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int ftnsleng(s1, ns1,...)

char* s1

int ns1

Description:

This function computes the length of a character string or a sequence of strings being concatenated.

Return value:

The length of the result string.

See also: None

6.205 FTNSUBS: FORTRAN Substring Evaluation

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void ftnssubs(subs,str,slen,ipos,lpos)

string* subs String specification to return substring data

char* str String which contains the substring

int slen Specified length of the string

int ipos Starting position of the substring

PromulaFortran Translator User's Manual

240

int lpos Ending position of the substring

Description:

This function creates a string structure for a substring reference in a FORTRAN program. The operation it performs is

minimal; however, it is needed in functional form to avoid evaluating the value of the substring bounds more than once.

Note also that there is a dialectal variant here. Some allow the maximum string bound to exceed the specified string length

while others do not.

Return value:

None, the function is void; however, the parameter subs is updated to contain a pointer to the start of the substring and its

length.

See also: None

6.206 FTNSTOP: FORTRAN Stop Statement

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void ftnstop(message)

char* message Message to be displayed at console, i.e., stderr

Description:

Executes the FORTRAN STOP statement by sending a message to the console, stderr, not the screen, stdout, and

making a normal exit It should be pointed out that this is one of those conventions that reasonable people do disagree

about. Changing the output file to stdout is easily accomplished in the source for this function via a defined variable

console.

Return value:

None, this function does not return to the calling function.

See also: None

6.207 FTNWEF: FORTRAN End File Statement

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int ftnwef(lun,...)

int lun Logical unit number

Description:

Executes the FORTRAN ENDFILE statement when translated via a non-optimized user bias. In addition to the logical unit

number, this function takes a variable number of parameters which specify the actual data to be supplied to the endfile

function. The parameter type codes passed to this function are as follows:

Code Parameter Description of Use

PromulaFortran Translator User's Manual

241

0 ---- Ends the list of parameters

1 long* Points to an error return variable

Return value:

A zero if the endfile went well, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing of

the possible error codes.

See also:

fioerror() Perform I/O error processing

fiolun() Establish unit number

fiointu() Establish an internal file

fiowef() Endfile to current file

fiostatus() Set I/O Error Status

6.208 FTNWRIT: FORTRAN Write Statement

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int ftnwrit(lun,...)

int lun Logical unit number

Description:

Executes the FORTRAN WRITE statement when translated via a non-optimized user bias. In addition to the logical unit

number, this function takes a variable number of parameters which specify the actual data to be supplied to the detailed

write functions. The parameter type codes passed to this function are as follows:

Code Parameter Description of Use

1 long* Points to an error return variable

2 --- Indicates that list-directed I/O is being performed

3 char**,int Points to a full FORMAT specification

4 char* Points to a FORMAT string

5 int Specifies a record number

9 --- Specifies that more operations are to be performed

10 int Specifies that a series of operations are desired

11 Introduces a short integer value

12 Introduces a double precision value

13 Introduces a short logical value

14 Introduces a char value

15 Introduces a long value

16 Introduces a float value

17 Introduces a long logical value

18 Introduces an unsigned char value

19 Introduces a complex value

20 Introduces a string value

21 Introduces a C-string value

Return value:

PromulaFortran Translator User's Manual

242

A zero if the write went well, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing of

the possible error codes.

See also:

fioerror() Perform FORTRAN I/O Error Processing

fiofini() Initialize A FORTRAN Format

fiointu() Establish FORTRAN Internal Unit

fiolun() Establish FORTRAN Unit Number

fiorec() Position a FORTRAN File on a Record

fiostatus() Set FORTRAN I/O Error Status

fiostio() Establish FORTRAN Standard I/O

fiowln() Write FORTRAN End-of-Line

fiowbiv() Write FORTRAN Binary Values

fiowrb() Write FORTRAN Boolean Vector

fiowrc() Write FORTRAN Char Vector

fiowrd() Write FORTRAN Double Precision Vector

fiowrf() Write FORTRAN Single Precision Vector

fiowri() Write FORTRAN Short Integer Vector

fiowrl() Write FORTRAN Long Integer Vector

() Write FORTRAN Vector of Strings

fiowrt() Write FORTRAN Truth-Value Vector

fiowru() Write FORTRAN Unsigned Char Vector

fiowrx() Write FORTRAN Complex Vector

fiowvb() Write FORTRAN Boolean Value

fiowvc() Write FORTRAN Character Value

() Write FORTRAN Double Value

fiowvf() Write FORTRAN Float Value

fiowvi() Write FORTRAN Short Integer Value

) Write FORTRAN Long Integer Value

fiowvs() Write FORTRAN String Value

fiowvt() Write FORTRAN Truth Value

fiowvu() Write FORTRAN Character Value

fiowvx() Write FORTRAN Complex Value

fiovfini() Initialize A Variable FORTRAN Format

6.209 FTNXCONS: FORTRAN Exact Representation Constant

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

char* ftnxcons(base,xcons,xlen,vlen)

int base; Base of the exact representation constant

char* xcons; Exact representation constant in string form

int xlen; Length of exact representation string

int vlen; Length of the resultant value

Description:

Octal and hexadecimal character strings are physically stored as character strings and are treated as typeless numeric

constants. This function performs this conversion. The parameter base specifies the base of the exact representation

constant. It may have a value of 8 or 16 only. The xcons parameter points to the actual string for the constant. The xlen

parameter specifies the length of the string; while the vlen parameter specifies the length of the resultant value. It has a

maximum setting or 32.

PromulaFortran Translator User's Manual

243

Return value:

A pointer to the result of the conversion. This pointer must always be cast a pointer to the type of the desired value.

See also:

fifibit() Insert a bit

fifrbit() Reverse bit byte order

fifxbit() Extract a bit

6.210 P77GETU: Prime FORTRAN 77 Function F77$GETU

Synopsis:

#include "fortran.h" Define the platform hosting this code

short p77getu(lun)

short* lun; Returns logical unit number

Description:

Scans the currently open files to find an available logical unit number.

Return value:

The unit number.

See also: None

6.211 P77NLENA: PRIME FORTRAN 77 Subroutine NLEN$A

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

short p77nlena(mes,nmes)

char* mes; Message to be evaluated

int nmes; Length of message

Description:

This function computes the length of a blank filled string by finding the last nonblank character.

Return value:

The length of the string

See also: None

6.212 P77TNOUA: PRIME FORTRAN 77 Subroutine TNOUA

Synopsis:

PromulaFortran Translator User's Manual

244

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void p77tnoua(mes,nmes)

char* mes Message to be written

int nmes Length of message

Description:

This function writes a message to the terminal screen with a newline.

Return value:

None, the function is void.

See also: None

6.213 PDPASSN: PDP FORTRAN Subroutine Assign

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void pdpassn(lun,name,icnt,mode,cc)

int lun; Logical unit number

char* name; Name of file

int icnt; Character count for name

char* mode; File mode information

char* cc; File carriage control information

Description:

This function assigns a file name and characteristics to a logical unit so that it may be "defined" and/or used. It is needed

because the PDP dialect contains no "OPEN" statement as such.

Return value:

None, the function is void.

See also:

fiofdata() Establish file data

fiolun() Establish FORTRAN unit number

fioshl() Shift string left

6.214 PDPCLOSE: PDP FORTRAN Subroutine Close

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void pdpclose(lun)

int lun; Logical unit number

PromulaFortran Translator User's Manual

245

Description:

This function closes the file assigned to a logical unit number. It is needed because the PDP dialect contains no CLOSE

statement as such.

Return value:

None, the function is void.

See also:

fioclose() Close the file

fiolun() Establish FORTRAN unit number

6.215 PDPCVTIM: PDP FORTRAN External Function CVTTIM

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void pdcvtim(midn,hrs,min,sec,tic)

long* midn; Number of ticks since midnight

short* hrs; Returns hours value

short* min; Returns minutes value

short* sec; Returns seconds value

short* tic; Returns ticks value

Description:

Converts a value which contains the number of clock ticks since midnight for a 60-cycle clock into its corresponding hours,

minutes, seconds, and ticks values. The input value was computed as follows:

 ((hour * 60 + min) * 60 + sec) * 60 + tic.

Return value:

None, the function is void.

See also: None

6.216 PDPGTIM: PDP FORTRAN External Function GTIM

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void pdpgtim(tic)

long* tic Returns number of ticks since midnight

Description:

Returns the current time of day. The time is returned in a long variable and is given in terms of clock ticks past midnight,

though its actual resolution is only to the nearest second. The routine assumes a 60-cycle clock; therefore, the value

returned is actually only

PromulaFortran Translator User's Manual

246

 ((hour * 60 + min) * 60 + sec) * 60.

Return value:

None, the function is void.

See also: None

6.217 VMSCLS: Close Virtual File

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void vmscls()

Description:

This function scans the virtual blocks in memory and writes any that have been changed back to the virtual file. This

operation ensures that the virtual file can be used as a database after execution. Then it physically closes the virtual file.

The normal virtual memory algorithm only writes a block when it has changed and when its memory slot is needed.

Return value:

None, the function is void.

See also:

vmsglob() Manages virtual global variables

vmswvb() Physically write block to file

6.218 VMSDEL: Change Virtual Information

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

unsigned char* vmsdel(ioiad)

long ioiad Offset of information to be changed

Description:

Returns a pointer to the byte at a specified long linear address. This function takes no responsibility for ensuring that no

block boundaries are encountered downstream from the specified byte. This function assumes that the calling function

intends only to change the information. The parameter is as follows:

Name Description of use

ioiad The linear address for which a pointer is desired.

Return value:

A pointer to the byte at the requested linear address.

PromulaFortran Translator User's Manual

247

See also:

vmsptr() Obtain Virtual Byte Pointer

6.219 VMSGLOB: Virtual Global Access

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void vmsglob(iop)

int iop;

Description:

This function loads and saves global variables from a virtual GREAT MIGRATIONS database as specified in the globals

file. This version is a dummy only to satisfy the external references from vmsopn and vmscls.

Return value:

None, the function is void.

See also: None

6.220 VMSLOAD: Load a Virtual Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

char* vmsload(nbyte,ioiad)

long nbyte; Number of bytes to be allocated

long ioiad; Virtual address of values

Description:

Returns a pointer to a storage area on the heap which is at least as long as the requested number of bytes. If the bytes cannot

be obtained, then this function exits to the operating system. If the bytes can be obtained, they are loaded with the

information at the specified address on the virtual database.

Return value:

A pointer to the start of the storage area.

See also:

ftnalloc() Allocate dynamic memory

vmsvect() Virtual vector input or output

6.221 VMSOPN: Open A Virtual Memory File

Synopsis:

PromulaFortran Translator User's Manual

248

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmsopn(argc,argv)

int argc Number of command line strings

char** argv An array of pointers to the strings

Description:

Opens a virtual file for processing. This may either be an existing file or a new file. This function is called to initialize the

virtual file system by any program requiring the use of the virtual file system. This function is passed to the command line

strings which were passed to the main function by the operating system. This function scans those command line strings

looking for two particular arguments as follows:

Argument Description

Vname Specifies the name of a file which is to be used as the virtual disk file. This may be

an existing GREAT MIGRATIONS array datafile or it may be a file to be created

during the execution of this program.

Svalue Specifies that the name specified by the V parameter is to be created during the

execution of this program. The parameter value specifies the size of that file in

bytes.

Zvalue Specifies the maximum number of sheets to be allocated for virtual memory. This

parameter is needed when both dynamic and virtual allocations are being made. It

prevents the virtual manager from exhausting all memory before the dynamic

manager has a chance to get its share. The maximum setting for this parameter is 254.

Return value:

This function returns a code indicating whether or not the open was successful. The values are as follows:

Code Meaning

0 All went well, the virtual file is ready for use

1 The existing virtual file could not be opened

2 The size of the existing file could not be determined

3 The new virtual file could not be created

4 Sufficient memory for the block status vector could not be allocated.

See also:

vmsglob() Manages virtual global variables

6.222 VMSPTR: Get Virtual Byte Pointer

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

unsigned char* vmsptr(fd, ioiad,delta)

int fd Handle of virtual file

long ioiad Linear address of desired byte

int delta Change flag

PromulaFortran Translator User's Manual

249

Description:

Returns a pointer to the byte at a specified long linear address. This function takes no responsibility for ensuring that no

block boundaries are encountered downstream from the specified byte. If the calling function specifies that the byte being

addressed is to be changed, then this function marks the virtual block structure containing the byte accordingly. The

parameters for this function are as follows:

Name Description of use

ioiad The linear address for which a pointer is desired.
delta A flag which, if non-zero, indicates that the calling function intends to change the

information at the byte and/or beyond.

Return value:

A pointer to the byte at the requested linear address.

See also:

vmsrbl() Remove virtual block from chains

vmswvb() Physically write block to file

6.223 VMSRBL: Remove Virtual Block

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void vmsrbl(vlb)

int vlb Block to be removed

Description:

This function removes the indicated block from the most and least recently used chains so that the block can become the

currently most recently used block.

Return value:

None, the function is void.

See also: None

6.224 VMSRDB: Read FORTRAN Virtual Boolean Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmsrdb(value,nval)

long value Virtual address of values

int nval The number of values to be read

Description:

PromulaFortran Translator User's Manual

250

Reads a virtual vector of Boolean (short logical) values from the current input file in accordance with the current format

specification. Note that in this function each individual Boolean value is assumed to have its own corresponding format

specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiordb() Read FORTRAN Boolean vector

vmsdel() Change a virtual value

6.225 VMSRDC: Read FORTRAN Virtual Character Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmsrdc(value,nval)

long value Virtual address characters to be read

int nval Number of characters to read

Description:

Reads a virtual vector of character values from the current input file in accordance with the current format specification.

Note that in this function each individual character is assumed to have its own corresponding format specification if a

formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiordc() Read FORTRAN character vector

vmsdel() Change a virtual value

6.226 VMSRDD: Read FORTRAN Virtual Double Precision Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmsrdd(value,nval)

long value Virtual address values to be read

int nval Number of values to be read

Description:

PromulaFortran Translator User's Manual

251

Reads a virtual vector of double precision floating point values from the current input file in accordance with the current

format specification. Each value is assumed to have its own corresponding format specification if a formatted read is being

performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiordd() Read FORTRAN double precision vector

vmsdel() Change a virtual value

6.227 VMSRDF: Read FORTRAN Virtual Floating Point Values

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmsrdf(value,nval)

long value Virtual address of values to be read

int nval Number of values to be read

Description:

Reads a virtual vector of single precision floating point values from the current input file in accordance with the current

format specification. Each value is assumed to have its own corresponding format specification if a formatted read is being

performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiordf() Read FORTRAN floating point vector

vmsdel() Change a virtual value

6.228 VMSRDI: Read FORTRAN Virtual Short Integer Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmsrdi(value,nval)

long value Virtual address of values

int nval Number of values to be read

Description:

PromulaFortran Translator User's Manual

252

Reads a virtual vector of short fixed point values from the current input file in accordance with the current format

specification. Each value is assumed to have its own corresponding format specification if a formatted read is being

performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiordi() Read FORTRAN short integer vector

vmsdel() Change a virtual value

6.229 VMSRDL: Read FORTRAN Virtual Long Integer Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmsrdl(value,nval)

long value Virtual address of values

int nval Number of values to be read

Description:

Reads a virtual vector of long fixed point values from the current input file in accordance with the current format

specification. Each value is assumed to have its own corresponding format specification if a formatted read is being

performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiordl() Read FORTRAN long integer vector

vmsdel() Change a virtual value

6.230 VMSRDS: Read FORTRAN Virtual String

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmsrds(value,nstring,nval)

long value; Virtual address of start of strings

int nstring; Length of each string

int nval; Number of strings to be read

Description:

PromulaFortran Translator User's Manual

253

Reads a virtual sequence of fixed length strings, stored one after another, from the current input file in accordance with the

current format specification. Each string is assumed to have its own corresponding format specification if a formatted read

is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiords() Read FORTRAN character strings

vmsdel() Change a virtual value

6.231 VMSRDT: Read FORTRAN Virtual Truth-Value Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmsrdt(value,nval)

long value Virtual address of values to be read

int nval The number of values to be read

Description:

Reads a virtual vector of truth-values (long logical values) from the current input file in accordance with the current format

specification. Note that in this function each individual truth-value is assumed to have its own corresponding format

specification if a formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiordt() Read FORTRAN truth value vector

vmsdel() Change a virtual value

6.232 VMSRDU: Read FORTRAN Virtual Unsigned Character Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmsrdu(value,nval)

long value Virtual address characters to be read

int nval Number of characters to read

Description:

PromulaFortran Translator User's Manual

254

Reads a virtual vector of character values from the current input file in accordance with the current format specification.

Note that in this function each individual character is assumed to have its own corresponding format specification if a

formatted read is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiordu() Read FORTRAN character vector

vmsdel() Change a virtual value

6.233 VMSSAVE: Save a Virtual Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void vmssave(svec,nbyte,ioiad)

char* svec; Starting address of the information

long nbyte; Number of bytes to be saved

long ioiad; Virtual address of values

Description:

Saves a vector of values on the virtual database and then releases the memory being used for that vector.

Return value:

None the function is void.

See also:

ftnfree() Free dynamic memory

vmsvect() Virtual vector input or output

6.234 VMSUSE: Use Virtual Information

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

unsigned char* vmsuse(ioiad)

long ioiad Offset of information to be used

Description:

Returns a pointer to the byte at a specified long linear address. This function takes no responsibility for ensuring that no

block boundaries are encountered downstream from the specified byte. This function assumes that the calling function

intends only to reference the information and not to change it. The parameter is as follows:

Name Description of use

PromulaFortran Translator User's Manual

255

ioiad The linear address for which a pointer is desired.

Return value:

A pointer to the byte at the requested linear address.

See also:

vmsptr() Obtain Virtual Byte Pointer

6.235 VMSVECT: Virtual Vector Input/Output

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

void vmsvect(fd,vec,nbyte,ioiad,iop)

int fd Handle of virtual file

char* vec Vector being read or written

long nbyte Number of bytes to be processed

long ioiad Virtual address of values

int iop Operation code: 1 = write, 0 = read

Description:

Reads or rewrites a vector of bytes for a specified virtual file beginning at a specified address.

Return value:

None, the function is void.

See also:

vmsptr() Get virtual byte pointer

6.236 VMSWRB: Write FORTRAN Virtual Boolean Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmswrb(value,nval)

long value Virtual address values being written

int nval Number of values to be written

Description:

Writes a virtual vector of Boolean values to the current output file in accordance with the current format specification. In

this context, the term "Boolean value" refers to a short logical value. The output display for a logical value consists of a

sequence of "fw-1" blanks followed by a "T" or an "F", where "fw" is the field width. " T" is used for nonzero values and

"F" is used for zero values.

PromulaFortran Translator User's Manual

256

Note that this function also supports the FORTRAN 66 convention under which alphabetic information may be stored in

the logical values.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowrb() Write FORTRAN Boolean vector

vmsuse() Use a virtual value

6.237 VMSWRC: Write FORTRAN Virtual Character Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmswrc(value,nval)

long value Virtual address of characters to be written

int nval Number of characters to be written

Description:

Writes a virtual vector of character values to the current output file in accordance with the current format specification.

Note that in this function each individual character is assumed to have its own corresponding format specification if a

formatted write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowrc() Write FORTRAN character vector

vmsuse() Use a virtual value

6.238 VMSWRD: Write FORTRAN Virtual Double Precision Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmswrd(value,nval)

long value Virtual address values being written

int nval Number of values to be written

Description:

Writes a virtual vector of double precision values to the current output file in accordance with the current format

specification. Note that in this function each individual value is assumed to have its own corresponding format specification

if a formatted write is being performed.

PromulaFortran Translator User's Manual

257

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowrd() Write FORTRAN double precision vector

vmsuse() Use a virtual value

6.239 VMSWRF: Write FORTRAN Virtual Single Precision Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmswrf(value,nval)

long value Virtual address of values being written

int nval Number of values to be written

Description:

Writes a virtual vector of single precision values to the current output file in accordance with the current format

specification. Note that in this function each individual value is assumed to have its own corresponding format specification

if a formatted write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowrf() Write FORTRAN single precision vector

vmsuse() Use a virtual value

6.240 VMSWRI: Write FORTRAN Virtual Short Integer Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmswri(value,nval)

long value Virtual address of values to be written

int nval Number of values to be written

Description:

Writes a virtual vector of short integer values to the current output file in accordance with the current format specification.

Note that in this function each individual value is assumed to have its own corresponding format specification, if a

formatted write is being performed.

Return value:

PromulaFortran Translator User's Manual

258

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowri() Write FORTRAN short integer vector

vmsuse() Use a virtual value

6.241 VMSWRL: Write FORTRAN Virtual Long Integer Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmswrl(value,nval)

long value Virtual address of values to be written

int nval Number of values to be written

Description:

Writes a virtual vector of long integer values to the current output file in accordance with the current format specification.

Note that in this function each individual value is assumed to have its own corresponding format specification if a

formatted write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowrl() Write FORTRAN long integer vector

vmsuse() Use a virtual value

6.242 VMSWRS: Write FORTRAN Virtual Vector of Strings

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmswrs(value,nstring,nval)

long value Virtual address start of strings

int nstring Length of each string

int nval Number of strings to be written

Description:

Writes a virtual sequence of fixed length strings, stored one after another, to the current output file in accordance with the

current format specification. Each string is assumed to have its own corresponding format specification if a formatted write

is being performed.

Return value:

PromulaFortran Translator User's Manual

259

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowrs() Write FORTRAN string vector

vmsuse() Use a virtual value

6.243 VMSWRT: Write a Virtual Long Truth Value Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmswrt(value,nval)

long value Virtual address of values to be written

int nval Number of values to be written

Description:

Writes a virtual vector of long truth values to the current output file in accordance with the current format specification.

Note that in this function each individual value is assumed to have its own corresponding format specification if a

formatted write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

See also:

fiowrt() Write FORTRAN long truth vector

vmsuse() Use a virtual value

6.244 VMSWRU: Write FORTRAN Virtual Unsigned Character Vector

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

int vmswru(value,nval)

long value Virtual address of characters to be written

int nval Number of characters to be written

Description:

Writes a virtual vector of character values to the current output file in accordance with the current format specification.

Note that in this function each individual character is assumed to have its own corresponding format specification if a

formatted write is being performed.

Return value:

A zero if there is no error flag set, else an error code. See the general discussion of FORTRAN I/O capabilities for a listing

of the possible error codes.

PromulaFortran Translator User's Manual

260

See also:

fiowru() Write FORTRAN character vector

vmsuse() Use a virtual value

6.245 VMSWVB: Write a Virtual Block

Synopsis:

#include "fortran.h" GREAT MIGRATIONS FORTRAN function declarations

typedef struct {

 int vbdel;

 int vblru;

 int vbmru;

 int vbblk;

 int vbhan;

 char vbdat[1024];

} vmsbtyp; Virtual File System parameters

void vmswvb(vb)

vmsbtyp* vb;

Description:

Physically writes the data block associated with a virtual memory block back onto its virtual file.

Return value:

None, the function is void.

See also: None

	COPYRIGHT NOTICE for
	gmFortran
	Version 9.38 Released May, 2007
	Published by:
	The unauthorized copying of any of these materials is a violation of copyright and/or trade secret law.
	TRADEMARK
	PROMULA®is a registered trademark of Great Migrations LLC.
	gmFortran®is a registered trademark of Great Migrations LLC.
	DEFINITION OF PURCHASE
	PLEASE READ THIS SECTION
	1. INTRODUCTION
	1.1 User Support

	Great Migrations LLC
	Your comments and suggestions about the product are always welcome.
	1.2 What is GREAT MIGRATIONS FORTRAN?
	1.3 Compiler Advantages
	1.4 Translator Advantages
	1.5 How GREAT MIGRATIONS FORTRAN Works
	1.6 Rationale for Developing GREAT MIGRATIONS FORTRAN
	1.7 Downsizing Mainframe Codes for Use on the PC DOS Platform

	DIMENSION A(10000,20),B(10000,20)
	1.8 Dealing with FORTRAN Dialect Problems

	Also, GREAT MIGRATIONS FORTRAN knows the difference between
	DO10I=1,5 and DO10I=1.5
	DO 10 I = 1,5 and DO 10 I = 1.5
	1.9 Dealing with C Types and FORTRAN Types
	1.10 Dealing with FORTRAN Input/Output in C
	1.11 Runtime Library
	1.12 Dealing with Common Blocks
	1.13 Allocation of Local Variables
	1.14 A Sample Translation to C

	2. COMMAND LINE
	Finally, you may replace the entire dialect description file
	2.1 Command Line Syntax

	PFC filename opt1 opt2 opt3
	2.2 Specifying your C output bias — Bc, Bf, Bo
	2.3 Arithmetic Conversions — CL, Cs, C0, C1, C2, C3

	As an example, consider the following simple FORTRAN code that computes the square of a weighted mean.
	SUBROUTINE DEMO(VAL,NVAL,WEIGHT,SQ)
	DIMENSION VAL(*)
	INTEGER*2 NVAL,WEIGHT,POW
	XBAR = 0
	10 CONTINUE
	XBAR = XBAR/(NVAL*WEIGHT)
	SQ = XBAR ** POW
	RETURN
	Moving up to C1, the following example shows the C output using the C1 casting level.
	2.3.1 Arithmetic with Short Integer Variables

	PROGRAM VARI2
	INTEGER*2 I1,I2,I3,I4
	Note that it agrees with the universal promotion to long result shown above.
	The simpler alternative is shown below. No conversions to long are made. Thus, overflows occur in every expression.
	The result of running this translation is shown below.
	2.4 Detailed C Output Format — CF1, CF2, CF4, CF8, CF16

	SUBROUTINE TEST
	COMMON/ALPHA/IVAL,JVAL,KVAL
	IVAL = JVAL + KVAL - I5
	GOTO(10,20,30) IVAL
	10 WRITE(*,*) 'IVAL = 1'
	20 RETURN
	END
	S10:
	WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
	S20:
	S30:
	STOP(NULL);
	S10:
	WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
	S20:
	S30:
	STOP(NULL);
	S10:
	WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
	S20:
	S30:
	STOP(NULL);
	TALPHA->IVAL = TALPHA->JVAL+TALPHA->KVAL-I5;
	S10:
	WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
	S20:
	S30:
	STOP(NULL);
	S10:
	WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
	S20:
	S30:
	STOP(NULL);
	S10:
	WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
	S20:
	S30:
	STOP(NULL);
	In this version the definition of i5 has been simplified to its simple value of 5.
	S10:
	WRITE(OUTPUT,LISTIO,STRG,"IVAL = 1",8,0);
	S20:
	S30:
	STOP(NULL);
	2.5 Treatment of CHARACTER Variables — CHd, CHr, CHs, CHv
	2.5.1 Initializing Character Values

	SUBROUTINE DEMO
	CHARACTER*10 NAME(4:8)/'Charles','Frederick'
	The default C representation for this example is shown below.
	"Charles"
	'Charles'
	2.5.2 Subprogram Arguments

	SUBROUTINE DEMO(I,J)
	CHARACTER*12 NAME
	CHARACTER*4 INITIAL
	J = JINDEX(NAME,INITIAL)
	RETURN
	END
	SUBROUTINE DEMO1(I,J)
	CHARACTER NAME*12,INITIAL*4
	I = JINDEX(NAME,INITIAL)
	RETURN
	END
	INTEGER NAME(3),INITIAL
	I = JINDEX(NAME,INITIAL)
	RETURN
	END
	CHARACTER NAME*12
	INTEGER INITIAL
	I = JINDEX(NAME,INITIAL)
	RETURN
	END
	Finally, the listing below shows the translation using the CHv switch.
	As with CHd, this version at least keeps the argument positions correct.
	2.5.3 Substrings

	SUBROUTINE DEMO1
	CHARACTER NAME*12,INITIAL*4
	INITIAL = NAME(I:J)
	INITIAL = NAME(INDEX(NAME,INITIAL):J)
	RETURN
	END
	2.5.4 Character Concatenations

	SUBROUTINE DEMO1
	CHARACTER SUM*13,INITIAL*4
	CALL DEMO2(SUM // "PLUS THREE", SUM // "PLUS TWO")
	RETURN
	END
	2.5.5 Character Treatment Conclusion
	2.6 Appearance of COMMENTS in C Output — CM0, CM1, CM2

	To see the difference between CM1, which blocks comments, and CM2 which does not, consider the following code.
	SUBROUTINE TEST(I,J,K)
	I = J + K - 5
	END
	The default C output, which uses CM1, produces the following output.
	J + K - I = 5
	In this output, each FORTRAN comment line becomes an equivalent C comment line.
	Note that the NCn switch described in another section of this chapter describes the conventions used for inline comments.
	2.7 Treatment of DATA Initializations — Da, Dc, Dr

	DATA nlist/clist/ [[,]nlist/clist/]...
	2.7.1 Overview of Initialization Problem

	SUBROUTINE DEMO
	DATA A/4.2/,B(1)/5.4/
	DATA ((X(J,I),I=1,J),J=1,5)/1,2,2,3*3,4*4,5*5/
	2 FORMAT(1X,I10)
	WRITE(*,1) A, B
	WRITE(*,1) C
	10 CONTINUE
	STOP
	END
	The listing below shows the default translation of the above example.
	WRITE(OUTPUT,FMT,F1,1,MORE);
	WRITE(0);
	STOP(NULL);
	FIRST=0;
	WRITE(OUTPUT,FMT,F1,1,MORE);
	WRITE(0);
	STOP(NULL);
	2.7.2 The Initialization Switches

	PROGRAM DEMO
	DIMENSION A(50)/10*0.0,40*1.0/
	STOP
	END
	DIMENSION A(50)
	DATA VAL/55.6/
	DO 10 I = 1,50
	RETURN
	END
	The following is the default translation of the example above.
	STOP(NULL);
	The following shows the same translation with the Dr switch set.
	STOP(NULL);
	FIRST=0;
	STOP(NULL);
	2.8 Turn on Debugging Mode — DB

	CM0: Turn comments off
	These flags are discussed in detail elsewhere in this chapter.
	2.9 Echo Control Options — ES, ET, EX, EZ, EP, EL
	2.9.1 Warnings, Notes, and Comments
	2.9.2 Annotated Listing of Source Code

	If Line# Nl Source
	1 23 1
	1 25 1
	2.9.3 Symbol Listing and Cross Reference Table

	Seq Filename
	1 STRUC6.INC
	Symbols referenced in SUBROUTINE STRUC6
	Symbol references by line number in SUBROUTINE STRUC6
	Statement label types and references by line number in SUBROUTINE STRUC6
	2.9.4 Intermediate Compiler Tables

	PROGRAM TEST
	INTEGER I,J,K
	Seq Filename
	2.9.5 Annotated Listing of C Output

	If Line# Nl Translation
	2.10 Treatment of Syntax Errors — ER0, ER1, ER2, ER3, ER4

	PROGRAM TEST
	I = J @ K
	SYNTAX ERROR: errno, statement
	SYNTAX ERROR: 145,"I = J @ K"
	SYNTAXERROR(errno,"statement");
	SYNTAXERROR(145,"I = J @ K");
	STOP(NULL);
	STOP(NULL);
	STOP(NULL);
	Obviously, this setting treats errors simply as warnings; however, the resultant executable will not behave correctly.
	2.11 FORTRAN Input Format Used — Fsnum, Ft, Ff, Fv, F9
	2.12 Source FORTRAN Integer Type — FIs, FIl
	2.13 Gname — Name of File Containing Global Symbols
	2.14 Common Variables Convention — Ga, Gd, Gp, Gs, Gr, Gv

	Examples of the use of this flag are presented here. The following FORTRAN subroutine contains two COMMON blocks.
	SUBROUTINE DEMO
	CHARACTER C1*15,C2*10
	A(1,1) = C
	B(5) = D
	RETURN
	END
	Below is the default translation for this example which uses the Gp setting.
	The translation below is produced via the Gd setting.
	The translation below, which uses the Gs setting, is our favorite if you and your compiler can accept it.
	The simplest translation of this example is produced by the Gv setting and is shown below.
	The final translation of this example is produced by the Ga setting and is shown below.
	2.14.1 Overall Alignment Control with Gp — Gpc, Gps, Gpl, Gpd
	2.15 Iname — Name of File Containing Inline Functions

	PROGRAM TEST
	K = JALPHA(J)
	STOP
	END
	IALPHA = J * 6
	RETURN
	IALPHA = J + 6
	RETURN
	STOP(NULL);
	Note that the function IALPHA has been assigned the special marker, while the function JALPHA has not.
	The actual marker _Inline can be easily changed via a configuration file as discussed in the following chapter.
	2.16 Target C Int Type — Is, Il

	SUBROUTINE DEMO
	INTEGER*2 I,J
	The C code below shows the translation which has an Is setting.
	The following shows the same FORTRAN translated with the Il setting.
	2.17 Treatment of Internally Generated Constants — Ka, Ks

	SUBPROGRAM DEMO
	STOP
	END
	STOP(NULL);
	STOP(NULL);
	PROGRAM DEMO
	DO 10 I = 2,10
	CALL BETA(1)
	10 CONTINUE
	STOP
	END
	I = I + 1
	RETURN
	WRITE(*,*) I
	RETURN
	STOP(NULL);
	2.18 Maximum Output Line Width — Lnum
	2.19 Link Time Processing of COMMON Data Modules — Lm, Ls

	SUBROUTINE TEST
	COMMON/BLOCK/I,J
	FIRST=0;
	STOP(NULL);
	FIRST=0;
	STOP(NULL);
	FIRST=0;
	STOP(NULL);
	In addition, the following message is set to standard output.
	Creating COMMON data module: BD_test
	2.20 Inclusion of Line Numbers for Debugging — Ln, L0
	2.21 FORTRAN Dialect Selection Flags — Mdialect
	2.22 Nesting Indentation to be Used in the Output — N*, N0, Nn
	2.23 Inline Comments Output Margin Width — NCnum
	2.24 Upper and Lower Braces Convention in C — NU0, NU1, NU2, NL1, NL2

	The NU0 switch specifies that the upper brace is to be on the same line with the statement causing the nesting increase.
	The NU1 switch specifies that the upper brace is on the next line at the indentation point used for the old nesting level.
	The NU2 switch specifies that the upper brace is on the next line at the indentation point used for the new nesting level.
	The NL1 switch specifies that the lower brace is on the next line at the indentation point for the previous nesting level.
	The NL2 switch specifies that the lower brace is on the next line at the indentation point for the current nesting level.
	2.25 Name of the File to Receive the C Output — Oname
	2.26 Splitting of Output into Separate Files — Os, Om
	2.27 Miscellaneous Prototyping Control Flags — Pnumb, P+numb
	2.27.1 P1 — Include Definitions of int Functions

	SUBROUTINE TEST
	J = 99
	R = RFUNC(J)
	PRINT *,I,R
	STOP
	The default translation for this subroutine is as follows.
	STOP(NULL);
	STOP(NULL);
	In this version, the fact that ifunc is an int is assumed by the compiler, therefore, no explicit declaration is given.
	2.27.2 P2 — Use ANSI Prototypes for Argument Functions

	SUBROUTINE TEST(IFUNC,RFUNC)
	R = RFUNC(99)
	I = IFUNC(56.7)
	PRINT *,I,R
	STOP
	When processed using the Yv switch, which allows call-by-value arguments, the following C translation is produced.
	STOP(NULL);
	STOP(NULL);
	2.27.3 P4,P8 — Exclude Referenced or Defined Prototypes

	The following FORTRAN code
	SUBROUTINE ALPHA(IA,GVAL)
	R = RFUNC(IA)
	I = IFUNC(GVAL)
	PRINT *,I,R
	STOP
	RFUNC = I * I
	RETURN
	Alternatively, using the P8 switch produces the following list
	2.27.4 P16 — Ignore Prototypes for Definitions

	SUBROUTINE ALPHA(IA,GVAL)
	R = RFUNC(IA)
	I = IFUNC(GVAL)
	PRINT *,I,R
	STOP
	RFUNC = ABS(A)
	RETURN
	END
	STOP(NULL);
	STOP(NULL);
	2.27.5 P32 — Treat User Prototypes as System Functions

	SUBROUTINE ALPHA(IA,GVAL)
	R = RFUNC(IA)
	I = IFUNC(GVAL)
	PRINT *,I,R
	STOP
	RFUNC = ABS(I)
	RETURN
	END
	STOP(NULL);
	STOP(NULL);
	In this translation note that ifunc still has an extern declaration, but that rfunc no longer has.
	2.27.6 P64 — Write PFC Style Prototypes, not C Type

	Consider the following FORTRAN subroutine with two CHARACTER*10 arguments.
	SUBROUTINE ALPHA(IA,GVAL)
	CHARACTER*10 IA,GVAL
	PRINT *,IA,GVAL
	The default prototype written for this function under the default CHd character treatment switch is as follows.
	2.27.7 P128 — Write All Function decls to Header File

	PROGRAM DEMO
	STOP
	END
	CHARACTER*(*) IA,GVAL
	PRINT *,IA,GVAL
	END
	The default translation for this code is shown below.
	STOP(NULL);
	The P128 flag provides this service. The translation of the above code using the P128 flag is shown below.
	STOP(NULL);
	This declaration of ialpha is correct and reflects the best information available.
	2.27.8 P256 — Use ANSI C Function Declarations

	SUBROUTINE DEMO
	STOP
	END
	CHARACTER*(*) IA,GVAL
	PRINT *,IA,GVAL
	STOP(NULL);
	STOP(NULL);
	In this form, the argument list also contains the typing information.
	2.27.9 P512 — Make Parameters Always Take Explicit Value Type

	SUBROUTINE ALPHA(IA,GVAL)
	PARAMETER(AVAL = 99)
	PARAMETER(IVAL = 10.2)
	IA = AVAL
	GVAL = IVAL
	Note that the constants themselves have changed type to accommodate the typing of the PARAMETER symbols.
	The P512 flag gives the opposite interpretation, as can be seen in the following translation.
	2.27.10 P1024 — Exclude undefs From the Translation
	2.27.11 P2048 — Force Variables to Have Explicit Character Type

	PROGRAM DEMO
	PRINT *,IC
	STOP
	CHARACTER*(*) IA,GVAL
	PRINT *,IA,GVAL
	END
	The default translation for this program does not produce correct results.
	STOP(NULL);
	STOP(NULL);
	' ','W','o','r','l','d',' ',' '
	STOP(NULL);
	2.27.12 P4096 — Define Equivalences via a #define

	PROGRAM DEMO
	EQUIVALENCE (IA(5),IB(2))
	READ(*,*) IA
	PRINT *,IB
	An alternative translation can be produced via the P4096 flag. This translation is shown below.
	2.27.13 P8192 — Use Parameter Identifiers in Equivalences

	PROGRAM DEMO
	INTEGER IA(10),IB(2)
	EQUIVALENCE (IA(IAOFF),IB(IAOFF-3))
	READ(*,*) IA
	PRINT *,IB
	This form now uses the #defined value for IAOFF; however, a different computation must be used.
	2.27.14 P16384 — Display Include Files Separately

	TEST.FOR
	PROGRAM DEMO
	INCLUDE "TEST1.INC"
	TEST1.INC
	C
	PARAMETER(NA = 100)
	PARAMETER(NB = 200)
	TEST2.INC
	C
	COMMON/ALPHA/IA(NA),IB(NB)
	Define the needed sizes
	Define the common data
	TEST1.h
	Define the needed sizes
	#ifndef ICF_TEST2
	Define the common data
	If Line# Nl Translation
	Note that the writing of the three files is completely intertwined.
	2.28 Listing File Control — PAname, PHnumb, PNname, PWnumb
	2.29 Quantity Control Flags — QInumb, QEnumb, QDnumb, QXnumb, QHnumb, QWnumb
	2.29.1 QInumb — Size of Compacted Statement Storage

	Note that if the size of the compacted statement storage area is exceeded, the fatal error 522
	2.29.2 QEnumb — Size of the Line Number Table

	Note that if the size of the line number information table is exceeded, the fatal error 532
	2.29.3 QDnumb — Size of a Data Block
	2.29.4 QXnumb — Size of External Information Storage

	The default setting for the QXnumb switch is 2000. If the external symbols storage area is exceeded, the fatal error 519
	2.29.5 QHnumb — Size of Include File Information Storage

	If the include file information storage area storage area is exceeded, the fatal error 531
	2.29.6 QWnumb — Word Size of Source Platform
	2.30 Specify a Configuration File — Rname
	2.31 Storage Threshold Values — SAnum, SDnum, SSnum, SVnum, SZnum

	SUBROUTINE DEMO
	DO 10 I = 1,10
	B(I,I) = C(I,I,1)
	A(I) = B(I,3)
	10 CONTINUE
	RETURN
	END
	This example contains a variety of arrays having from 40 to 40,000 bytes. The following is the default translation.
	ELP:
	ELP:
	ELP:
	As a final example, do the same thing as above except replacing dynamic storage with virtual storage. To do this enter
	SS SA0 SV10
	The following is the result.
	10L)*10L)*4);
	2.32 FORTRAN Dialect Doloop Assumptions — T0, T1, T2

	DO [slab[,]] v=e1,e2[,e3]
	SUBROUTINE DEMO
	INTEGER V,E1,E2,E3
	10 CONTINUE
	RETURN
	END
	Since many are not familiar with this notation the expression
	D2 = (D2=(e2-v+D1)/D1) > 0 ? D2 : 1
	Of course, the same logic as above holds for loops with floating point controls. The following is an example.
	SUBROUTINE DEMO
	DO 10 V = E1, E2, E3
	10 CONTINUE
	RETURN
	END
	SUBROUTINE DEMO
	INTEGER V,E1,E2
	10 CONTINUE
	RETURN
	END
	Now there is no need to introduce any temporary variables since the simplistic view of the DO loop gives the same result.
	SUBROUTINE DEMO
	INTEGER V,E2
	DO 10 V = 1, E2
	A(V,V) = 10.0
	10 CONTINUE
	RETURN
	END
	IVAL = 0
	N = 0
	10 CONTINUE
	SUBROUTINE DEMO
	IVAL = 0
	10 CONTINUE
	RETURN
	END
	The following translation was produced using the default T0 setting.
	Finally, the following shows the same thing translated via the T2 switch.
	This switch forces the computation of the trip count variable as specified by the FORTRAN 77 standard.
	2.33 Treatment of Internally Generated Temporaries — Ta, Ts

	SUBROUTINE DEMO(A,N,M,INC)
	DIMENSION A(N+1,M+1)
	INTEGER V
	DO 10 V = 1, M+1, INC
	10 CONTINUE
	RETURN
	END
	The default C intermediate output for this example looks as follows.
	2.34 Specifying Unit Numbers — UR, URnum, UP, UPnum, UW, UWnum
	2.35 File to Receive Prototype Definitions — Wname

	If there is no extension supplied with the name of the file, then an extension of .pro will be assumed.
	2.36 Miscellaneous Control Flags — Y1, Y2

	Of course, as with the other numeric flags, the composite switch Y3 performs both operations.
	2.36.1 The Treatment of Entry Points — Y1

	CALL ISET_BVALUE(10)
	WRITE(*,*) IDOUBLE(5),MULTIPLY_A(2,4)
	END
	INTEGER A,R,B
	IDOUBLE = A * B
	A = A * R
	IDOUBLE = A * B
	RETURN
	END
	IDOUBLE:
	MULTIPLY_A:
	ISET_BVALUE:
	IDOUBLE:
	MULTIPLY_A:
	ISET_BVALUE:
	2.36.2 Output Form of Parameter Identifiers — Y2

	SUBROUTINE DEMO(IV)
	PARAMETER GoodBye = 0, Hello = 1
	In this translation the parameters have the same case conventions that they had in the FORTRAN source.
	2.37 Treatment of Multiple Assignments — Xa, Ya

	SUBROUTINE DEMO
	DO 10 I = 1,10
	IVAL(I) = 10
	10 CONTINUE
	RETURN
	END
	The default intermediate C output for this subprogram is shown below.
	2.38 Treatment of Single Statement Nesting Brace — Xb, Yb

	The following simple subprogram contains a DO loop, a simple IF statement, and a block IF statement.
	SUBROUTINE DEMO
	DO 10 I = 1,10
	IVAL(I) = 10
	10 CONTINUE
	IF(I .EQ. 10) WRITE(*,*) 'I equals 10'
	END IF
	RETURN
	The default C intermediate output for this subprogram looks as follows.
	The C output using both Ya and Yb produces the following.
	Now the for loop is also reduced to a compound statement, since it now contains a single multiple assignment.
	2.39 Constant Reduction Optimization — Xc, Yc

	SUBROUTINE DEMO(A,B,C)
	DIMENSION A(10),B(6,7),C(3,4,5)
	A(5) = 5.0
	B(2,3) = 6.0
	The default intermediate C form for this fragment is as follows.
	2.40 Character Optimization Switches — Xch, Ych

	SUBROUTINE DEMO(IV)
	CHARACTER*1 C
	C = CHAR(56)
	END
	Using the default Ych switch, the following is produced.
	Alternatively, the Xch switch produces the following translation.
	2.41 Treatment of FORTRAN "D" debugging statements

	Consider the following simple FORTRAN subprogram, which contains a "D" type comment.
	SUBROUTINE DEMO(A,B,C)
	DIMENSION A(10),B(6,7),C(3,4,5)
	A(5) = 5.0
	B(2,3) = 6.0
	The default intermediate C output for this subprogram looks as follows.
	WRITE(*,*) 'Demo successfully entered'
	2.41.1 Treatment of Other Debugging Statements — Ydstring

	SUBROUTINE DEMO(A,B,C)
	DIMENSION A(10),B(6,7),C(3,4,5)
	A(5) = 5.0
	B(2,3) = 6.0
	Using the YD*? switch produces the following translation.
	2.42 Use of Printf-Style Formatting — Xf, Yf

	The following short code contains a formatted write statement and a list-directed write statement.
	SUBROUTINE DEMO
	WRITE(*,1) I,J,A,B,C
	WRITE(*,*) I,J,A,B,C
	The default intermediate C output for this code is as follows.
	2.43 Initialization Check for Auto Variables — Xi, Yi

	SUBROUTINE DEMO
	J = 5
	The translation of this code using SS and SA0 is as follows.
	2.44 DO Loop Counter Reduction Optimization — Xl, Yl

	SUBROUTINE MATMUL(A,B,C)
	DIMENSION A(10,15),B(15,20),C(10,20)
	DO 15 I = 1,10
	DO 15 J = 1,20
	10 CONTINUE
	15 CONTINUE
	RETURN
	END
	2.45 Subprogram Argument Type Checking — Xp, Yp

	SUBROUTINE TEST
	CALL DEMO(I,J,K)
	END
	The default C output for this subprogram, with Xp active, is simply as follows.
	2.46 Single Precision Real Arithmetic — Xr, Yr
	2.47 Subscript Pointer Notation — Xs, Ys, Ysv, Ysf

	SUBROUTINE DEMO
	A(3) = 0
	B(2,4) = 1
	Intermediate C output using the Ys switch is as follows.
	Intermediate C output using the default Xs switch is as follows.
	2.48 Unformatted Write Optimization — Xu, Yu

	The following is a simple FORTRAN code which performs a series of unformatted writes to unit 1.
	SUBROUTINE DEMO(A,B,C,NR,NC)
	DIMENSION A(NR),B(NC),C(NR,NC)
	WRITE(1) A
	WRITE(1) B,C
	RETURN
	The default translation, under Xu, is as follows.
	WRITE(1,MORE);
	WRITE(0);
	T2 = 24;
	WRITE(1,MORE);
	WRITE(0);
	2.49 Subprogram Call-by-Value Arguments — Xv, Yv
	2.50 Dollar Signs as Initial Symbols in Identifiers — X$, Y$
	2.51 Location of FORTRAN Files to be Included — Zname
	2.52 Project Processing — #project

	PROJECT: project_name
	To avoid conflicts, make sure that the name of the project is different than the names of all the project member files.
	3. CONFIGURATION FILE
	SWITCHES — specifies command line switches
	The rules for writing directives in configuration files are described in the context of the following sections.
	3.1 The Configuration SWITCHES Statement

	The following is an example of a SWITCHES statement.
	SWITCHES Y3 P+4096 P+8192 CF11 Il Mvax CHv Ga Yd*? QH1000
	3.2 The Configuration COMMENTS Statement

	COMMENTS
	DDL-specification
	As an example, consider the following FORTRAN code.
	IMPLICIT INTEGER (A-Z)
	NONINPBASE = HD_QPIS + HD_QPSUPIS
	FIRSTNONINP = NONINPBASE + 1 ! First non-input node
	HASHMAX = HD_HASHVAL - (2 * HD_HASHVAL) / 100
	SWAB_FLAG = ARG_SWAB_FLAG
	XLIT_FLAG = ARG_XLIT_FLAG
	CALL TRLITO (BLANK_BYTES, 4)
	BLANKS_XLIT_YET = .TRUE.
	ENDIF
	RETURN
	Initialization entry
	Determine practical maximum for
	Save local values of SWAB and XLIT flags, and convert blank-string to
	The COMMENTS statement shown below
	COMMENTS
	The third section says not to have a separate trailer for each comment block.
	Using this COMMENTS statement in a configuration file produces the following result.
	* (Knuth's vol.3 says that the avg. no. collisions =
	COMMENTS
	Using this specification produces a much nicer looking translation which still seems to capture the flavor of the original.
	* (Knuth's vol.3 says that the avg. no. collisions =
	3.3 The Configuration PATHNAMES Statement

	END
	REPLACE "$_"
	This causes all dollar signs in the source pathnames to be replaced by underscores.
	3.4 The Configuration RESTRUCTURE Statement

	RESTRUCTURE
	END
	PROGRAM TEST3
	PRINT 1,IALPHA
	STOP
	STOP(NULL);
	STOP(NULL);
	SWITCHES QW3606
	RESTRUCTURE
	Using this configuration file, the following "correct" translation is produced.
	STOP(NULL);
	3.5 The Configuration KEYWORDS Statement

	SUBROUTINE TEST4
	3.5.1 Simple Keyword Replacement

	KEYWORDS
	When test4 is translated using the Rdemo command line switch, the following translation will be produced.
	KEYWORDS
	3.5.2 Pattern Strings for COMMON blocks

	KEYWORDS
	Of course the KEYWORDS of this section can be combined with those of the last to produce the following demo.cnf file.
	KEYWORDS
	3.5.3 Pattern String for External Functions

	KEYWORDS
	3.5.4 Pattern String for Subprogram Surrogates

	ELP:
	The manner in which the local surrogates are formed can easily be changed. Consider the following configuration file
	KEYWORDS
	ELP:
	3.5.5 Pattern Strings for VAX Descriptors

	SUBROUTINE DEMO(I,J)
	CHARACTER*12 NAME
	CHARACTER*4 INITIAL
	J = JINDEX(NAME,INITIAL)
	RETURN
	END
	SWITCHES CHv
	This produces the following translation.
	3.6 The Configuration PRAGMA Statement

	SUBROUTINE TEST6
	STOP
	END
	To see the problem, the following is the default translation of the above.
	STOP(NULL);
	STOP(NULL);
	SWITCHES Yd*?
	PRAGMA "c" "s1" "t1" ... "sn" "tn"
	#ifdef UNIX
	#endif
	STOP(NULL);
	3.7 The Configuration $ Statement

	The configuration $ statement simply specifies the replacement character for the dollar sign.
	FUNCTION HELLO$(I$,J$)
	DIMENSION WORLD$(10,20)
	HELLO$ = WORD(I$,J$)
	RETURN
	END
	Using a configuration statement of $S would give the following.
	4. THE CONFIGURATION FUNCTION PROTOTYPES
	4.1 Function Prototype Syntax
	4.2 Value Parameters

	SUBROUTINE DEMO
	RETURN
	END
	REAL*8 DBL
	INTEGER*2 ISHT
	T2 = 1000000.0;
	4.3 External Name Clash

	SUBROUTINE DEMO
	CALL FREAD(1,A,1)
	CALL FWRITE(2,A,1)
	CALL FREAD(1,B,10)
	CALL FWRITE(2,B,10)
	CALL FREAD(1,C,20)
	CALL FWRITE(2,C,20)
	RETURN
	END
	The old names have been completely replaced as a result of the prototype specification.
	4.4 Multiple Forms

	SUBROUTINE ANADAT(VAL,N,XBAR,VAR)
	DIMENSION VAL(N)
	XBAR=0.0
	VAR=0.0
	10 CONTINUE
	XBAR = XBAR/N
	DO 15 J = 1,N
	15 CONTINUE
	VAR = VAR/(N-1)
	RETURN
	END
	Translating it with the following prototype produces the memory version shown below.
	SUBROUTINE TEST
	REAL*8 ABAR,AVAR,BBAR,BVAR,CBAR,CVAR
	CALL ANADAT(B,20,BBAR,BVAR)
	CALL ANADAT(C,100,CBAR,CVAR)
	RETURN
	END
	This translation is exactly as desired.
	4.5 Global Symbols and Prototypes

	GLOBALS " _"
	4.6 Renaming Identifiers Only

	5. OVERVIEW OF RUNTIME LIBRARY
	5.1 Naming and Organization of Functions
	5.2 General FORTRAN Operations
	5.3 Input/Output Operations
	5.3.1 Runtime Error Messages

	5.4 Noncomplex Intrinsic Functions
	5.5 Virtual Memory System
	5.5.1 The Virtual Memory Management Algorithm

	2 The block status vector
	5.5.2 Virtual Memory Global Variables
	5.6 Single Precision Complex Arithmetic
	5.7 Double Precision Complex Arithmetic

	6. RUNTIME LIBRARY FUNCTION DESCRIPTIONS
	The following sections contain the descriptions for the functions in the GREAT MIGRATIONS FORTRAN Runtime Library.
	6.1 CPXABS: Compute the Short Complex Absolute Value

	Synopsis:
	Description:
	Computes the value of the short complex absolute value. The result is single precision.
	Return value:
	The single precision result.
	See also: None
	6.2 CPXADD: Short Complex Addition

	Synopsis:
	Description:
	Adds two short complex numbers to form a third.
	Return value:
	The complex result of the addition.
	See also: None
	6.3 CPXCJG: Compute the Short Complex Conjugate

	Synopsis:
	Description:
	Return value:
	The complex result.
	See also: None
	6.4 CPXCMP: Short Complex Comparison

	Synopsis:
	Description:
	Compares two short complex numbers.
	Return value:
	A zero if the numbers are the same, else a one.
	See also: None
	6.5 CPXCOS: Compute the Short Complex Cosine

	Synopsis:
	Description:
	Return value:
	The short complex result.
	See also:
	6.6 CPXCPX: Convert Two Floats to Short Complex

	Synopsis:
	Description:
	Forms a short complex number whose real and imaginary parts are specified values.
	Return value:
	The short complex result.
	See also: None
	6.7 CPXDBL: Convert Double Precision to Short Complex

	Synopsis:
	Description:
	Forms a short complex number whose real part is a specified value and whose imaginary part is zero.
	Return value:
	The short complex result.
	See also: None
	6.8 CPXDIV: Short Complex Division

	Synopsis:
	Description:
	Divides two short complex numbers to form a third.
	Return value:
	The short complex result of the division.
	See also: None
	6.9 CPXDPX: Convert Double Complex to Short Complex

	Synopsis:
	Description:
	Forms a short complex number whose real and imaginary parts correspond to a double complex number.
	Return value:
	The short complex result.
	See also: None
	6.10 CPXEXP: Short Complex Exponential

	Synopsis:
	Description:
	Computes the short complex exponential of a short complex value.
	Return value:
	The short complex exponential.
	See also: None
	6.11 CPXIMA: Compute the Imaginary Part of a Short Complex

	Synopsis:
	Description:
	Computes the imaginary part of a short complex value. The result is single precision.
	Return value:
	The single precision result.
	See also: None
	6.12 CPXLOG: Short Complex Natural Logarithm

	Synopsis:
	Description:
	Computes the short complex natural logarithm of a short complex value.
	Return value:
	The complex natural logarithm.
	See also: None
	6.13 CPXLOG10: Short Complex Base 10 Logarithm

	Synopsis:
	Description:
	Computes the short complex base 10 logarithm of a short complex value.
	Return value:
	The complex base 10 logarithm.
	See also:
	6.14 CPXLONG: Convert Short Complex to Long

	Synopsis:
	Description:
	Computes the real part of a short complex value and converts it to long.
	Return value:
	The long result.
	See also: None
	6.15 CPXMUL: Short Complex Multiplication

	Synopsis:
	Description:
	Multiplies two short complex numbers to form a third.
	Return value:
	The short complex result of the multiplication.
	See also: None
	6.16 CPXNEG: Compute the Short Complex Negative

	Synopsis:
	Description:
	Computes the complex negative of a short complex value.
	Return value:
	The complex result.
	See also: None
	6.17 CPXPOL: Short Complex Conversion to Polar

	Synopsis:
	Description:
	Converts a complex number into its polar form. By definition (r,i) in Cartesian form is
	Return value:
	The short complex result of the conversion.
	See also: None
	6.18 CPXPOW: Raise Short Complex to a Power

	Synopsis:
	Description:
	Computes the value of a short complex raised to a short complex power.
	Return value:
	The complex result of the calculation.
	See also:
	6.19 CPXREAL: Compute Real Part of Short Complex

	Synopsis:
	Description:
	Computes the real part of a short complex value. The result is double precision.
	Return value:
	The double precision result.
	See also: None
	6.20 CPXSIN: Compute the Short Complex Sine

	Synopsis:
	Description:
	Return value:
	The short complex result.
	See also: None
	6.21 CPXSROOT: Compute Short Complex Square Root

	Synopsis:
	Description:
	Computes the square root of a short complex value.
	Return value:
	The short complex result.
	See also: None
	6.22 CPXSUB: Short Complex Subtraction

	Synopsis:
	Description:
	Subtracts two short complex numbers to form a third.
	Return value:
	The short complex result of the subtraction.
	See also: None
	6.23 DPXABS: Compute the Double Complex Absolute Value

	Synopsis:
	Description:
	Computes the value of the double complex absolute value. The result is double precision.
	Return value:
	The double precision result.
	See also: None
	6.24 DPXADD: Double Complex Addition

	Synopsis:
	Description:
	Adds two double complex numbers to form a third.
	Return value:
	The double complex result of the addition.
	See also: None
	6.25 DPXCJG: Compute the Double Complex Conjugate

	Synopsis:
	Description:
	Return value:
	The complex result.
	See also: None
	6.26 DPXCMP: Double Complex Comparison

	Synopsis:
	Description:
	Compares two double complex numbers.
	Return value:
	A zero if the numbers are the same, else a one.
	See also: None
	6.27 DPXCOS: Compute the Double Complex Cosine

	Synopsis:
	Return value:
	The double complex result.
	See also: None
	6.28 DPXCPX: Convert Short Complex to Double Complex

	Synopsis:
	Description:
	Forms a double complex number whose real and imaginary parts correspond to a single complex number.
	Return value:
	The double complex result.
	See also: None
	6.29 DPXDBL: Convert Double Precision to Double Complex

	Synopsis:
	Description:
	Forms a double complex number whose real part is a specified value and whose imaginary part is zero.
	Return value:
	The double complex result.
	See also: None
	6.30 DPXDIV: Double Complex Division

	Synopsis:
	Description:
	Divides two double complex numbers to form a third.
	Return value:
	The double complex result of the division.
	See also: None
	6.31 DPXDPX: Convert Two Doubles to Double Complex

	Synopsis:
	Description:
	Forms a double complex number whose real and imaginary parts are specified values.
	Return value:
	The double complex result.
	See also: None
	6.32 DPXEXP: Double Complex Exponential

	Synopsis:
	Description:
	Computes the double complex exponential of a double complex value.
	Return value:
	The double complex exponential.
	See also: None
	6.33 DPXIMA: Compute Imaginary of Double Complex

	Synopsis:
	Description:
	Computes the imaginary part of a short complex value. The result is double precision.
	Return value:
	The double precision result.
	See also: None
	6.34 DPXLOG: Double Complex Natural Logarithm

	Synopsis:
	Description:
	Computes the double complex natural logarithm of a double complex value.
	Return value:
	The double complex natural logarithm.
	See also: None
	6.35 DPXLOG10: Double Complex Base 10 Logarithm

	Synopsis:
	Description:
	Computes the double complex base 10 logarithm of a double complex value.
	Return value:
	The complex base 10 logarithm.
	See also:
	6.36 DPXLONG: Convert Double Complex to Long

	Synopsis:
	Description:
	Computes the real part of a double complex value and converts it to long.
	Return value:
	The long result.
	See also: None
	6.37 DPXMUL: Double Complex Multiplication

	Synopsis:
	Description:
	Multiplies two double complex numbers to form a third.
	Return value:
	The double complex result of the multiplication.
	See also: None
	6.38 DPXNEG: Compute the Double Complex Negative

	Synopsis:
	Description:
	Computes the negative of a double complex value.
	Return value:
	The double complex result.
	See also: None
	6.39 DPXPOL: Double Complex Conversion to Polar

	Synopsis:
	Description:
	Converts a complex number into its polar form. By definition (r,i) in Cartesian form is
	Return value:
	The double complex result of the conversion.
	See also: None
	6.40 DPXPOW: Raise Double Complex to a Power

	Synopsis:
	Description:
	Computes the value of a short complex raised to a short complex power.
	Return value:
	The complex result of the calculation.
	See also:
	6.41 DPXREAL: Compute Real Part of Double Complex

	Synopsis:
	Description:
	Computes the real part of a short complex value. The result is double precision.
	Return value:
	The double precision result.
	See also: None
	6.42 DPXSIN: Compute the Double Complex Sine

	Synopsis:
	Return value:
	The double complex result.
	See also: None
	6.43 DPXSROOT: Compute Double Complex Square Root

	Synopsis:
	Description:
	Computes the square root of a double complex value.
	Return value:
	The double complex result.
	See also: None
	6.44 DPXSUB: Double Complex Subtraction

	Synopsis:
	Subtracts two double complex numbers to form a third.
	Return value:
	The double complex result of the subtraction.
	See also: None
	6.45 FIFAMAX0: FORTRAN Intrinsic Function AMAX0

	Synopsis:
	Description:
	Determines which of two long integer values is the largest.
	Return value:
	The largest long integer value converted to single precision.
	See also: None
	6.46 FIFAMIN0: FORTRAN Intrinsic Function AMIN0

	Synopsis:
	Description:
	Determines which of two long integer values is the smallest.
	Return value:
	The smallest long integer value converted to single precision.
	See also: None
	6.47 FIFASC50: FORTRAN External Function ASC50

	Note they are called "radix-50" because "40" is "50" when written in octal.
	Return value:
	None the function is void.
	See also: None
	6.48 FIFCHAR: FORTRAN Intrinsic Function CHAR

	Synopsis:
	Description:
	Return value:
	A pointer to a 1-character string containing the character corresponding to the display code.
	See also: None
	6.49 FIFCOS: FORTRAN Intrinsic Function COS

	Computes the cosine of a floating point argument using single precision.
	Return value:
	The single precision value as computed above.
	See also:
	6.50 FIFDATE: External Function DATA

	Obtains the current date from the operating system.
	Return value:
	The current date in mm/dd/yy form.
	See also:
	6.51 FIFDDIM: FORTRAN Intrinsic Function DDIM

	Synopsis:
	Description:
	Computes a positive difference.
	Return value:
	If a1 is greater than a2 then the value of a1 - a2 is returned, else zero is returned.
	See also: None
	6.52 FIFDINT: FORTRAN Intrinsic Function DINT

	Synopsis:
	Description:
	Return value:
	The double precision value as computed above.
	See also: None
	6.53 FIFDMAX1: FORTRAN Intrinsic Function DMAX1

	Synopsis:
	Determines which of two double precision values is the largest.
	Return value:
	The largest double precision value.
	See also: None
	6.54 FIFDMIN1: FORTRAN Intrinsic Function DMIN1

	Synopsis:
	Description:
	Determines which of two double precision values is the smallest.
	Return value:
	The smallest double precision value.
	See also: None
	6.55 FIFDMOD: FORTRAN Intrinsic Function

	Synopsis:
	Description:
	Return value:
	The value as computed above.
	See also: None
	6.56 FIFDNINT: FORTRAN Intrinsic Function DNINT

	Return value:
	The value as computed above.
	See also:
	6.57 FIFDSIGN: FORTRAN Intrinsic Function DSIGN

	Synopsis:
	Description:
	Return value:
	The value as computed above.
	See also: None
	6.58 FIFEQF: FORTRAN Intrinsic Function EQF

	Compares two floating point numbers to determine if they would be equal in single precision floating point form.
	Return value:
	The short integer result of the comparison.
	See also: None
	6.59 FIFEXIT: FORTRAN Exit Subroutine

	Exits to the operating system.
	Return value:
	None, the function exits to the operating system and never returns.
	See also: None
	6.60 FIFGETAR: FORTRAN Get Command Line Arguments

	Copies the kth command line argument into a string variable arg. The 0th argument is the command name.
	Return value:
	None, the function is void.
	See also: None
	6.61 FIFGETCL: FORTRAN Get Command Line Subroutine

	Return value:
	None, the function is void.
	See also: None
	6.62 FIFGETENV: FORTRAN Get Value of Environment Variables

	Return value:
	None, the function is void.
	See also: None
	6.63 FIFHBIT: FORTRAN High Bit Management

	Return value:
	None, the function is void.
	See also: None
	6.64 FIFI2ABS: FORTRAN Intrinsic Function I2ABS

	Synopsis:
	Description:
	Computes the absolute value of a short integer argument.
	Return value:
	The short integer result.
	See also: None
	6.65 FIFI2DAT: FORTRAN External Function I2DATE

	Obtains the current date from the operating system and stores the month, day, and year in the parameters.
	Return value:
	None the function is void.
	See also: None
	6.66 FIFI2DIM: FORTRAN Intrinsic Function I2DIM

	Synopsis:
	Description:
	Computes a positive difference.
	Return value:
	If a1 is greater than a2 then the value of a1 - a2 is returned, else zero is returned.
	See also: None
	6.67 FIFI2DINT: FORTRAN Intrinsic Function I2DINT

	Synopsis:
	Description:
	Return value:
	The value as computed above.
	See also: None
	6.68 FIFI2MAX0: FORTRAN Intrinsic Function I2MAX0

	Synopsis:
	Description:
	Determines which of two short integer values is the largest.
	Return value:
	The largest short integer value.
	See also: None
	6.69 FIFI2MIN0: FORTRAN Intrinsic Function I2MIN0

	Synopsis:
	Description:
	Determines which of two short integer values is the smallest.
	Return value:
	The smallest short integer value.
	See also: None
	6.70 FIFI2MOD: FORTRAN Intrinsic Function I2MOD

	Synopsis:
	Description:
	Computes the value of the remainder of num divided by dem. If dem is zero, then the result is zero.
	Return value:
	The value as computed above.
	See also: None
	6.71 FIFI2NINT: FORTRAN Intrinsic Function I2NINT

	Synopsis:
	Description:
	Return value:
	The value as computed above.
	See also:
	6.72 FIFI2POW: FORTRAN Intrinsic Function I2POW

	Raises a short integer value to a short integer power.
	Return value:
	The short integer result.
	See also: None
	6.73 FIFI2SHF: FORTRAN Intrinsic Function I2SHFT

	Synopsis:
	Description:
	Return value:
	The short integer result.
	See also: None
	6.74 FIFI2SIGN: FORTRAN Intrinsic Function I2SIGN

	Synopsis:
	Description:
	Return value:
	The value as computed above.
	See also: None
	6.75 FIFIABS: FORTRAN Intrinsic Function IABS

	Synopsis:
	Description:
	Computes the absolute value of a long integer argument.
	Return value:
	The long integer result.
	See also: None
	6.76 FIFIARGC: FORTRAN Get Command Line Argument Count

	Return value:
	The number of command line arguments minus one.
	See also: None
	6.77 FIFIBIT: FORTRAN Intrinsic Function IBIT

	Return value:
	None, the function is void.
	See also: None
	6.78 FIFICHAR: FORTRAN Intrinsic Function ICHAR

	Synopsis:
	Description:
	Return value:
	The character value directly.
	See also: None
	6.79 FIFIDIM: FORTRAN Intrinsic Function IDIM

	Synopsis:
	Description:
	Computes a positive difference.
	Return value:
	If a1 is greater than a2 then the value of a1 - a2 is returned, else zero is returned.
	See also: None
	6.80 FIFIDINT: FORTRAN Intrinsic Function IDINT

	Synopsis:
	Description:
	Return value:
	The value as computed above.
	See also: None
	6.81 FIFINDEX: FORTRAN Intrinsic Function INDEX

	Synopsis:
	Description:
	Return value:
	See also: None
	6.82 FIFIPOW: FORTRAN Intrinsic Function IPOW

	Raises a long integer value to a long integer power.
	Return value:
	The long integer result.
	See also: None
	6.83 FIFISHF: FORTRAN Intrinsic Function ISHFT

	Synopsis:
	Description:
	Return value:
	The long integer result.
	See also: None
	6.84 FIFISIGN: FORTRAN Intrinsic Function ISIGN

	Synopsis:
	Description:
	Return value:
	The value as computed above.
	See also: None
	6.85 FIFMAX0: FORTRAN Intrinsic Function MAX0

	Synopsis:
	Description:
	Determines which of two long values is the largest.
	Return value:
	The largest long value.
	See also: None
	6.86 FIFMAX1: FORTRAN Intrinsic Function MAX1

	Synopsis:
	Description:
	Determines which of two double precision values is the largest.
	Return value:
	The largest value converted to a long integer.
	See also: None
	6.87 FIFMIN0: FORTRAN Intrinsic Function MIN0

	Synopsis:
	Description:
	Determines which of two long values is the smallest.
	Return value:
	The smallest long value.
	See also: None
	6.88 FIFMIN1: FORTRAN Intrinsic Function MIN1

	Synopsis:
	Description:
	Determines which of two double precision values is the smallest.
	Return value:
	The smallest value converted to a long integer.
	See also: None
	6.89 FIFMOD: FORTRAN Intrinsic Function MOD

	Synopsis:
	Description:
	Computes the value of the remainder of num divided by dem. If dem is zero, then the result is zero.
	Return value:
	The value as computed above.
	See also: None
	6.90 FIFNEF: FORTRAN Intrinsic Function NEF

	Compares two floating point numbers to determine if they would be unequal in single precision floating point form.
	Return value:
	The short integer result of the comparison.
	See also: None
	6.91 FIFNINT: FORTRAN Intrinsic Function NINT

	Synopsis:
	Description:
	Return value:
	The value as computed above.
	See also:
	6.92 FIFRAD50: FORTRAN External Function IRAD50

	Note they are called "radix-50" because "40" is "50" when written in octal.
	Return value:
	The number of characters actually converted.
	See also: None
	6.93 FIFRBIT: FORTRAN Intrinsic Function RBIT

	Reverses the order of the bytes in a bit string.
	Return value:
	None, the function is void,
	See also: None
	6.94 FIFSIN: FORTRAN Intrinsic Function SIN

	Computes the sine of a floating point argument using single precision.
	Return value:
	The value as computed above.
	See also:
	6.95 FIFSNCS: FORTRAN Single Precision Sine/Cosine

	Computes the sine or cosine of a single precision value which has been promoted to double via the C promotion rules.
	Return value:
	The double precision value as computed above.
	See also: None
	6.96 FIFSTRGV: FORTRAN String Value Conversion

	F(K .EQ. 'Y')
	Return value:
	A pointer to a buffer containing the string value.
	See also: None
	6.97 FIFSYSTM: FORTRAN External Function SYSTEM

	Description:
	Return value:
	A system-dependent integer status from the command. In UNIX systems, the status return is the value returned by exit.
	See also: None
	6.98 FIFTAN: FORTRAN Intrinsic Function TAN

	Computes the tangent of a floating point argument.
	Return value:
	The value as computed above.
	See also: None
	6.99 FIFTIME: FORTRAN External Function TIME

	Obtains the current time from the operating system.
	Return value:
	The current time in hr:mi:sec form.
	See also: None
	6.100 FIFXBIT: FORTRAN Intrinsic Function XBIT

	Return value:
	The function returns a one or a zero depending upon whether the bit specified is on or off.
	See also: None
	6.101 FIFXCREP: FORTRAN Extended Character Representation

	Return value:
	A pointer to the result string.
	See also: None
	6.102 FIOBACK: Backspace a FORTRAN File

	Synopsis:
	Description:
	Return value:
	See also:
	6.103 FIOBFOUT: Business Format Output

	Return value:
	See also: None
	6.104 FIOCLOSE: Close Current FORTRAN File

	Synopsis:
	Description:
	This function closes the file associated with the "current" FORTRAN file as specified in the global variable fiocurf.
	Return value:
	See also:
	6.105 FIOCPATH: Convert Pathname

	Synopsis:
	Description:
	The conversion information table itself is constructed via function "fiorpath".
	Return value:
	None, the function is void; however, the content of the pathname parameter is altered to reflect the conversion.
	See also:
	6.106 FIODTOS: Convert Double Value to String

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also: None
	6.107 FIOERROR: Perform FORTRAN I/O Error Processing

	Synopsis:
	Description:
	Return value:
	See also:
	6.108 FIOFDATA: FORTRAN File Data

	Synopsis:
	Description:
	Return value:
	None, this function is void.
	See also: None
	6.109 FIOFEND: End Format Processing

	Synopsis:
	Description:
	Clears the format control variables to end processing with the current format.
	Return value:
	None, the function is void.
	See also: None
	6.110 FIOFFLD: Get Next Free-Form Field

	Synopsis:
	Description:
	Return value:
	See also:
	6.111 FIOFINI: Initialize A FORTRAN Format

	Synopsis:
	Description:
	Return value:
	See also:
	6.112 FIOFINP: Formatted Input

	Synopsis:
	Description:
	Return value:
	Note the function is void; however, the global variable fioier may be set to an error code if a problem is encountered.
	See also:
	6.113 FIOFINQU: Inquire About File Data

	Synopsis:
	Description:
	Return value:
	None, this function is void.
	See also: None
	6.114 FIOFMTV: Compute FORMAT Value

	Synopsis:
	Description:
	Return value:
	The value of the integer constant or a zero if there was no integer constant.
	See also:
	6.115 FIOFOUT: Formatted Output Operations

	Synopsis:
	Description:
	Return value:
	None, the function is void; however, the global variable fioier may be set to an error code if a problem is encountered.
	See also:
	6.116 FIOFVINQ: Inquire About File Value

	Synopsis:
	Description:
	2 Inquire about existence of file
	Return value:
	The requested logical or integer value.
	See also:
	6.117 FIOFWSP: Skip Format White Space

	Synopsis:
	Description:
	Return value:
	None, the function is void. The effect of its processing is reflected in the various global format control variables.
	See also: None
	6.118 FIOINTU: Establish FORTRAN Internal Unit

	Synopsis:
	Description:
	Return value:
	See also:
	6.119 FIOITOS: Convert Integer to String

	Synopsis:
	Description:
	Converts an integer number to a character string.
	Return value:
	A pointer to the string result.
	See also: None
	6.120 FIOLREC: Position a FORTRAN File on a Record

	Return value:
	See also: None
	6.121 FIOLTOS: Convert Long Integer to String

	Synopsis:
	Description:
	Return value:
	See also:
	6.122 FIOLUN: Establish FORTRAN Unit Number

	Synopsis:
	Description:
	Return value:
	See also:
	6.123 FIONAME: Establish FORTRAN Unit by Name

	Synopsis:
	Description:
	Return value:
	See also:
	6.124 FIONXTF: Get Next Format Specification

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also:
	6.125 FIOOPEN: Open Current FORTRAN File

	Synopsis:
	Description:
	This function opens the file associated with the "current" FORTRAN file as specified in the global variable fiocurf.
	Return value:
	See also:
	6.126 FIORALPH: Read Alphabetic Information

	Synopsis:
	Description:
	Return value:
	None, the function is void. The effect of its processing is reflected in the various global format control variables.
	See also:
	6.127 FIORBIV: FORTRAN Read Binary Values

	Synopsis:
	Description:
	This function reads binary values from a file.
	Return value:
	See also: None
	6.128 FIORCHK: Check Fixed-Form Input Field

	Synopsis:
	Description:
	Return value:
	None, the function is void. The effect of its processing is reflected in the various global format control variables.
	See also: None
	6.129 FIORDB: Read FORTRAN Boolean Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.130 FIORDC: Read FORTRAN Character Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.131 FIORDD: Read FORTRAN Double Precision Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.132 FIORDF: Read FORTRAN Floating Point Values

	Synopsis:
	Description:
	Return value:
	See also:
	6.133 FIORDI: Read FORTRAN Short Integer Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.134 FIORDL: Read FORTRAN Long Integer Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.135 FIORDS: Read FORTRAN String

	Synopsis:
	Description:
	Return value:
	See also:
	6.136 FIORDT: Read FORTRAN Truth Value Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.137 FIORDU: Read FORTRAN Unsigned Char Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.138 FIORDX: Read FORTRAN Complex Values

	Description:
	Return value:
	See also:
	6.139 FIORDZ: Read FORTRAN Double Complex Values

	Synopsis:
	Return value:
	See also:
	6.140 FIOREC: Position a FORTRAN File on a Record

	Synopsis:
	Description:
	This function merely records a record number at which the FORTRAN file about to be accessed is to be positioned.
	Return value:
	None, the function is void.
	See also: None
	6.141 FIOREW: Rewind a FORTRAN File

	Synopsis:
	Description:
	This function rewinds the file associated with the "current" FORTRAN file as specified in the global variable fiocurf.
	Return value:
	See also: None
	6.142 FIORLN: Read FORTRAN End-of-Line

	Synopsis:
	Description:
	Return value:
	See also:
	6.143 FIORNDV: Round Value

	Synopsis:
	Description:
	Return value:
	See also: None
	6.144 FIORNL: Process FORTRAN READ DATALIST Statement

	Synopsis:
	Description:
	Return value:
	See also:
	6.145 FIORPATH: Read Pathname Conversion Information

	Synopsis:
	Description:
	END
	REPLACE "$_"
	This causes all dollar signs in the source pathnames to be replaced by underscores.
	Return Value:
	See also:
	6.146 FIORTXT: Read Next Text Record

	Synopsis:
	Description:
	Return value:
	None, the function is void. The effect of its processing is reflected in the various global format control variables.
	See also:
	6.147 FIORWBV: FORTRAN Rewrite Binary Values

	This function rewrites binary values to a file.
	Return value:
	See also: None
	6.148 FIOSHL: Shift String Left

	Synopsis:
	Description:
	Shifts a character string left a specified number of places. The spaces removed are lost.
	Return value:
	None, the function is void.
	See also: None
	6.149 FIOSHR: Shift String Right

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also: None
	6.150 FIOSPACE: Skip White Space in Record

	Return value:
	If the function reads a new record during its processing, it returns a 1; else it returns a zero.
	See also:
	6.151 FIOSTATUS: Set FORTRAN I/O Error Status

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also: None
	6.152 FIOSTIO: Establish FORTRAN Standard I/O

	Synopsis:
	Description:
	Return value:
	See also:
	6.153 FIOSTOD: Convert String to Double

	Synopsis:
	Description:
	Return value:
	The double precision value of the string as computed.
	See also:
	6.154 FIOSTOI: Convert String to Integer

	Synopsis:
	Description:
	Return value:
	The converted value.
	See also: None
	6.155 FIOUWL: Establish FORTRAN Unformatted Write Length

	Description:
	This function merely records the length of the following unformatted record to be written.
	Return value:
	None, the function is void.
	See also: None
	6.156 FIOVFINI: Initialize A Variable FORTRAN Format

	Return value:
	See also:
	6.157 FIOWALPH: Write Alphabetic Information

	Synopsis:
	Description:
	Return value:
	None, the function is void. The effect of its processing is reflected in the various global format control variables.
	See also:
	6.158 FIOWBIV: FORTRAN Write Binary Values

	Synopsis:
	Description:
	This function writes binary values to a file.
	Return value:
	See also: None
	6.159 FIOWDBL: Write Double Precision Value

	Synopsis:
	Description:
	Return value:
	See also:
	6.160 FIOWEF: FORTRAN Write End-of-file

	Synopsis:
	Description:
	This function writes an end-of-file to a file.
	Return value:
	See also: None
	6.161 FIOWHEXO: Write Hexadecimal or Octal Constant

	Displays a numeric value as a hexadecimal or octal character string.
	Return value:
	The function returns a pointer to the exact representation string for the value.
	See also:
	6.162 FIOWLN: Write FORTRAN End-of-Line

	Synopsis:
	Description:
	Completes the current read operation by flushing the current format statement and writing out the current record.
	Return value:
	See also:
	6.163 FIOWNL: Process FORTRAN WRITE DATALIST Statement

	Writes the information in a namelist data group.
	Return value:
	See also:
	6.164 FIOWRB: Write FORTRAN Boolean Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.165 FIOWRC: Write FORTRAN Character Vector

	Synopsis:
	Return value:
	See also:
	6.166 FIOWRD: Write FORTRAN Double Precision Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.167 FIOWRF: Write FORTRAN Single Precision Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.168 FIOWRI: Write FORTRAN Short Integer Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.169 FIOWRL: Write FORTRAN Long Integer Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.170 FIOWRS: Write FORTRAN Vector of Strings

	Synopsis:
	Description:
	Return value:
	See also:
	6.171 FIOWRT: Write FORTRAN Truth Value Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.172 FIOWRU: Write FORTRAN Unsigned Char Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.173 FIOWRX: Write FORTRAN Complex Vector

	Return value:
	See also:
	6.174 FIOWTXT: Write Text Record

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also:
	6.175 FIOWVAL: Write Floating Point Value

	Synopsis:
	Description:
	For B format, business formatting conventions are used. See function fiobfout for details.
	Return value:
	See also:
	6.176 FIOWVB: Write FORTRAN Boolean Value

	Synopsis:
	Description:
	Return value:
	See also:
	6.177 FIOWVC: Write FORTRAN Character Value

	Synopsis:
	Description:
	Return value:
	See also:
	6.178 FIOWVD: Write FORTRAN Double Value

	Synopsis:
	Description:
	Return value:
	See also:
	6.179 FIOWVF: Write FORTRAN Float Value

	Synopsis:
	Description:
	Return value:
	See also:
	6.180 FIOWVI: Write FORTRAN Short Integer Value

	Synopsis:
	Description:
	Return value:
	See also:
	6.181 FIOWVL: Write FORTRAN Long Integer Value

	Synopsis:
	Description:
	Return value:
	See also:
	6.182 FIOWVS: Write FORTRAN String Value

	Synopsis:
	Description:
	Return value:
	See also:
	6.183 FIOWVT: Write FORTRAN Truth Value

	Synopsis:
	Description:
	Return value:
	See also:
	6.184 FIOWVU: Write FORTRAN Character Value

	Synopsis:
	Description:
	Return value:
	See also:
	6.185 FIOWVX: Write FORTRAN Complex Value

	Return value:
	See also:
	6.186 FIOWVZ: Write FORTRAN Double Complex Value

	Return value:
	See also:
	6.187 FTNADS: FORTRAN Add Strings

	Synopsis:
	Description:
	Return value:
	A pointer to the result of the concatenation.
	See also: None
	6.188 FTNALLOC: Allocate Dynamic Memory

	Synopsis:
	Description:
	Return value:
	A pointer to the start of the storage area.
	See also: None
	6.189 FTNBACK: FORTRAN Backspace Statement

	Synopsis:
	Description:
	Return value:
	See also:
	6.190 FTNBLKD: FORTRAN BLOCK DATA

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also: None
	6.191 FTNCLOSE: FORTRAN Close Statement

	Return value:
	See also:
	6.192 FTNCMS: FORTRAN Compare Strings

	Synopsis:
	Description:
	Return value:
	See also:
	6.193 FTNFREE: Free Dynamic Memory

	Synopsis:
	Description:
	Frees dynamic memory allocated by ftnalloc.
	Return value:
	None, the function is void.
	See also: None
	6.194 FTNINI: Initialize FORTRAN Processing

	Synopsis:
	Description:
	Return value:
	None, the function is void
	See also:
	6.195 FTNLUN: Establish File for Logical Unit Number

	Synopsis:
	Description:
	Return value:
	The stream pointer associated with the logical unit number.
	See also:
	6.196 FTNOPEN: FORTRAN Open Statement

	Synopsis:
	Description:
	See also:
	6.197 FTNPAUSE: FORTRAN Pause Statement

	Synopsis:
	Description:
	PAUSE message
	Return value:
	None, this function is void.
	See also: None
	6.198 FTNREAD: FORTRAN Read Statement

	Synopsis:
	Description:
	See also:
	6.199 FTNREW: FORTRAN Rewind Statement

	Synopsis:
	Description:
	Return value:
	See also:
	6.200 FTNSAC: FORTRAN Store a Character String

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also: None
	6.201 FTNSALLO: FORTRAN String Allocation

	Synopsis:
	Description:
	Return value:
	See also: None
	6.202 FTNSCOMP: FORTRAN String Comparison

	Synopsis:
	Description:
	Return value:
	See also:
	6.203 FTNSCOPY: FORTRAN String Copy

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also: None
	6.204 FTNSLENG: FORTRAN String Length

	Synopsis:
	Description:
	This function computes the length of a character string or a sequence of strings being concatenated.
	Return value:
	The length of the result string.
	See also: None
	6.205 FTNSUBS: FORTRAN Substring Evaluation

	Synopsis:
	Description:
	Return value:
	See also: None
	6.206 FTNSTOP: FORTRAN Stop Statement

	Synopsis:
	Description:
	Return value:
	None, this function does not return to the calling function.
	See also: None
	6.207 FTNWEF: FORTRAN End File Statement

	Return value:
	See also:
	6.208 FTNWRIT: FORTRAN Write Statement

	Synopsis:
	Description:
	See also:
	6.209 FTNXCONS: FORTRAN Exact Representation Constant

	Return value:
	A pointer to the result of the conversion. This pointer must always be cast a pointer to the type of the desired value.
	See also:
	6.210 P77GETU: Prime FORTRAN 77 Function F77$GETU

	Scans the currently open files to find an available logical unit number.
	Return value:
	The unit number.
	See also: None
	6.211 P77NLENA: PRIME FORTRAN 77 Subroutine NLEN$A

	This function computes the length of a blank filled string by finding the last nonblank character.
	Return value:
	The length of the string
	See also: None
	6.212 P77TNOUA: PRIME FORTRAN 77 Subroutine TNOUA

	Description:
	This function writes a message to the terminal screen with a newline.
	Return value:
	None, the function is void.
	See also: None
	6.213 PDPASSN: PDP FORTRAN Subroutine Assign

	Description:
	Return value:
	None, the function is void.
	See also:
	6.214 PDPCLOSE: PDP FORTRAN Subroutine Close

	Description:
	Return value:
	None, the function is void.
	See also:
	6.215 PDPCVTIM: PDP FORTRAN External Function CVTTIM

	Description:
	Return value:
	None, the function is void.
	See also: None
	6.216 PDPGTIM: PDP FORTRAN External Function GTIM

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also: None
	6.217 VMSCLS: Close Virtual File

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also:
	6.218 VMSDEL: Change Virtual Information

	Synopsis:
	Description:
	Return value:
	A pointer to the byte at the requested linear address.
	See also:
	6.219 VMSGLOB: Virtual Global Access

	Return value:
	None, the function is void.
	See also: None
	6.220 VMSLOAD: Load a Virtual Vector

	Return value:
	A pointer to the start of the storage area.
	See also:
	6.221 VMSOPN: Open A Virtual Memory File

	Synopsis:
	Description:
	See also:
	6.222 VMSPTR: Get Virtual Byte Pointer

	Synopsis:
	Description:
	Return value:
	A pointer to the byte at the requested linear address.
	See also:
	6.223 VMSRBL: Remove Virtual Block

	Synopsis:
	Description:
	Return value:
	None, the function is void.
	See also: None
	6.224 VMSRDB: Read FORTRAN Virtual Boolean Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.225 VMSRDC: Read FORTRAN Virtual Character Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.226 VMSRDD: Read FORTRAN Virtual Double Precision Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.227 VMSRDF: Read FORTRAN Virtual Floating Point Values

	Synopsis:
	Description:
	Return value:
	See also:
	6.228 VMSRDI: Read FORTRAN Virtual Short Integer Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.229 VMSRDL: Read FORTRAN Virtual Long Integer Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.230 VMSRDS: Read FORTRAN Virtual String

	Description:
	Return value:
	See also:
	6.231 VMSRDT: Read FORTRAN Virtual Truth-Value Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.232 VMSRDU: Read FORTRAN Virtual Unsigned Character Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.233 VMSSAVE: Save a Virtual Vector

	Saves a vector of values on the virtual database and then releases the memory being used for that vector.
	Return value:
	None the function is void.
	See also:
	6.234 VMSUSE: Use Virtual Information

	Synopsis:
	Description:
	Return value:
	A pointer to the byte at the requested linear address.
	See also:
	6.235 VMSVECT: Virtual Vector Input/Output

	Description:
	Reads or rewrites a vector of bytes for a specified virtual file beginning at a specified address.
	Return value:
	None, the function is void.
	See also:
	6.236 VMSWRB: Write FORTRAN Virtual Boolean Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.237 VMSWRC: Write FORTRAN Virtual Character Vector

	Description:
	Return value:
	See also:
	6.238 VMSWRD: Write FORTRAN Virtual Double Precision Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.239 VMSWRF: Write FORTRAN Virtual Single Precision Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.240 VMSWRI: Write FORTRAN Virtual Short Integer Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.241 VMSWRL: Write FORTRAN Virtual Long Integer Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.242 VMSWRS: Write FORTRAN Virtual Vector of Strings

	Synopsis:
	Description:
	Return value:
	See also:
	6.243 VMSWRT: Write a Virtual Long Truth Value Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.244 VMSWRU: Write FORTRAN Virtual Unsigned Character Vector

	Synopsis:
	Description:
	Return value:
	See also:
	6.245 VMSWVB: Write a Virtual Block

	Physically writes the data block associated with a virtual memory block back onto its virtual file.
	Return value:
	None, the function is void.
	See also: None

